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Abstract In the paper, a new class of semi-infinite multiobjective fractional
programming problems with support functions in the objective and constraint
functions is considered. For such vector optimization problems, higher order
dual problems in the sense of Mond-Weir and Schaible are defined. Then,
various duality results between the considered multiobjective fractional semi-
infinite programming problem and its higher order dual problems mentioned
above are established under assumptions that the involved functions are higher
order (@, p,c%)-type I functions. The results established in the paper gener-
alize several similar results previously established in the literature.
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1. Introduction

In recent years, semi-infinite programming problems have been an active research
topic due to their applications in several areas of modern research such as in eco-
nomics, engineering design, approximation theory, optimal control, physics, robotic-
s, transportation problems, etc.

A semi-infinite programming problem is called a mathematical programming
problem with a finite number of variables and infinitely many constraints. Semi-
infinite multiobjective fractional programming problems arise when more than one
objective function, being a ratio of two functions or several such ratios, is to be
optimized over feasible set described by infinite number of constraints. The main
reason for interest in semi-infinite multiobjective fractional programming stems from
the fact that programming models could better fit in the real problems. There are
many works devoted to the study of optimality conditions and duality results for
semi-infinite multiobjective programming problems (see, e.g., [6,9,10,22 27,28 30—
32,35,40-42,45-52]).
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The higher order duality theory for generalized convex multiobjective optimiza-
tion problems is a field of the optimization theory which has intensively devel-
oped during the last five decades. This is a consequence of the fact that the s-
tudy of second and higher order duality is significant due to the computational
advantage over the first order duality as it provides tighter bounds for the val-
ue of objective function when approximations are used because there are more
parameters involved. In the last few years, many researchers have studied high-
er order duality results for various classes of optimization problems (see, e.g.,
[1-5,7,8,11,12,16-18, 20,21, 23-25, 29, 30, 33, 34, 3739, 43, 44]).

In this paper, a new class of nondifferentiable nonconvex semi-infinite multi-
objective fractional programming problems in which numerators and denominators
of the objective functions and, moreover, all constraints contain a term involving
the support function of a convex set. For the considered multicriteria optimization
problem, we formulate higher order Mond-Weir and Schaible type duals. Then, for
the considered nondifferentiable semi-infinite multiobjective programming problem,
we prove various higher order duality results in the sense of Mond-Weir and in the
sense of Schaible under hypotheses of the concept of higher order (®, p,c®)-type I
functions introduced in the paper. Thus, we generalize and extend similar higher
order duality results earlier established in the literature to a new class of nondiffer-
entiable nonconvex semi-infinite multiobjective fractional programming problems in
which numerator and denominator of the objective functions and all the constraints
contain a term involving the support function of a convex set.

2. Prelimanaries

In this section, we provide some definitions and some results that we shall use in
the sequel. Let R™ denote the n-dimensional Euclidean space.

The following convention for equalities and inequalities will be used throughout
the paper.

For any © = (z1,--- xn)T vy = (y1,- - yn)T in R", we define:

(i) =y ifand only if x; = y; foralli =1, -+ | n;
(ii) x <y ifand only if z; < y; foralli =1,--- n;
(i) x <y if and only if x; <y; forall i =1,--- ,n;
(iv)
Let C' be a compact convex subset of R™ . The support function of C' at € R"
is defined by s (z|C') = max {zTc:ce C}.
It is well-known that every support function is a sublinear function defined on
R"™ and, therefore, it is convex, as well as proper and lower semicontinuous.
The support function s (z|C) of a compact convex set C C R", being convex

and everywhere finite, has a subgradient at every x € R™ (see, Rockafellar [34]).
This means that, at every x € R™, there exists £ € R™ such that

x <y if and only if x <y and x # y.

5(2|C) >s(2|C) + &7 (2 — ) for all 2z € C.
The subdifferential of s (x|C) is given by

9s(z|C) ={¢eC: v =5(2(C)}.
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For any set C' C R™, the normal cone to C at any point = € C, denoted by N¢(z),
is defined by
Ne(z)={yeR":y" (z—2) <0,V2€C}.

If C is a compact convex set, then y € Ng(z) if and only if s (y|C) = 2Ty, or
equivalently = € 9s (y|C).
Now, consider the semi-infinite vector optimization problem defined by

minimize f (x)
subject to h(z,y) <0,y €Y, (SIVP)
z e X,

where X is a nonempty open convex subset of R™, Y is a nonempty compact set of
R™ f:= (fi, -+, fr) : X = RFis a differentiable on X,h : X x Y — R is such
that, for each y € Y, h(.,y) is differentiable on X and, for each x € X, h(z,’) is
continuous on Y. Let A be the set of all feasible solutions of the problem (SIVP),
that is, A={z € X :h(z,y) SOVyeY}.

Definition 2.1. A point T € A is a weakly efficient (weak Pareto) solution of
(SIVP) if there is no other feasible solution x such that f (z) < f (Z).

Definition 2.2. A point T € A is an efficient (Pareto) solution of (SIVP) if there
is no another feasible solution x such that f (z) < f ().

