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BEYOND SUMUDU TRANSFORM AND
NATURAL TRANSFORM: J-TRANSFORM

PROPERTIES AND APPLICATIONS∗

Shehu Maitama1,† and Weidong Zhao1

Abstract In this paper, we introduce an efficient integral transform called
the J-transform which is a modification of the well-known Sumudu transform
and the Natural transform for solving differential equations with real appli-
cations in applied physical sciences and engineering. The J-transform is more
advantageous than both the Sumudu transform and the Natural transform.
Interestingly, our proposed J-transform can be applied successfully to solve
complex problems that are ordinarily beyond the scope of either Sumudu
transform or Natural transform. As a proof of concept, we consider some clas-
sic examples and highlight the limitations of the previously reported integral
transforms and lastly demonstrate the superiority of the proposed J-transform
in addressing those limitations.

Keywords Laplace transform, Sumudu transform, Natural transform, Elzaki
transform, ordinary and partial differential equations.
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1. Introduction
Integral transform method is one of the most employed technique for solving dif-
ferential and integral equations [1–6, 9, 10, 12–14, 18, 20, 21]. Besides, the Laplace
transform is the most popular in the literature [16]. The Laplace transform maps
a function f(t) in t− domain to a function F (s) in s− domain and the variables s
and F (s) are considered as dummies in the transform. In the literature, the Laplace
transform of the function f(t) is defined as

L[f(t)] = F (s) = lim
α→∞

∫ α

0

exp(−st)f(t)dt, (1.1)

provided the limit of the integral exists for some s, where L is the Laplace transform
operator.

In 1993, Watugala introduced the Sumudu transform which is closely connected
with the p-multiplied form of the standard Laplace transform (popularly known
as the Laplace-Carson transform [11]). The Sumudu transform was successfully
applied to solved controlled engineering problems [19]. Sumudu transform maps a
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function f(t) in t − domain to a function F (u) in u − domain but the variables u
and F (u) are not dummies and are considered as the replicas of t and the function
f(t) respectively. The Sumudu transform of the function f(t) is defined as

S[f(t)] = G(u) =
1

u
lim

α→∞

∫ α

0

exp

(
−t

u

)
f(t)dt, u ∈ (−τ1, τ2), (1.2)

provided the limit of the integral exists for some u, where S is the Sumudu transform
operator.

In 2008, N-transform (also known as the Natural transform [6,7]) which is similar
to Laplace-Carson transform and the Sumudu integral transform was introduced.
N-transform gives both Laplace, and Sumudu integral transforms by the changing
of variables and it was successfully applied to unsteady fluid flow problem over a
plane wall [15]. The N-transform of the function f(t) is defined as

N+[f(t)] = R(s, u) =
1

u
lim

α→∞

∫ α

0

exp

(
−st

u

)
f(t)dt, s > 0, u > 0, (1.3)

provided the limit of the integral exists for some u, and s, where N+ is the Natural
transform operator.

In 2011, another integral transform similar to both Laplace and the Sumudu
transform called the Elzaki transform was introduced. The Elzaki integral transform
is defined as

E [f(t)] = T (v) = v lim
α→∞

∫ α

0

exp

(
−t

v

)
f(t)dt, t > 0, (1.4)

provided the limit of the integral exists [12]. Recently, a new integral transform
(Laplace-type) for solving steady heat transfer problems was introduced by Yang.
The new integral transform is defined as [22,23]

Y [ϕ(τ)] = ϕ(w) = lim
α→∞

∫ α

0

exp

(
−τ

w

)
ϕ(τ)dτ, τ ≥ 0, (1.5)

provided the limit of the integral exists for some w.
However, despite the potential of the reported integral transforms, they are not

universal techniques for solving some of the existing problems in applied physical
science and engineering, especially those that are multifaceted.

In this paper, we introduce an integral transform called the J-transform by mod-
ification of both Sumudu and Natural transform. J-transform can be considered as
an alternative to Sumudu or Natural transform and becomes Laplace’s transform
when the variable u = 1. New theorems and properties (or known) of the proposed
integral are introduced. To demonstrate its efficiency and high accuracy, the in-
tegral is applied to ordinary and partial differential equations. Furthermore, the
relationship of J-transform to other integral transforms are illustrated. In the Ap-
pendix section, we computed the J-transform of some useful functions in Table 1
and Table 2.

Throughout this paper, the J-transform is denoted by an operator J[·].
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2. Main Results: J-transform
Definition 2.1 (J-transform). The J-transform of the function v : [0,∞) × R of
exponential order is defined over the set of functions,

A=

{
v(t) : ∃N, η1, η2>0, such that |v(t)| < N exp

(
|t|
ηi

)
for t ∈ (−1)i × [0,∞)

}
,

by

J [v(t)] (s, u) = V (s, u) = u

∫ ∞

0

exp

(
−st

u

)
v(t)dt = u lim

α→∞

∫ α

0

exp

(
−st

u

)
v(t)dt

(2.1)
for s > 0 and u > 0, provided the limit of the integral exists, where s and u are
the J-transform variables.

