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STOCHASTIC PARTITIONED AVERAGED
VECTOR FIELD METHODS FOR
STOCHASTIC DIFFERENTIAL EQUATIONS
WITH A CONSERVED QUANTITY

Xiuyan LiT, Qiang Ma? and Xiaohua Ding?

Abstract In this paper, stochastic differential equations in the Stratonovich
sense with a conserved quantity are considered. A stochastic partitioned aver-
aged vector field method is proposed and analyzed. We prove this numerical
method is able to preserve the conserved quantity of the original system. Then
the convergence analysis is carried out in detail and we derive the method is
convergent with order 1 in the mean-square sense. Finally some numerical ex-
amples are reported to verify the effectiveness and flexibility of the proposed
method.
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1. Introduction

Stochastic differential equations (SDEs) are widely used to model phenomena in
many fields like dynamics, economics, biology, and so on [19]. Since most SDEs
cannot be solved analytically, along with the rapid development of computers, the
study of numerical methods for the approximation of SDEs has played a more and
more important role in recent years (see [2, 3,8, 13, 14,21, 25-27] and references
therein).

Numerical integrators that can preserve the intrinsic properties such as geo-
metrical or physical properties of the underlying flow are usually called geometric
numerical integration methods, which have drawn a lot of attention recently for
their good performance especially in a long-term numerical simulation. Since con-
served quantity is intrinsic for some systems, it is natural to construct numerical
methods which can preserve the conserved quantity of the original system. Many
numerical methods that can preserve a single conserved quantity or multiple con-
served quantities for ordinary differential equations (ODEs) have been proposed in
the last three decades (see [1,6,10, 15,20, 23,24] and references therein), and some
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of them have been extended to stochastic cases. [22] proposes a difference scheme
for one-dimensional stochastic canonical Hamiltonian system which can preserve
the conserved quantity. [12] constructs discrete gradient methods which preserve a
conserved quantity based on an equivalent skew-gradient (SG) form of the original S-
DEs. [11] gives conditions for stochastic Runge-Kutta methods to preserve quadratic
invariants. Based on generalized averaged vector field methods, [7] proposes energy-
preserving schemes for stochastic Poisson systems, [17] and [5] construct conserva-
tive schemes for SDEs with a conserved quantity. [28] designs projection methods
preserving single or multiple conserved quantities for SDEs which can achieve high
strong convergence order. [16] constructs a class of discrete gradient methods and
linear projection methods for SDEs with a conserved quantity and studies their
relationship.

In applications, many systems are represented by partitioned differential equa-
tions, for example, the Hamiltonian system

_ 8H§p7q)
7 1.1
. _ OH(p,q) (1.1)
9= "3, -

When a system can be represented in a partitioned form, it is worth trying a parti-
tioned method. Partitioned methods are usually used to approximate the solution
trajectory by using different formulas for different parts of a partitioned differential
equation, and the importance of partitioned methods is mentioned in [10, 18]. [4]
studies partitioned averaged vector field methods for preserving Hamiltonian func-
tion of the deterministic Hamiltonian system (1.1), which inspires us to extend the
idea to stochastic cases. Considering that the stochastic Hamiltonian system with
an invariant Hamiltonian function is very special, in this work we are concerned
with the more general case, that is, stochastic partitioned differential equations
with a conserved quantity.

The rest of the paper is organized as follows. In Section 2, the stochastic par-
titioned averaged vector field (SPAVF) method is proposed and proved to preserve
the conserved quantity. In Section 3, we analyze the convergence order of the pro-
posed SPAVF method and derive the method is convergent with mean-square order
1. In Section 4, numerical experiments are displayed to show the effectiveness of the
proposed method in preserving the conserved quantity and show the convergence
order results.

2. SPAVF method

Consider a system that can be represented by the following stochastic partitioned
differential equation in the Stratonovich sense

dx I.(z,y)
= S(z,y) dt +T(z,y)
dy I,(z,y) Iy(z,y)

odW(t), t €[0,T], (2.1)

where z = (2!,...,29)T e RNy = (y',...,y%)T € R%, the notations I,(z,y) =
0I(xz,y)/0x, I,(x,y) = 0I(x,y)/dy, and W (t) is a one-dimensional Wiener pro-
cess. We assume that S(z,y) and T(z,y) are two (dy + d2) X (dy + d2) smooth
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skew-symmetric matrix-valued functions and I(z,y) is a sufficiently smooth scalar
function such that the exact solution of (2.1) uniquely exists for all time. Notice
the structure matrices S(z,y) and T(z,y) in (2.1) are not necessary to be con-
stant matrices, so (2.1) is more general than the case that S and T are constant
skew-symmetric matrices. It’s easy to verify that I is a conserved quantity of (2.1)
as

Al = I (,y)dz + I (x,y)dy

() )G | )
Iy(x,y
(@ )Ty |0 oawi
Iy(x,y)

=0.