Motivated by Kaul et al. [21] and Ferrara and Stefanescu [13], we introduce a
new concept of generalized convexity for the considered semi-infinite vector opti-
mization problem (SIVP). Namely, we define the notion of higher order (®, p,o%)-
type I functions. In the following definition, an element of the (n 4 1)-dimensional
Euclidean space R"T! is represented as the ordered pair (z,r) with z € R" and
r € R. Let a be an integer, p = (p1,--- ,px) € R¥,0% = (01,-++ ,04) € R* and
® be a real-valued function defined on X x X x R"™! such that ® (z,u, (0,a)) > 0
for all (z,u) € X x X and any a >0 and, moreover, ® (z,u,.) is a convex function.
Further, assume that K := (Ky,--- Kj): R"xR" -+ RFand H: R"xY xR" - R
be differentiable functions.

Definition 2.3. It is said that the pair (f,h) is higher order (®,p,o%)-type I
functions at v € X on X with respect to functions K and H if the inequalities

fi (@) = fi (u) = K; (u,p) + p" VpK; (u,p) 2 ® (2,u (Vi (u) + Vp K (u,p) . pi)

i=1,-k,
—h (%yj)_H (U'a ZUJ’(Z)‘H]TVqH (UayJ7Q) i¢ (.’L’,U/, (Vh (u7yj)+qu (UayJ7Q)7
ij))7 j:17"',06

hold for all x € X,p € R",q € R". If these inequalities are fulfilled for any u € X,
then the pair (f, h) is higher order (®, p,0®)-type I functions on X with respect to
functions K and H.

Definition 2.4. It is said that the pair (f, h) is higher order strictly (®, p, o®)-type
I functions at u € X on X with respect to functions K and H if the inequalities

fi (x) = fi (u) = Ki (u,p) + p" VI (u.p) > @ (2, u (Vi (u) + VyKi (u, ), pi)
i=1,-k
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—h (uvy])fH (ua yJ7Q) +quqH (uvy]aq) i(:[) (x,u, (Vh (uvyj)+qu (uayJ7Q) )
7)) =1

hold for all x € X,p € R",q € R"™. If these inequalities are fulfilled for any u € X,
then the pair (f,h) is higher order strictly (®, p,c%)-type I functions on X with
respect to functions K and H.

Remark 2.1. Note that the definition of higher order (®, p, c%)-type I function-
s generalizes several concept of generalized convexity, earlier introduced to opti-
mization theory. Indeed, if Y is a finite index set and we denote by h (u,yj ) =
hj(u),H (u, y, q) =H; (u,p),j =1, -, a, we have the following special cases:

(a) fK; (z,u)=0,i=1,--- k,H; (u,p) =0,j =1,--+ ,a, @ (z,u,(Vfi (u) + V,
Ki (uap) 7Pz‘)) = [77 (‘T) u)]vaz (u) ai: la e 7ka o (17, u, (Vh] (u)+vaJ (U,p),
pi)) = (z,u)]" Vhj(u),j = 1,---,a, then Definition 2.3 reduces to the
definition of V — type I functions introduced by Kaul et al. [21].

(b) If f; and h; are twice differentiable and, moreover K;(u,p) =
%pTVin (U) 2 ® (JT, u, (vfl (U) + vpKi (U,p) ,Pi)) = |:77 (l‘, ’U’)Tj| (vfl (’LL) +
V2fi(w)p),i=1,--- ,k,Hj (u,p) = 3pV>h; (u) p, ® (z,u, (Vh; (u) + V,

H; (u,p) o) = [n(e,u)"|Vh; (u) + V2h; (w)p.j = 1o+, where n :
X x X — R"™ is a vector-valued function, then Definition 2.3 reduces to

definition of second order type I functions introduced by Mond and Zang [31]
(see also Mishra and Rueda [26]).

(c) If @ (z,u,(Vfi(u)+ VK, (u,p),pi)) = [n (z,u)]" VoKi(u,p),i =1,--- ,k,
P (2, u, (th (u) + V;DHJ' (u,p) 7Uj)) = [77 (mvu)}T V:DHJ' (u,p) Jo=1-a
where 17 : X x X — R" is a vector-valued function, then Definition 2.3 gives
the definition of higher order type I functions with respect to 7 introduced in
the scalar case by Zhang [52](see also Mishra and Rueda [26]).

(d) If f; and h; are twice differentiable and, moreover, K; (u,p) = %pV2fZ- (u),
® (2, u, (Vi () + VK (u,p) , p1) = [ (@, 0)]" (Vi (u) + V2 fi (u)p) +
Pi He (Z‘,U)HQ 1= la e 7k' Hj (U7Q) = %quhj (u) q,

& (2,0, (Vhy () + VyH; (u,p) 7)) = [0 (@ w)]” (Vhy (u) + V2h; (u) g) +

o |6 (z, w)|*,j=1---,a, wherep : X x X — R™ is a vector-valued function,
0 : X x X — R™then Definition 2.3 gives the definition of second order
V —p— (n,0)-Type I functions defined in the scalar case by Padhan and

Nahak [32].
pid2 ((E,u),i = 1, ,k,@(x,u, (th (u)+vaj (U,p),gj)) =

F (z,u,(Vhj (v) + VpHj (u,p)) + 0;d? (z,u),j =1, ,a,

where a functional F : X x X x R"™ — R is sublinear (in its third argument),
d: X x X — R, then the definition of higher order (®, p, o®)-type I functions
reduced to the definition of higher-order (F,p,d) type I functions given by
Suneja et al. [37].