Notice that J-transform in (2.1) can also be written as

J [v(t)] (s, u) = V (s, u) = u2

∫ ∞

0

exp (−st) v(tu)dt. (2.2)

For simplicity, throughout this paper we will also use J [v(t)] to denote
J [v(t)] (s, u).

In the next theorem, we prove the sufficient condition for the existence of the
J-transform.

Theorem 2.1. If the function v(t) is piecewise continuous in every finite interval
0 ≤ t ≤ α and of exponential order β for t > α. Then its J-transform V (s, u) exists.

Proof. For any positive number α, it holds

u

∫ ∞

0

exp

(
−st

u

)
v(t)dt = u

∫ α

0

exp

(
−st

u

)
v(t)dt+ u

∫ ∞

α

exp

(
−st

u

)
v(t)dt.

(2.3)
Since the function v(t) is piecewise continuous in every finite interval 0 ≤ t ≤ α,
then the first integral on the right hand side exists. And further the second integral
on the right hand side also exists, since the function v(t) is of exponential order β
for t > α. To verify this, we consider the following case∣∣∣∣u∫ ∞

α

exp

(
−st

u

)
v(t)dt

∣∣∣∣ ≤ u

∫ ∞

0

exp

(
−st

u

)
|v(t)| dt

≤ u

∫ ∞

0

exp

(
−st

u

)
N exp (βt) dt =

u2N

s− βu
.

3. Some properties of the J-transform
Property 3.1 (Linearity). Let v and w be in set A. It holds

J [αv(t) + βw(t)] = αJ [v(t)] + βJ [w(t)] , (3.1)

where α and β are two constants.
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Proof. Linearity property follows directly from Definition 2.1.

Property 3.2 (First translation or shifting property of J-transform). Let exp (αt) v(t) ∈
A, where α is constant. Then

J [exp (αt) v(t)] =
s− αu

s
V

(
s,

su

s− αu

)
. (3.2)

Proof. By Definition 2.1, we have

J [exp (αt) v(t)] = u2

∫ ∞

0

exp (−(s− αu)t) v(ut)dt. (3.3)

Let ηs = (s − αu)t which implies t = sη
s−αu and dt = s

s−αudη in Equ. (3.3), we
deduce

J [exp (αt) v(t)] =
su2

s− αu

∫ ∞

0

exp (−ηs) v

(
usη

s− αu

)
dη

=
su2

s− αu

∫ ∞

0

exp (−st) v

(
ust

s− αu

)
dt

=
u2s

s− αu

(
s− αu

us

)2

V

(
s,

su

s− αu

)
=

s− αu

s
V

(
s,

su

s− αu

)
.

This ends the proof.
Based on variables transformation in property 3.2, we deduce

J [exp (αt) v(t)] =


s−α
s V

(
s, s

s−α

)
, u = 1 (Laplace transform)

(1− αu)V
(
1, u

1−αu

)
, s = 1 (Elzaki transform).

(3.4)

Property 3.3 (Scaling property). Let V = V (s, u) be the J-transform of the func-
tion v = v(t), and α > 0. Then we have the scaling property

J [v(αt)] =
1

α
V
( s
α
, u
)
. (3.5)

Proof. By Equ. (2.1), we deduce

J [v(αt)] = u

∫ ∞

0

exp

(
−st

u

)
v(αt)dt. (3.6)

Substituting η = αt which implies t = η
α and dt = dη

α in Equ. (3.6) we obtain

J [v(αt)] =
u

α

∫ ∞

0

exp

(
−sη

uα

)
v(η)dη

=
u

α

∫ ∞

0

exp

(
−st

uα

)
v(t)dt

=
u

α

∫ ∞

0

exp

(
−
(
s
α

)
t

u

)
v(t)dt
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=
1

α
V
( s
α
, u
)
.

The proof ends.

Theorem 3.1. Assume that v(i) ∈ A, i = 0, 1, . . . , n. Let V (s, u) and Vn(s, u) be
the J-transforms of v ∈ A and v(n), respectively. Then

Vn(s, u) = J
[
v(n)(t)

]
=

sn

un
V (s, u)−

n−1∑
k=0

sn−(k+1)

un−(k+2)
v(k)(0). (3.7)

Proof. Using Equ. (2.1) for n = 1 and integration by parts, we deduce

J [v′(t)] = lim
α→∞

∫ α

0

exp

(
−st

u

)
v′(t) dt

= u lim
α→∞

[
exp

(
−st

u

)
v(t)

]α
0

+
s

u
lim

α→∞

∫ α

0

u exp

(
−st

u

)
v(t)dt

= −uv(0) +
s

u
J [v(t)] . (3.8)

Since Equ. (3.8) above is true for n = k. Then using induction hypothesis we
deduce

J
[
(v(k)(t))′

]
=

s

u
J
[
v(k)(t)

]
− uv(k)(0)

=
s

u

[
sk

uk
J [v(t)]−

k−1∑
i=0

sk−(i+1)

uk−(i+2)
v(i)(0)

]
− uv(k)(0)

=
( s
u

)k+1

J [v(t)]−
k∑

i=0

sk−i

uk−(i+1)
v(i)(0),

which implies that Equ. (3.7) holds true for n = k+1. By induction we have proved
the theorem.