(f) If fi and h; are twice  differentiable = and  moreover,
F(az‘,u7 (Vfi (u) +V2f; (u)p)) + pid® (z,u) i = 1,-- k,Hj(u,q) =
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3aV?hj (u) ¢, ® (x,u, (Vh; (u) + V,Hj (u) p, o)) =
F (ac,ma? (th (u) + V2hj (u) q)) + ajd2 (z,u),j =1, q,

where F' : X x X X R™ — R is sublinear(in its third argument), d : X x X — R,
then Definition 2.3 gives the definition of second order (F, p;, 0;)-type I func-
tions defined by Srivastava and Govil [36].

(g) If f; and h; are twice differentiable and, moreover,
K; (u,p) = 5pV2f; (), @ (2,u, (Vi (u) + V,K; (u,p) , pi))
= F(x,u,ozl1 (z,u) (sz (u) + V2f; (u)p)) + pid? (z,u)i=1,--- Kk,
Hj (u,q) = 5¢V7h; (u) ¢, ® (z,u, (Vhj(u) + V, H; (u,p) ,05))
= F (z,u,0; (z,u) (Vhj (u) + V2h; (u) q)) + 0jd* (z,u),j =1, ,a, where
F: X x X x R" — R is sublinear (in its third argument), o} : X x X —
Ry {0},i=1,-- ko : XxX R —{0},j=1,--,0,d: X xX - R
then Definition 2.3 gives the definition of second order (F,a,p,o,d)-type I
functions introduced by Hachimi and Aghezzaf [19].

(h) It @ (xvuv (Vfl (u) + VPKZ (u,p) 7p1)) = F (x,u,al (.’E, 'LL) + VPKZ (u,p)) +
pid? (z,u) ,i = 1.k, ®(z,u,(Vhj (u) + V,H; (u,p),05)) =
F (ar,‘,u,a2 (x,u) + Vp,H; (u,p)) + o0jd*(z,u),j = 1,---,a, where a
functional F : X x X x R® — R is sublinear (in its third argument),
at,a? 1 X x X — Ry —{0},d: X x X — R, then the Definition 2.3 of higher
order type I function reduced to the definition of higher-order (F,a,p,d)
type I functions given by Ahmad et al. [5].

In the paper, consider the nondifferentiable semi-infinite multiobjective fraction-
al programming problem defined by

h@+sElo) fk<a:>+s<x|ck>>
g1 (z) = s(@[D1)" gk (z) — s (z[Dk)
subject to h (z,y7) + s (z|E;) < 0,y €, (SIMFP)
e X,

minimaize (

where X is a nonempty open convex subset of R",Y C R™ is a nonempty compact
set, fi=(f1, -, fx) : X = RF.g:= (g1, ,g1) : X = R¥, h: X xY — R are
continuously differentiable such that f; (z) + s (x|C;) >0, g; (x) — s (z|D;) > 0, i =
1,--+ k. Let A be the set of all feasible solutions of the problem (SIMFP), that
is, A = {x eX:h (:c,yj) +s(z|E;) <0Vyl € Y}. For T € A, we define the set of
active inequality constraints as Y (Z) = {y/ € Y : h (Z,y?) + s (ZT|E;) = 0}. Note
that the set Y (T) can be empty. It is obvious that, for each T € A, each index
7 € Y (T) is a global minimizer of the corresponding parameter-depending (Z is
the parameter) problem max {h (Z,y’) + s (Z|E;)} s.t.y7 € Y.

Based on the necessary optimality conditions established by Guerra-Vazquez
and Ruckmann [14], Kanzi and Nobakhtian [22], Mishra and Jayswal [27] for multi-
objective semi-infinite optimization problems and Husain and Z. Jabeen [17], Suneja
et al. [37] established for multiobjective fractional programming with the support
function, we now give the Karush-Kuhn-Tucker type necessary optimality conditions
for the considered nondifferentiable semi-infinite multiobjective fractional program-
ming problem (SIMFP).

Theorem 2.1 (The Karush-Kuhn-Tucker type necessary optimality conditions).
Let T € A be a weakly efficient solution of the considered nondifferentiable semi-
infinite multiobjective fractional programming problem (SIMFP) and the suitable
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constraint qualification be fulfilled at T. Then there exist A = (Xl, e ,Xk) € Ri,x #*

0, an integer @ such that 0<a<n, i = (m, , Hm € Rj‘_) and ) € Y (Z) such that

r i@+ 2z @ a
NV [ i =0 2.1

> (gl(x)_m) RALUCIRL BN
a .
> om; (h(z,y) +wiT) =0, (2.2)
j=1
’U;TjZS(.T|D7),’L: a"'7ka
w/T=s(T|E;),j=1,---,@

3. Higher order Mond-Weir duality

In this section, for the primal semi-infinite multiobjective fractional programming
problem (SIMFP), we define its higher order dual in the sense of Mond-Weir as
follows:

1 (u) y
(u) = s (ulD1)" 7 gk (u) — s (u|Dy

)
)
subject to Z A (V (fZ i_ZTzZ) (u,p ) +

gi (

+s@C)  fe(w) +s(ulC

maxrimaize (

Zﬂj (V (h (uy?) +ulws) + VoH (u,9,q)) =0,

> pi (b (wy? +u"w;) + H (w,97,q) — ¢"VoH (u,¢7,q)) >0,

k
> i (K (u,p) = p VK (u,p)) 20,
=1
k
VS XvAZiovlzlv 7kvz>\i:170 <ac< n,,u]i(),]: [ 7047917"' 7ya€ Y.
i=1
(3.1)
Let @ denote the set of all feasible solutions of the problem (MWD),
that is, the set of (u,)\,u,a,yl,-~- ,YY, Z, v, W, P, q) satisfying all constraints of

(MWD), where z = (z1, -+ ,25),v = (v1,-+,0%),w = (w1, -+ ,Wqs). Fur-
ther, by U denote the projection of the set @ on X, that is, the set U =
{u eX: (u,)\,u,a,yl,--- ,y“,zm,w,p,q) € Q}

Before we prove various higher order weak duality results in the sense of Mond-
Weir, let us define the function ¢ = (¢1, -+ ,¢r) : X — RF such that ¢; (a) =

%, = 1,--- ,k and the function ¥ := (¢1,- -+ ,%,) : X — R such that

Wj(a) = (ay1)+a wj,j =1,

Theorem 3.1 (Higher order weak duahty). Let x and (u\ oy’ 4%, 2,0,w,p,9)
be any feasible solutions of the problems (SIMF P) and (MW D), respectively. Fur-
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ther, assume that the pair (p,) is higher order (P, p,0®)-type I functions at u on
AUU with respect to K and H. If Zle Aipi + 2?21 pjoyi >0, then the inequality

(f1 () + 272 L (m)+xTzk) - <f1 (u) +ul'z L (u)—i—uTzk)
g1 (2) —aTvr” 7 gg (x) — 2Ty, g1 (u) —ulvy” 7 gy (u) —ul'vy ( ’ |
3.2

Proof. Let z and (u, Aoyt - yY, 2,0, w, p, q) be any feasible solutions of
the problems (SIMFP) and (MW D), respectively. We proceed by contradiction.
Suppose, contrary to the result, that the inequalities

. T, T..
file e s Stz g (3.3)
gi (x) —2Tv; ~ g; (w) —uTw;
hold. From the assumption, the pair (¢, ) is higher order (®, p, 0®)-type I functions

at uw on AUU with respect to K and H. Hence, by Definition 2.3, (3.3) implies that

q><x,u,< (JWM>+VK(up) >)+K( p) — pTV,K; (u, p) < 0,

gi(u) — uTv;
i=1,

Since A\;>0,i=1,--- ,k, and A # 0, (3.4) yields
¢ filw)+uTz

) JUAH T E K ) K IV, K. )
;21[ (xu (V (gi(u)_uTU)Jer l(u,p),pz>>+ i (u,p)=p" Vp z(u,p)} <0

By the third constraint of the problem (MW D), the above inequality gives

fl(u) +ulz
From the second inequality in Definition 2.3, we have

—h (U,y]) - uij -H (uayja(I) + quqH (u7yj7q)
iq) (SU,’LL, (v (h (U/, Zl/]) + uij) —+ Vq}I (UnyaQ) aayj)) 7j =1, (36)

Since p; >0, (3.6) yields

_Z“J +u w]—i—H(uy q)—qTVH(uy q))
j=1
230 (o (V (b (wy) + 0w) + T, (00) o). (37
=1

Then, by the second constraint of the problem (MW D), (3.7) implies

Zujfb (m, u, (V (h (u, yj) + uij) +V,H (u,yj, q) ,ij)) <0. (3.8)



Higher order duality for a new class of ... 2813

Let us set that

Ai ;
Bi: k P 7i:17"'7k719j: k i o 7j:17"'7a'
D Ai Zj:l My Dz Ai Zj:l Hj
(3.9)
Hence, (3.9) implies that 5;>0,i = 1,---,k, and for at least one ¢,5; >

0,9;>0,5=1,---,a and, moreover, Zle Bi + Z?:l ¥; = 1. Using (3.9) together
with (3.5) and (3.8), we get

30 (o (7 (303 i) -kt )
+Za:191‘1’ (@, u, (V (b (w,97) +u"w;) + VoH (u,97,q) ;0,5)) <0 (3.10)

Since El B+ 08 j=1¥; = 1 and ® is a real-valued convex function defined on
X x X x R"1, by the deﬁnltlon of convexity, (3.10) implies

[e%

([ (B2 4 9, )] 30, 19 0 ) 7

j=1
+VH uy q Zﬂzpz—&-Zﬁjoyj < 0.

Then, by the first constraint of the problem (MW D), the above inequality gives

k «
z,u, | 0, Z Bipi + Z V0, < 0. (3.11)
i= =1
By assumption Y7_; Aip; + 35—, f1jpys > 0. Then, (3.9) implies that

P [e%
Zﬁzpl—l—Zﬂ]UyJ iO (312)
i=1 J=1

Since ® (z,u, (0,a)) >0 for and a >0, (3.12) implies that the inequality

k el
0, Bipi+ Y _ Vo | | 20
i=1 =1

holds, contradicting (3.11). Hence, the proof of this theorem is completed.
Under the stronger assumption imposed on the functions constituting the con-
sidered vector optimization problems, the following result can be proved. O

Theorem 3.2 (Higher order weak duality). Let x and (upmay', - y*,z0,w,p,q)
be any feasible solutions of the problems (SIMF P) and (MW D), respectively. Fur-
ther, assume that the pair (p,1) is higher order strictly (®, p,o%)-type I functions
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at u on AUU with respect to K and H. If 337 Nipi + 35—y 11jpys 20, then the
imequality

<f1 (z) + 2Tz I (z) + :cTzk>

. < fi(u) + 2Tz fr () +ul' 2
g1 (z) —2Tvy” gk (z) — 27w

B (91 (w) —uTor” 7 gy (u) —UTUk)

does not hold.
Now, we prove higher order strong duality theorem in the sense of Mond-Weir.