By Theorem 2 and noting the fact that

J
[
∂nv(x, t)

∂xn

]
=

∫ ∞

0

u exp

(
−st

u

)
∂nv(x, t)

∂xn
dt =

∂n

∂xn

∫ ∞

0

u exp

(
−st

u

)
v(x, t) dt,

we have the following propositions.

Proposition 3.1. Assume v = v(x, t), ∂nv(x,t)
∂tn and ∂nv

∂xn be in set A. Let V (x, s, u)

and Vn(x, s, u) be the J-transforms of v(x, t) and ∂nv(x,t)
∂tn with respect to t. Then

J
[
∂nv(x, t)

∂xn

]
=

dn

dxn
[V (x, s, u)] , (3.9)

Vn(x, s, u) = J
[
∂nv(x, t)

∂tn

]
=

sn

un
V (x, s, u)−

n−1∑
k=0

sn−(k+1)

un−(k+2)
v(k)(x, 0). (3.10)

By Theorem 2 and Proposition 3.1, we explicitly give the formulas of (3.10) for
n = 1, 2, 3.

J
[
∂v(x, t)

∂t

]
=

s

u
V (x, s, u)− uv(x, 0). (3.11)
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J
[
∂2v(x, t)

∂t2

]
=

s2

u2
V (x, s, u)− sv(x, 0)− uv′(x, 0). (3.12)

J
[
∂3v(x, t)

∂t

]
=

s3

u3
V (x, s, u)− s2

u
v(x, 0)− sv′(x, 0)− uv′′(x, 0). (3.13)

Similarly, using Leibniz’s rule, we deduce

J
[
∂v(x, t)

∂x

]
=

∫ ∞

0

u exp

(
−st

u

)
∂v(x, t)

∂x
dt =

∂

∂x

∫ ∞

0

u exp

(
−st

u

)
v(x, t) dt

=
∂

∂x
[V (x, s, u)] ⇒ J

[
∂v(x, t)

∂x

]
=

d

dx
[V (x, s, u)] ,

J
[
∂2v(x, t)

∂x2

]
=

∫ ∞

0

u exp

(
−st

u

)
∂2v(x, t)

∂x2
dt =

∂2

∂x2

∫ ∞

0

u exp

(
−st

u

)
v(x, t)dt

=
∂2

∂x2
[V (x, s, u)] ⇒ J

[
∂2v(x, t)

∂x2

]
=

d2

dx2
[V (x, s, u)] .

For the general n,

J
[
∂nv(x, t)

∂xn

]
=

∫ ∞

0

u exp

(
−st

u

)
∂nv(x, t)

∂xn
dt =

∂n

∂xn

∫ ∞

0

u exp

(
−st

u

)
v(x, t) dt

=
∂n

∂xn
[V (x, s, u)] ⇒ J

[
∂nv(x, t)

∂xn

]
=

dn

dxn
[V (x, s, u)] .

Proposition 3.2. Let n be a non-negative integer. Assume that v(t), tv(n)(t), and
t2v(n)(t) are functions in set A. Let V (s, u) and Vn(s, u) be the J-transforms of v(t)
and v(n)(t), respectively. Then

J
[
tv(n)(t)

]
=

u2

s

d

du
[Vn(s, u)]−

u

s
[Vn(s, u)] , (3.14)

J
[
t2v(n)(t)

]
=

u4

s2
d2

du2
[Vn(s, u)] . (3.15)

Proof. Applying Equ. (2.1) and Leibniz’s rule, we deduce
d

du
V (s, u) =

d

du

∫ ∞

0

u exp

(
−st

u

)
v(t) dt =

∫ ∞

0

∂

∂u

[
u exp

(
−st

u

)
v(t)

]
dt

=

∫ ∞

0

exp

(
−st

u

)
v(t)dt+

s

u

∫ ∞

0

t exp

(
−st

u

)
v(t) dt

=
1

u
V (s, u) +

s

u2
J [tv(t)] ,

which is the formula (3.14) with n = 0. For n = 1, we have

J [tv′(t)] =
u2

s

d

du

[ s
u
V (s, u)− uv(0)

]
− u

s

[ s
u
V (s, u)− uv(0)

]
=
u2

s

d

du
[V1(s, u)]−

u

s
[V1(s, u)] .

(3.16)

Then, by induction we obtain the formula (3.14). Similarly, the formula (3.15) can
be proved in the same fashion. The proof ends.