Theorem 3.3 (Higher order strong duality). Let T € A be a (weakly) efficient solu-
tion of the semi-infinite multiobjective fractional programming problem (SIMF P),
and the suitable constraint qualification be fulfilled at T. Then, there exist X =
(Xl, e ,X;@) S Ri,x # 0, an integer o such that 0<a<n,f = (fy, - ,fg) € Rf
and ¥ € Y (), such that if K; (%,0) = 0,i = 1,--- ,k,H (7,0,77) = 0,j =
1,--- @, (E,X,ﬁ,&,yl, Y Z2,0,w,p= 0,0 = 0), is a feasible solution in the
problem (MW D) and the corresponding values of the objective functions of the prob-
lems (SIMFP) and (MW D) are equal. Further, if all hypotheses of the weak dual-
ity Theorem (3.1,3.2) are satisfied, then (ﬁ N, a, gty 20, w,p =0, = 0)
is an (weakly) efficient solution of a maximum type for the problem (MW D).

Proof. Since T € A is a (weakly) efficient solution of the semi-infinite mul-
tiobjective fractional programming problem (SIMFP), by Theorem 2.1, there
exist A = (X1,~-~ ,Xk) € RE,XN # 0, an integer @ such that 0<a<n,u =
(Fiy, - ,fig) € RS and 7 € Y (T) an integer such that the conditions (2.1)-(2.5) are
fulfilled. This means that the solution (i Nyt 7%, 2,0,w,p=0,7 = O)
satisfies these conditions. Since K;(z,0) = 0,4 = 1,--- .k, H (%,0,57) >
0,j = 1,---,@, by the conditions (2.1)-(2.5), it also follows that the solution
(E, N oyt 7%, 2,0,w,p=0,7= O) is feasible for the problem (MW D). We
now show that if T is a weakly efficient solution of the problem (SIMFP), then

(E, Nyt 7%, 2,0,w,p=0,7 = 0) is a weakly efficient solution of a max-
imum type for the problem (MW D). By means of contradiction, suppose that
(E, Nyt 7%, 2,0, w,p = 0,7 = O) is not a weakly efficient solution of a

maximum type for the problem (MW D). Then, by definition, there does exist
(ﬂ, X no, gt g%, 2,0, w, 'qv) such that the inequalities

fi@+ztz  fi(m)+alz
— < 2

— Z:1’7]€
gi (@) —7Tv; g (u) —ulv;

hold which is a contradiction to the higher order weak duality theorem 3.1. The
proof of a efficiency of a maximum type for the problem (MW D) is similar. Thus,
the proof of this theorem is completed. O

Theorem 3.4 (Higher order strict converse duality). Let T and (u, \, i, @, ', - - -

7%, Z,0,W,p,q) be feasible solutions of the problems (SIMFP) and (MW D), re-
spectively, such that

fi @ +z'% fi(ﬂ)JrﬂTzﬁia o

H w3y ,q) —q¢"Vq H (0,7,q)). (3.13)
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Further, let the function ¢ = (¢1, -+ ,0k) : X — RF be defined by ¢;(a) =
. T—
fila)ta Zi 1,--+,k, and the function ¢ := (1, ,x) : X — R* be defined by

gi(a)—aTw;”

¥ (a) = hi (a, ) + a"w;,j = 1,--- ,&@. Furthermore, assume that the pair (¢, )
18 higher order strictly (<I>, 0, oa) -type I at w on AUU with respect to K and H. If
Sy Xipi + 25— fiipgs 20, then T = .

Proof. By means of contradiction, suppose that T # w .By the assumption, the

pair (¢, ) is higher order (<I>, P, 05)—type I at w on AU U with respect to K and
H. Then, by Definition (2.3), (3.13) gives that

=Y n; (h(@wy) +u" W + H (0,7, q) — "V H (0,7, q))

>¢<x,u,(V<W)+VK(up) ))+K( p) —p' Ki(@,p),
i=1,-- k.

Then, by the second constraint of the problem (MW D), the above inequality yields

o (a: a, (v (f(“”“f:) VK @), p)) K, (,p) - pUV, K (p) < O,

g; (W) —u'v;

Since A\; >0,i=1,--- ,k and X # 0, (3.14) gives

S (e (5 () o ) 57 ]

By the third constraint of the problem (MW D), the above inequality yields

B o (5 (AE2) o)) 0

Using the second inequality in Definition(2.4),we obtain
@)—u w — H(H@j q)—qTVH(ﬂyj,q)g
(iﬁ( ( ( )Jru wJ)JrVH(uy q),O'yj)),j:].,"‘,a. (3.16)

Since 1; > 0,5 = 1,--- , @, (3.16) implies

> i @ (V(h(wy) + 7' w,) + VH (0,7 ,q) ,05)) - (3.17)
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Let us define

_ %, _ I
ﬂi: P o 731‘:17"”]{7 ﬁj: A 7NJ] o 77‘7‘:17"'76'
dimi At D i Hy Dt it
(3.19)
Hence, (3.19) implies that 8,>0,i = 1,---,k, and for at least one i,p;

0,9;>0,j=1,--- ,@and, rnoreover,Zi.":1 B, —&—Zil J; = 1. Using (3.19) together
with (3.15) and (3.18),we get

370 (20 (7 (L2L2 ) s ) )+ 30 (7 0659

+ a'w;) + VH(W ¥, q),0,)) <0. (3.20)

Since Zlegi + 2?21 ¥; = 1 and @ is a real-valued convex function defined on
X x X — R™! by the definition of convexity, (3.20) gives

k a
+ ETWJ) + VqH(ﬂv ?j7 C])} aZBipi + Zgjo-gj < 0.

k «@
(73 |0,) Bipi+ D> Viop | | <O. (3.21)

By assumption, Ele i + Z?:l fi; > 0. Hence, (3.19) yields that

k a
Z i+ Y 005 0. (3.22)
=1 ]=1
Since ® (%, @, (0,a)) >0 for any a >0, (3.2) implies that the inequality
k «
(033 S || 20
holds, contradicting (3.21). Hence, the proof of this theorem is completed. O

4. Higher order Schaible type dual

In this section, for the primal semi-infinite multiobjective fractional programming
problem (SIM FP), we formulate its higher order Schaible dual problem as follows

maximize (71, -+ , k)
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s.t.V Z)\ fi(u +u Zi—T; (gZ —ut vz +Z uj j)+uij))
k « 4
+ ) N (VK (u,p) = 73V,Gi (u,p) + > 15V H (u,37,q) =0,

i=1 j=1
k
Z)\i {1fi () +u”2z — 75 (9i (u) — u"v;)] + (K (u,p) — 7:Gi (u, p))
7pTv (K (u p) - TiGi (U,p))} 207
ZMJ +uw]+H(uy q)fq VH(uy q)) 0,

J:EX,/\igO,z:,--- pAe=10<a<n,p; >0,j=1,--- ,a,TgO,y1,~-- Jyr eyl

Let S denote the set of all feasible solutions of the problem (SD), that is,
the set of (u,)\,u,a,yl,--- Y%, Z, v, W, P, q) satisfying all constraints of (SD),
where z = (21, ,25),v = (vi,-,05),w = (wy, - ,ws). Further,
by U denote the projection of the set S on X, that is, the set U =
{uGX : (u,/\,u,r,a,yl,~~ ,yo‘,z,v,w,p,q) S S}.

Further, let us define the function ¢ := (@1, -+, ) : X — R?* such that
pi(a) = fi(a)+a’z,i=1,-- ,k and ¢p4; (a) = — (g; (a) —aTv;) i =1,--- kK,
the function ¢ := (¢1,--- ,9¥q) : X = R such that ¢, (a) = h; (a7yj) +aTwj, j =
1,---,a, and, moreover, K¢ = (Kg,,--,Kg,) : R* x R* — R?*_ where
Kg, (a,p) = Ki(a,p),i=1,--- k,Kg,,, (a,p) = =G, (a,p),i=1,--- k.
Theorem 4.1 (Weak duality). Let = and (u, M, Ty oyt ,y”‘,z,v,w,p,q) be
any feasible solutions of the problems (SIMFP) and (SD), respectively. Further,
assume that the pair (p,v) is higher order (®,p,0*)-type I at u on AU U with

respect to K¢ and H, where p = (p1,- - , par) = (pfl, e ,pfk,pgly...,pgk) € Rk If
Zle Xipy, + Zle AiTipg, + Z?:1 pipyi >0, then the inequality

(f1 (1‘)+xTZ1 fk(.’b)+xTZk) < (71, ,Tk) (4.1)

g1 (z) —xTvy’ gk (z) — 2Tvg

doesnt hold.

Proof. Let x and (u7)\,u77,a,y1, S y* zZ,v,w, p, q) be any feasible solutions
of the problems (SIMFP) and (SD),respectively. We proceed by contradiction.
Suppose, contrary to the result, that the inequalities

fi (@) + 2Tz .
... 4.2
gi (,CL') _ "I}T'U,L' < 7—7,7 1 k) k ( )

hold. Hence, (4.2) yields
fi(@)+ 22 — (g (2) —alv) <0,i=1,--- k. (4.3)
Multiplying each inequality (4.3) by A\;>0,i =1,--- ,k,ATe = 1, and then adding

both sides of the resulting inequalities, we get

Z)\ file) + 2Tz — 7 (g (x) —2Tw;)] < 0,i=1,--- k. (4.4)
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From the assumption, the pair (¢, ) is higher order (®, p,o®)-type I at u on AUU
with respect to K¢ and Ha where p= (plv T 7p2k) = (pf17 s P Pgrs 7pgk) €
R?*. Hence, by Definition(2.3), we have that

fi () + 2Tz — (fi (u)+uTzi) — K; (u,p) 4+ p* VoK (u, z) >
® (z,u, (V (fi (u) +u"2) + VK (u,p),pg,)) i=1,--- ,k, (4.5)
— (9i (z) = 2" )+(91( ) —u"v;) + Gy (u,p) = pT VG (u,2) >
(a:,u,( V(gl )+ u vz) V,Gi (u,p),pgi)),i:1,~-~ Kk, (4.6)
—h(u,yj)—H(u,yj,q)+qTVqH(u,yj,q)§
i) (a@u, (Vh (u,yj) +V,H (u7yj,q) ,oyj)) ,j=1-- a. (4.7)