In the next theorem, we prove the convolution theorem of the proposed integral
transform.
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Theorem 3.2. Let the functions f(t), g(t) ∈ A. If V (s, u) and W (s, u) are the
respective J-transforms of the functions f(t) and g(t). Then the convolution theorem
of J-transform is given by

J [(f ∗ g)(t)] = 1

u
V (s, u)W (s, u), (3.17)

where f ∗ g is the convolution of two functions f(t) and g(t) which is defined by∫ t

0

f(α)g(t− α)dα =

∫ t

0

f(t− α)g(α)dα. (3.18)

Proof. Let first recall that Laplace transform of (f ∗ g) is defined as [16]:

L [(f ∗ g)(t)] = F (s)G(s). (3.19)

Then by the Laplace transform-J-transform duality property (3.4), we deduce

J [(f ∗ g)(t)] = uL [f ∗ g)(t)] , (3.20)

and since, V (s, u) = uF
(
s
u

)
, and W (s, u) = uG

(
s
u

)
. Then J [(f ∗ g)(t)] is given by

J [(f ∗ g)(t)] = uF
( s
u

)
×G

( s
u

)
=

1

u
uF
( s
u

)
× uG

( s
u

)
=

1

u
V (s, u)W (s, u).

This ends the proof.
The duality property of J-transform with the Laplace transform, the Sumudu

transform, and the Natural transform are given below.

Property 3.4 (Laplace transform-J-transform duality). Let L[v(t)] = F (s) and
J [(v(t)] = V (s, u) be the respective Laplace and J-transforms of v(t) ∈ A. Then

V (s, u) = uF
( s
u

)
. (3.21)

Proof. By Definition 2.1,

J [v(t)] = u2

∫ ∞

0

exp (−st) v(ut)dt. (3.22)

Setting α = ut ⇒ t = α
u and dt = dα

u . Then

1

u

{
u2

∫ ∞

0

exp
(
−sα

u

)
v(α)dα

}
= u

∫ ∞

0

exp
(
−sα

u

)
v(α)dα = uF

( s
u

)
. (3.23)

The proof ends.

Property 3.5 (J-transform-Sumudu transform duality). Let V (s, u) and G(u) be
the J and Sumudu transforms of v(t) ∈ A, respectively. Then

V (s, u) = u2G
(u
s

)
. (3.24)
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Proof. By Definition 2.1, we have

J [v(t)] = V (s, u) = u2

∫ ∞

0

exp (−st) v(ut)dt. (3.25)

For u > 0, let α = ut ⇒ t = α
u and dt = dα

u . Then

J [v(t)] =u2 1

u

∫ ∞

0

exp
(
− s

u
α
)
v(α)dα

=u2G
(u
s

)
.

(3.26)

Property 3.6 (J-transform-Natural transform duality). Let V (s, u) and R(s, u) be
the J and natural transforms of the function v(t) ∈ A. Then

V (s, u) = u2R(s, u). (3.27)

Proof. By Definition 2.1, we deduce

J [v(t)] = u2

∫ ∞

0

exp (−st) v(ut)dt = u2

{
1

u

∫ ∞

0

exp

(
−st

u

)
v(t)dt

}
, (3.28)

which implies (3.27).

Property 3.7. Let the function v(t) = tn exp(αt)
n! n = 0, 1, 2, · · · be in set A. Then

its J-transform is given by

J
[
tn exp (αt)

n!

]
=

un+2

(s− αu)n+1
. (3.29)

Proof. By Definition 2.1 and integration by parts, we deduce

J [tn exp (αt)] = u

∫ ∞

0

tn exp

(
− (s− αu)

u
t

)
dt

=
u2n

(s− αu)

∫ ∞

0

tn−1 exp

(
− (s− α)

u
t

)
dt

=
u3n(n−1)

(s− αu)2

∫ ∞

0

tn−2 exp

(
−(s−α)

u
t

)
dt = · · · = n!un+2

(s− αu)n+1
.

More results are available in Table 1 and Table 2. Before we illustrate the
applications of J-transform. It is important to study the inverse property of J-
transform. We first recall the following important results.

Theorem 3.3 (Cauchy’s Integral Formula). Suppose C is a simple closed curve
and the function f(z) is analytic on a region containing C and its interior. We
assume C is oriented counterclockwise. Then for any z0 inside C [17]

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz. (3.30)
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Theorem 3.4 (Cauchy’s residue theorem). If C is a simple closed, positively
oriented contour in the complex plane and f is analytic except for some points
z1, z2, · · · , zn inside the contour C, then∮

C

f(z)dz = 2πi

n∑
k=1

Resf (zk). (3.31)

Cauchy’s residue theorem is a consequence of Cauchy’s integral formula, and is very
useful in computing real integral by applying appropriate contour in the complex
plane [17].

Theorem 3.5 (Inverse Laplace transform). Let F (s) be the Laplace transform of
the function f(t), then L−1 is called the inverse Laplace transform, that is [16]

L−1 [F (s)] = f(t), for t ≥ 0. (3.32)
Equivalently, based on Theorems 3.3 and 3.4, the complex inverse Laplace transform
is defined as [16]

L−1 [F (s)] =
1

2πi
lim
β→∞

∫ α+iβ

α−iβ

exp (st)F (s)ds. (3.33)

Theorem 3.6 (Inverse Sumudu transform). Let G(u) be the Laplace transform of
the function f(t), then S−1 is called the inverse Sumudu transform, that is [19]

S−1 [G(u)] = f(t), for t ≥ 0. (3.34)
Equivalently, based on Theorems 3.3 and 3.4, the complex inverse Sumudu transform
is defined as [4]

S−1 [F (s)] =
1

2πi
lim
β→∞

∫ α+iβ

α−iβ

exp (st)G

(
1

s

)
ds

s
. (3.35)

Theorem 3.7 (Inverse Natural transform). Let R(s, u) be the Laplace transform
of the function f(t), then N−1 is called the inverse Natural transform, that is [6,7]

N−1 [(R(s, u)] = f(t), for t ≥ 0. (3.36)
Equivalently, based on Theorems 3.3 and 3.4, the complex inverse Natural transform
is defined as [7]

N−1 [(R(s, u)] =
1

2πi
lim
β→∞

∫ α+iβ

α−iβ

exp

(
st

u

)
R(s, u)ds. (3.37)

Theorem 3.8 (Inverse J-transform). Let V (s, u) be the J-transform of the function
v(t), then J−1 is called the inverse J-transform of V (s, u), that is,

J−1 [V (s, u)] = v(t), for t ≥ 0. (3.38)
Equivalently, based on Theorems 3.3 and 3.4, the complex inverse J-transform is
defined as

v(t) = lim
β→∞

1

2πi

∫ α+iβ

α−iβ

1

u2
exp

(
st

u

)
V (s, u)ds

=
∑

residues of 1

u2
exp

(
st

u

)
V (s, u) at the poles of V (s, u). (3.39)

Proof. The proof follows from the J-transform-Natural transform duality Property
3.6.
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4. Applications
In this section, we illustrate some applications of J-transform on ordinary and partial
differential equations to demonstrate its efficiency and high accuracy.

Example 4.1. Compute the inverse J-transform of

V (s, u) =
u2s2 + α2u4 + su3α

s(s2 + α2u2)
. (4.1)

We observe that V (s, u) has a simple poles at s = 0, −iuα, and + iuα respectively.
Then using Equ. (3.39), we have

v(t) =
∑

residues of 1

u2
exp

(
st

u

)
u2s2 + α2u4 + su3α

s(s2 + α2u2)
.

= lim
s→0

(s− 0)
exp

(
st
u

)
u2

(
u2s2 + α2u4 + su3α

s (s− iuα) (s+ iuα)

)
+ lim

s→+iuα
(s− iuα)

exp
(
st
u

)
u2

(
u2s2 + α2u4 + su3α

s (s− iuα) (s+ iuα)

)
+ lim

s→−iuα
(s+ iuα)

exp
(
st
u

)
u2

(
u2s2 + α2u4 + su3α

s (s− iuα) (s+ iuα)

)
= 1 +

1

2i
exp (iαt)− 1

2i
exp (iαt) = 1 + sin(αt).

Example 4.2. Consider the following partial differential equation

∂v(x, t)

∂t
− ∂2v(x, t)

∂x2
+ 8v(x, t) = exp (x) + x, (4.2)

subject to the boundary and initial conditions

v(0, t) = 0, v
(π
2
, t
)
= 0, v(x, 0) = 12 cos(x)− 16 cos(2x). (4.3)

Applying the J-transform on both sides of Equ. (4.2), we get

s

u
V (x, s, u)− uv(x, 0)− d2V (x, s, u)

dx2
+ 8V (x, s, u) =

u2 exp (x)

s
+

u2x

s
. (4.4)

Substituting the given initial condition and simplifying, we deduce

d2V (x,s,u)
dx2 − V (x, s, u) (s+8u)

u = −u2x
s − u2 exp(x)

s

+12 cos(x)− 16 cos(2x).
(4.5)

The general solution of Equ. (4.5) can be written as

V (x, s, u) = Vh(x, s, u) + Vp(x, s, u), (4.6)

where Vh(x, s, u) is the solution of the homogeneous part which is given by

Vh(x, s, u) = α1 exp

(√
s+ 8u

u
x

)
+ α2 exp

(
−
√

s+ 8u

u
x

)
, (4.7)
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and Vp(x, s, u) is the solution of the non-homogeneous part which is given by

Vp(x, s, u) = β1x+ β2e
x + β3 cos(x) + β4 cos(2x). (4.8)

Applying the boundary conditions on Equ. (4.7), we get

α1 + α2 = 0 and α1 exp

(√
s+ 8u

u

π

2

)
+ α2 exp

(
−
√

s+ 8u

u

π

2

)
= 0

⇒ Vh(x, s, u) = 0, since α1 = α2 = 0. (4.9)

Using the method of undetermined coefficients on the non-homogeneous part, we
obtain