Multiplying each inequality (4.5) by A;, each inequality (4.6) by A\;7; and each
inequality (4.7) by u; and then adding both sides of the resulting inequalities, we
get

i Ai [fz (@) + 2Tz — 7 (gi (z) — xTvi>] — i A { [fl (w) +uTz — 7 (gi (u) — uTvi)]
i=1 i=1
+ (K; (u,p) — 7:Gi (u,p)) — p" Vy (Ki (u,p) — 7:G; (uvp))} - iﬂjh (u,y7) + u"w,

+ H (u, yj,q) — qTVqH (u,yj,q)izk: i [Cb (m,u, (V (fZ (u) + uTzi> + VpK; (u,p),pfi)>

i=1

+7;® <x,u, (—V (gi (u)—uTvi> VG (u, ))] +Z ;P z u, Vh (u y )—i—V H (u v, q)

)

By the constraints of the problem (SD), it follows that

k
Z)\ fl +1' Zi — (gl 7% Uz zz fz( )+UTZ’L)
—l—V oK (u,p), pyr,)) + 7 ® (x,u,( ( (u)—u vz) V,Gi (u,p )7/’91-))]
+Z'“J Vh (u y ) +V,H (u,yj,q) ,ayj)). (4.8)

Combining (4.4) and (4.8), we get

Z)\ V (fi (w) +uTz) + V,Ki (u,p),py,))
—s-TZ-(I) (:v u, (—V (gz( ) —u Uz) VpGi (u,p), Pgi))]

—l-z,uj Vh (u Y ) +V,H (u,yj7q) ,oyj)) < 0. (4.9)
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Let us set that
Ai

Bi: A o 7i:17"'7k7
Doici Ai(L+ 1) +Z_j:1 Hj
K ;
V= —% - ,i=1a. (4.10)
Dica N (L4 7) + 375 1y
Hence 8; >0,i = 1,--- ,k, and for at least one 4,3; > 0,9; >0, =1---,a, and,

moreover, ¢ B; (14 7:) + > j=1¥; = 1. Using (4.10) in (4.9), we obtain

Zﬁz zu, (V (fi (u) + 0" 2) + VoK (u.p)  py.))
—I—Ti‘l) (x,u, (—V (gi( )_u Uz) Vp G, ( )7pgi))]

+ Zﬁjq) (x,u, (Vh (u,yj) +V,H (u,yj,q) ,ij)) < 0. (4.11)
j=1

Since Y28 8 (1+7,)+ > 51 ¥ =1 and ® is a real-valued convex function defined
on X x X x R""L by the definition of convexity, (4.11) implies

k
<a: u, (Z Bi [ < )+ u zz> —7;V (gi (u) — uTm) + Vp K (u,p) — 75 VpG; (u,p)]
+Zi9 [ ( u,y?) +u” w]) +VoH (u, 97, q ] Zﬁzpfl +Zﬂlﬂpfq +Zq9 ayj>>
Then, by the first constraint of the problem (MW D), the above inequality gives
k k e
0, Bips, + > Bimips,, + D V04 | | <0. (4.12)
i=1 i=1 j=1

By assumption, Zle Xipf, +Zf=1 AiTipg, +Z?=1 tjpyi > 0.Then,(4.10) yields that

k k «
> Bips.+ Y Bimipg, + Y 050, 20. (4.13)
i=1 i=1 j=1

Since @ (z,u, (0,a)) >0 for any a >0, (4.13) implies that the inequality

k k «@
0,3 Bips,+D_Birips,, +D_ D0y | | 20
i=1 i=1 j=1

holds, contradicting (4.12). Hence, the proof of this theorem is completed.
Under the stronger assumption imposed on the functions constituting the con-
sidered vector optimization problems, the stronger result can be proved.

Theorem 4.2 (Higher order weak duality). Let x and
(u, A Ty 0Ly, -y, 2, v,w, p, q) be any feasible solutions of the problems
(SIMFP) and (SD), respectively. Further, assume that Further, assume that the
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pair (@,v) is higher order strictly (®,p,0%)-type I at u on A U U with respect
to Kg and H, where p = (pla"' ,ka:) = (pfw"' yPfrs Pgir ™ ° vpgk) € R If
Zle Xipg, + Zle AiTipg, + 2?21 Hjpyi =0, then the inequality

<f1 (z)+2"z fu(z) +alz
g1 () —2Tvy" 7 g (z) — 2Ty

> < (7_-1,... ,’Fk)

doesn’t hold.
Now, we formulate higher order strong duality theorem in the sense of Mond-Weir.

Theorem 4.3 (Higher order strong duality). Let T € A be a weakly solution (an
efficient solution) of the semi-infinite multiobjective fractional programming prob-
lem (SIMFP) and the suitable constraint qualification be fulfilled at T. Then, there
exist X\ = (/\717 ,/\7@) € Rﬁ,x # 0, an integer @. such that 0< a <n,t =
(fiy,--- ,fig) € RS and 5/ € Y (T), such that if K;(Z,0) = 0,G;(Z,0) = 0,i =
L k,H(z,09)=0,j=1,,a (T,\&7ay, 7% 20,wp=0,q=0)
is a feasible solution in the problem (SD) and the corresponding values of the
objective functions of the problems (SIMFP) and (SD) are equal. Further,
if all hypotheses of the weak duality theorem (4.1) or (4.2) are satisfied, then
(E, N7 a7y, 7 E,0,w,p=0,7 = 0) is a weakly solution (an efficient so-
lution) of a maximum type for the problem (SD).