Vp(x, s, u) =
xu3

s(s+ 8u)
+

exu3

s(s+ 7u)
− 12u2 cos(x)

s+ 9u
+

16u2 cos(2x)

s+ 12u
, (4.10)

since, β1 = u3

s(s+8u) , β2 = u3

s(s+7u) , β3 = − 12u2

s+9u , and β4 = 16u2

s+12u .
Then Equ. (4.6) will become

V (x, s, u) =
xu3

s(s+ 8u)
+

exp(x)u3

s(s+ 7u)
− 12u2 cos(x)

s+ 9u
+

16u2 cos(2x)

s+ 12u
. (4.11)

Computing the inverse J-transform of Equ. (4.11), we obtain the solution

v(x, t) =
x

8
(1− exp(−8t)) +

exp(x)

7
(1− exp(−7t))

−12 cos(x) exp(−9t) + 16 cos(2x) exp(−12t). (4.12)

Example 4.3. Consider the following wave equation

∂2v(x, t)

∂t2
= θ2

∂2v(x, t)

∂x2
− v(x, t) + 32x+ 48 sin(2x), (4.13)

subject to the boundary and initial conditions

v(0, t) = 0, v(π, t) = 0,
∂v(x, 0)

∂t
= 0,

v(x, 0) = 32x+ 8 sin(4x)− 4 sin(5x), θ = 2. (4.14)

Applying the J-transform on both sides of Equ. (4.13), we get

s2

u2
V (x, s, u)− sv(x, 0)− uv′(x, 0)

=
d2V (x, s, u)

dx2
+ 48

u2 sin(2x)

s
+

32xu2

s
. (4.15)

Substituting the given initial condition and simplifying, we deduce

d2V (x, s, u)

dx2
− (s2 + u2)

4u2
V (x, s, u)

= −12u2 sin(2x)

s
− 8x(s2 + u2)

s
− 2s sin(4x) + s sin(5x). (4.16)
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The general solution of Equ. (4.16) can be written as

V (x, s, u) = Vh(x, s, u) + Vp(x, s, u), (4.17)

where Vh(x, s, u) is the solution of the homogeneous part which is given by

Vh(x, s, u) = λ1 exp

(√
s2 + u2

2u
x

)
+ λ2 exp

(
−
√
s2 + u2

2u
x

)
, (4.18)

and Vp(x, s, u) is the solution of the non-homogeneous part which is given by

Vp(x, s, u) = η1x+ η2 sin(2x) + η3 sin(4x) + η4 sin(5x). (4.19)

Applying the boundary conditions on Equ. (4.18), yield

λ1 + λ2 = 0 and λ1 exp

(√
s2 + u2

2u
π

)
+ λ2 exp

(
−
√
s2 + u2

2u
π

)
= 0

⇒ Vh(x, s, u) = 0, since λ1 = λ2 = 0. (4.20)

Using the method of undetermined coefficients on the non-homogeneous part, we
have

Vp(x, s, u) =
32xu2

s
+

48u4 sin(2x)

s(s2 + 17u2)
+

4su2 sin(4x)

s2 + 65u2
− 4su2 sin(5x)

s2 + 101u2
, (4.21)

since,

η1 =
32u2

s
, η2 =

48u4

s(s2 + 17u2)
, η3 =

4su2

s2 + 65u2
, η4 = − 4su2

s2 + 101u2
. (4.22)

Then Equ. (4.17) will become

V (x, s, u) =
32xu2

s
+

48u4 sin(2x)

s(s2 + 17u2)
+

4su2 sin(4x)

s2 + 65u2
− 4su2 sin(5x)

s2 + 101u2
. (4.23)

Computing the inverse J-transform of Equ. (4.23) yield

v(x, t) = 32x+ 48
17 sin(2x)(1− cos(

√
17t)

+4 sin(4x) cos(
√
65t)− 4 sin(5x) cos(

√
101t).

(4.24)

Example 4.4. Consider the following Bessel’s differential equation with polynomial
coefficients

t2
d2v(t)

dt2
+

dv(t)

dt
+ 6tv(t) = 0 (4.25)

subject to the initial conditions

v(0) = α,
dv(0)

dt
= β. (4.26)

Applying the J-transform on both sides of Equ. (4.25), we get

u2

s

d

du

[
s2

u2
V (s, u)− sv(0)− uv′(0)

]
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−u

s

[
s2

u2
V (s, u)− sv(0)− uv′(0)

]
+6

[
u2

s

d

du
V (s, u)− u

s
V (s, u)

]
=

24u4

s3
+

6u3

s2
+

2u2

s
. (4.27)

Substituting the given initial conditions and simplifying, we deduce

dV (s, u)

du
− V (s, u)

(
2s2 + 6u2

u(s2 + 6u2)

)
= 0. (4.28)

Solving Equ. (4.28), we obtain

V (s, u) =
γu2

√
s2 + 6u2

, (4.29)

where γ is a constant. Taking the inverse J−1 to Equ. (4.29) we obtain

v(t) = αJ0(
√
6t), (4.30)

since, α = γ, using the initial conditions. See Table 2.

Example 4.5. Consider the following ordinary differential equation with variable
coefficients

t2
d2v(t)

dt2
+ 4t

dv(t)

dt
+ 2v(t) = 12t2 + 6t+ 2 (4.31)

with the initial conditions v(0) = dv(0)
dt = 0.

Applying the J-transform on both sides of Equ. (4.31), yield

u4

s2
d2

du2

[
s2

u2
V (s, u)− sv(0)− uv′(0)

]
+
4u2

s

d

du

[ s
u
V (s, u)− uv(0)

]
−4u

s

[ s
u
V (s, u)− uv(0)

]
+ 2V (s, u)

=
24u4

s3
+

6u3

s2
+

2u2

s
. (4.32)

Substituting the given initial conditions, we deduce

d2V (s, u)

du2
=

24u2

s3
+

6u

s2
+

2

s
. (4.33)

Integrating Equ. (4.33) with respect to u, we obtain

V (s, u) =
2u4

s3
+

u3

s2
+

u2

s
+ αu+ β, (4.34)

where α and β are the constants. Then

V (s, u) =
2u4

s3
+

u3

s2
+

u2

s
(4.35)
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since, α = β = 0 using the initial conditions. Now computing the inverse
J-transform of Equ. (4.35), gives us the solution

v(t) = t2 + t+ 1. (4.36)

Example 4.6. Consider the following ordinary differential equation with variable
coefficients

t2
d3v(t)

dt3
+ 6t

d2v(t)

dt2
+ 6

dv(t)

dt
= 120t5 − 60t3 − 3δ(t) (4.37)

with the initial conditions v(0) = dv(0)
dt = d2v(0)

dt2 = 0.
Taking the J-transform on both sides of Equ. (4.37), we obtain

u4

s2
d2

du2

[
s3

u3
V (s, u)− s2

u
v(0)− sv′(0)− uv′′(0)

]
+
6u2

s

d

du

[
s2

u2
V (s, u)− sv(0)− uv′(0)

]
−6u

s

[
s2

u2
V (s, u)− sv(0)− uv′(0)

]
+

6s

u
V (s, u)

=
14400u7

s6
− 360u5

s4
+ 3u. (4.38)

Substituting the given initial conditions and simplifying leads to

d2V (s, u)

du2
=

14400u6

s7
− 360u5

s6
+

3

s
. (4.39)

Integrating Equ. (4.39) with respect to u, we deduce

V (s, u) =
1800u8

7s7
− 60u7

7s6
+

3u2

2s
+ αu+ β, (4.40)

where α and β are the constants, then

V (s, u) =
1800u8

7s7
− 60u7

7s6
+

3u2

2s
, (4.41)

since, α = β = 0 using the initial conditions. Computing the inverse J-transform of
Equ. (4.41), we get the solution

v(t) =
3

2

(
15

63
t6 − 1

21
t5 + 1

)
. (4.42)

Remark 4.1. Both example 5 and example 6 cannot be solve using the Sumudu
transform and the natural transform, since in each case we algebraically obtained
the original problem. Details are shown below.

For example 5: Applying the Natural transform on Equ. (4.31) we get

u2 d2

du2
(V (s, u)) + 4u

d

du
(V (s, u)) + 2V (s, u) =

24u2

s3
+

6u

s2
+

2

s
. (4.43)

Applying the Sumudu transform on Equ. (4.31) we have:

u4 d2

du2
(G2(u)) + 4u3 d

du
(G2(u)) + 4u2 d

du
(G1(u))
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+ 2u2G2(u) + 4uG1(u) + 2G(u)

=24u2 + 6u+
2

u
, (4.44)

where G1(u), and G2(u) are the Sumudu first, and second derivatives.
For example 6: Applying the Natural transform on Equ. (4.37) we get

us
d2

du2
(V (s, u)) + 4s

d

du
(V (s, u)) +

6s

u
V (s, u) =

14400u5

s6
− 360u3

s4
+

3

u
. (4.45)

Applying the Sumudu transform on Equ. (4.37) yield

u4 d2

du2
(G3(u)) + 4u3 d

du
(G3(u)) + 6u2 d

du
(G2(u)) + 6uG2(u) + 6G1(u)

=14400u5 − 360u3 +
3

u
, (4.46)

where G1(u), G2(u), and G3(u) are the Sumudu first,second, and third derivatives.

Conclusion
In this paper, a powerful integral transform called the J-transform for solving dif-
ferential equations in time domain is introduced by modifications of the popular
Sumudu transform and Natural transform. J-transform possesses distinct proper-
ties that make its applications to applied physical sciences and engineering prob-
lems easier. Through some variables transformation, J-transform becomes Laplace’s
transform when the variable u = 1, and becomes Elzaki’s transform when the vari-
able s = 1. Many interesting properties including inverse property, linearity, shift-
ing, change of scaling, and convolution properties of the proposed integral transform
are clearly presented. Applications which cannot be solved using both Sumudu and
Natural transform are successfully solved using the proposed J-transform. Thus,
J-transform can be regarded as a modification of both Sumudu, and the Natural
transform. J-transform can easily be extended to study many applications in physi-
cal science and engineering. We discussed the relationship of J-transform with some
integral transforms in the literature. Our goal in the near future is to study the
extended properties and applications of the proposed integral transform.
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Appendix
In this section, the J-transform of some special functions are given.