Theorem 4.4 (Strict converse duality). Let T € A and (H, N7, a7, T,

such that
<W> (JM):(TI . s
a1(z) — 777, ’ ’ gr(z) — 717, ’ ’

Further, assume that the pair (p, ) is higher order strictly (®, p,c®)-type I at T with
respect to KG and H; where p= (p17 T ?p2k) = (pf1? s Pfrs Pyt apgk) € RQk'

If S0y Nipg + Sy AiTipg, + Yoy Ti;0y, 20, then T = 1.

Proof. Let T and (ﬂ,x,ﬁ, 7,7y, .y, %0, W, P, q) be feasible solutions of
(SIMFP) and (SD), respectively, such that (4.14) is satisfied. We proceed by
contradiction. Suppose, contrary to the result, that T = u. By (4.14), it follows
that

@ +27% -7 (@) —T'0) =0, i=1,-- k. (4.15)

Multiplying each inequality (4.15) by XZ';O,Z' =1,---k, XTe = 1, and then adding
both sides of the resulting inequalities, we get

k
S XNilfi@+7"z -7 (9 (@) —7"W:)] =0. (4.16)
i=1

By hypotheses, the pair (¢, 1) is higher order (®, p, c%)-type I at u on AUU with
respect to K and H, where p = (p1, -+ ,p2k) = (Pfrs s Pfr>Pgis " »Pg) € R?*
Hence, by Definition(2.4), we have that

fi@+7"z - (fi @) + 0" %) — Ki (u,p) + p" V, K; (0, 2)
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> (2,4, (V (f; (@ +0"z) + VoK; (@p),pg,)).i=1,-,k, (4.17)

— (9: (@) + 7z, )+ (9 (@) + HT@) + G (u,p) — p*'V,G; (u, 2)
> (f,ﬂ, (fV (gZ (W) +u ful) V,Gi (G, p), quz)) i=1,---k, (4.18)

—h(u,yj) H(ﬂ 7, q) —|—qTV H(E @j,q)
><I>(xu(Vh(uy)+VH(uy q), y])),j:1-~-,@. (4.19)
Multiplying each inequality (4.17) by X\; >0,i=1,--- ,k, each inequality (4.18) by

7TiXi>0,i =1,--- ,k, and each inequality (4.19) by ;20,5 =1,---,@, and then
adding both sides of the resulting inequalities, we obtain

i )4z 2 —7; (9 (@) T ;)] i ) +u’ z;—7 (g9 (@) — @' v;)]
+(Ki (@,p)=T:G; (4, p)) —p" V, (K (@, p) = 7:G za: 7)+uw,
+H (0,7 ,9 —q'VH (4,7, q)) i (fi @+a"z;)+ VK, (@,p),py, )]
+7:® (z,3, (—V (9 (@) + 7" v;) — V,,G; (W,p), pg,)) Za: Vh (u,7)

+VH (0,7, q) o)) - : (4.20)

From the constraints of the problem (SD), it follows that
YNl @+ -7 (@) —FT)] =

STXi[@ (@@ (V(f: (@) +a'z) + VK (@), pr.))
+7,® (7,7, (—V (g: (@) —7"5:) = V,,Gi (@) , py,))]

+> 18 (7w (Vh(a,y) + Vol (wy',q) ,o5)) . (4.21)
By (4.16) and (4.21), we have
k
Z fl ( )+ﬂT§i) +vpKl (Uv p) 7pf'i)) +?iq) (fv ﬂa (_v (gz (U) —HTEZ')

—V,Gi ( +Zug . (Vh (@y') + Vol (@y,0) ,05:)) <0

(4.22)
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Let us set that

= i
Bi = —% i=1,---k,
die 1)‘( +Tz)+zg 1MJ
9 = Ky L j=1,,a. (4.23)
Zz Y (1+TZ)+Z —1Hj
HenceﬁiiO,i:1,~-~ .k, and for at least one 4,3, > 0, @go, j=1,---, aand

S By (L+7:) + 30, 7; = 1. By (4.22) and (4.23), we get

Zﬁ (fl( )+HTZi)+vPKi (ﬂvp)7pfi>>
—|—TZ‘¢) (=7, (—V (g: (@) +T"v;) — V,Gi (@, p),pg,))]

+)_0;® (7,3, (Vi (0,y7) + Vo H (0,7, q) ,05:)) <0. (4.24)
j=1

Since Zle B; (1+7i)+> 5,95 =1 and @ is a real-valued convex function defined
on X x X x R""L by the definition of convexity, (4.24) implies

) (x, T, (Z Bi [V (fi @) +u" %) =7V (9 (@) + @' vi) + Vo K; (@, p) — 7:V,Gi (4, p)]

i=1

@ k k @
+Zﬁj [V (h(u,y’) + 7" w;) + VoH (4,7, q)] Z +Zﬁinpfq ZE 0—1/J>>
i=1 i=1

.
Il
—

By assumption, Zle Xipf, + Zle NiTipg: — Z?zl fijpyi 2 0. Then, (4.23) yields
that

k k [eY
Z iPr+ Zﬁmpgi =Y Jjop 20. (4.26)
i=1 i=1 j=1
Since @ (7, @, )) >0 for any a >0, (4.26) implies that the inequality

@ \

0 f
k k a
0.2 Bups+ 2 BiTipn = Vi | | 20
i=1 i=1 j=1
holds, contradicting (4.25). Hence, the proof of this theorem is completed. O
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