Table 1. J-transform of some special functions

S/N. Definitions Functions J-transforms

1 Gamma function Γ(n) u2Γ(n)
s

2 Beta function B(n,m) u2B(n,m)
s

3 Error function erf(t) u2

s e
s2

4u2 Erfc( s
2u )

erf(αt) u2

s e
s2

4u2α2 Erfc( s
2uα )

4 Complementary error function erfcf(t) u
s

(
u− ue

s2

4u2 Erfc( s
2u )
)

erfcf(αt) u
s

(
u− ue

s2

4u2α2 Erfc( s
2uα )

)
5 Bessel function Jn(t)

u( s
u )−1−n

(
1+

√
1+u2

s2

)−n

√
1+u2

s2

Jn(αt)
u( s

u )−1−nαn

(
1+

√
1+u2α2

s2

)−n

√
1+u2α2

s2

6 Modified Bessel function In(t)
u

(√
s2

u2 −1+ s
u

)−n

√
s2

u2 −1

In(αt)
u2

(√
s2

u2 −α2+| s
u |

)−n

|α|n

s
√

s2α2

u2 −1

7 Sine Integral function Si(αt) u2

s arctan(αus )

8 Hyperbolic Sine function Shi(t) u
|s| |u| arctan(

αu
s )

Shi(αt) u
α |

uα
s | arctan(αus )

9 Cosine Integral Ci(t) −u2

2s log( u2

u2+s2 )

Hyperbolic Cosine Integral Chi u2

2s log(
u2

s2−u2 )

10 Laguerre Polynomial Ln(t) ueinπ
(
1− s

u

)−1−n

Ln(αt) u( su )
−1−n

(
1− s

αu

)n
(−α)n

11 Sinc Sinc(t) u arctan(us )

Sinc(αt) u
α arctan(uαs )
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Table 2. J-transform of some functions

S/N. Functions J-transforms
1 1 u2

s

2 t u3

s2

3 exp(αt) u2

s−αu

4 sin(αt)
α

u3

s2+α2u2

5 cos(αt) u2s
s2+α2u2

6 cosh(αt) u2s
s2−u2

7 tn

n! n = 0, 1, 2... un+2

sn+1

8 tn

Γ(n+1) n = 0, 1, 2, ... un+2

sn+1

9 cos(t) u2s
s2+u2

10 sin(t) u3

s2+u2

11 sinh(αt)
α

u3

s2−α2u2

12 cosh(αt) u2s
s2−α2u2

13 exp(βt) cosh(αt) u2(s−βu)
(s−βu)2−α2u2

14 exp(βt) sinh(αt)
α

u3

(s−βu)2−α2u2

15 t sin(αt)
2α

u4s
(s2+α2u2)2

16 t cos(αt) u3(s2−α2u2)
(s2+α2u2)2

17 sin(αt)+αt cos(αt)
2α

u3s2

(s2+α2u2)2

18 cos(αt)− αt sin(αt)
2

u2s3

(s2+α2u2)2

19 sin(αt)−αt cos(αt)
2α3

u5

(s2+α2u2)2

20 αt cosh(αt)−sinh(αt)
2α3

u5

(s2−α2u2)2

21 t sinh(αt)
2α

u4s
(s2−α2u2)2

22 sinh(αt)+αt cosh(αt)
2α

u3s2

(s2−α2u2)2

23 cosh(αt) + αt sinh(αt)
2

u2s3

(s2−α2u2)2

24 t cosh(αt) u3(s2+α2u2)
(s2−α2u2)2

25 (3−α2t2) sin(αt)−3αt cos(αt)
8α5

u8

(s2+α2u2)3

26 (3−α2t2) sin(αt)−3αt cos(αt)
8α

u3s4

(s2+α2u2)3

27 (8−α2t2) cos(αt)−7αt sin(αt)
8

u2s5

(s2+α2u2)3

28 t2 sin(αt)
2α

u5(3s2−α2)
(s2+α2u2)3

29 t2 cos(αt)
2

u4(s3−3α2u2s)
(s2+α2u2)3

30 t3 sin(αt)
24α

u6(s3−α2u2s)
(s2+α2u2)4

31 exp(αt)−exp(βt)
α−β α ̸= β u3

(s−αu)(s−βu)

31 α exp(αt)−β exp(βt)
α−β α ̸= β u2s

(s−βu)(s−αu)

33 I0(αt)
u2

√
s2−α2u2

34 δ(t− α) u2e
−αs
u

35 J0(αt)
u2

√
s2+α2u2
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