For an equidistant discretization 0 =ty < t; < ... <ty =T with a fixed step
size h > 0, on the premise of no confusion, we always denote the numerical solution
at t, = nh by (zn,yn) =~ (z(tn), y(t,)) hereinafter. Now we define two stochastic
partitioned numerical methods for solving (2.1) as

T, Tn 1 5
= +hS(zn, yn) y + AW (h)T(Fetpmss | Ynthnst) al
yn+1 Yn erL f72z
(2.2)
and
Tn41 In g’}L TntTnt1l YntYntl g"ll
= + hS(xnv yn) 5 + AW(h)T( 2 ) 2 ) 5 |
ynJrl y’ﬂ gn gn
(2.3)
with
AN Sy Te(€angr + (1= ©)an, yn)dE
12 I Ly (@1, €yngr + (1 — E)yn)deE
g\ Sy Te(€rngr + (1= )@, yni1)dE
grQL fol Iy(xnagyn-‘rl + (1 - g)yn)df

where AW (h) = W(tp1) — W(tn) (n =0,1,..., N — 1) are independent Gaussian
random variables with N (0, h) distribution. Next we will prove the method (2.2)
and method (2.3) both preserve the conserved quantity I of (2.1).

Theorem 2.1. If S(x,y) and T(x,y) are skew-symmetric for all (x,y), I(z,y) €
CH(R% x R R), then the method (2.2) and method (2.3) both preserve the con-
served quantity I of (2.1), i.e., I(Tnt1,Yn+1) = I(Tn,yn) for alln > 0.
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Proof. From (2.2) we get

Tn4+1 — Tn % ; 711
T s | ) ¢ awyrnt o it

Yni1 — Un 2 2 2 12
(2.4)

n
using the skew-symmetry of S and T, we obtain that

By taking product with the row vector ((f})T, (f2)”) on both sides of (2.4), and

0= fy IX(€xnrr + (1= )n, yn)dE (21 — x1)
+ fy I (g1, EYngr + (1= ©)yn)dE (Ynsr — Yn)
= Jo el (€xppn + (1= &), yn)dE + Jo S (@1, €Y1 + (1= )yn)dE
= I(@pi1,Yn) — L(@ns yn) + I @ns1, Yns1) — L(Tnt1,Yn)
= 1(Tnt1,Yn+1) — L(@n, yn),

which shows that the method (2.2) preserves the conserved quantity I. Similarly,
we can prove the method (2.3) preserves I too. O

Based on the methods (2.2) and (2.3), we put forward to the SPAVF method
for solving (2.1) as following

Tn+1 Ty 1 fr%, +g’}t
= + ihs(wiyn) 9 9
1 n n n n f/li + g'}L
+ SAW (BT *; 1 Y +2y +1) . (25)
fa+9

Obviously, if we consider all variables as one group, the SPAVF method (2.5) reduces
to a non-partitioned one, i.e., the stochastic averaged vector field method.

Theorem 2.2. If S(z,y) and T(z,y) are skew-symmetric for all (x,y), I(x,y) €
CH(R% xR% R), then the SPAVF method (2.5) can preserve the conserved quantity
I of (2.1), which is

I(@n+1,Ynt1) = L(Tns Yn).-

Proof. The proof is similar to that of Theorem 2.1. From (2.5) we get

Tpil — Tn 1 fr+a
:ihS(xn;yn)

Yn+1 — Yn f721+gr21

Ty + Tpt1 Yn + yn+1) fé + grlL (2.6)
2 ’ 2 £2 4 g2 ’ '

+ %AW(h)T(

Then take product with the row vector ((f!+ g:)T, (f2+ g2)”) on both sides of
(2.6). Following the way in the proof of Theorem 2.1, we can definitely derive the
conclusion. O
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Actually, if T'(x, y) vanishes, then the three methods (2.2), (2.3) and (2.5) reduce
to the PAVF method, the PAVF method’s adjoint method and the PAVF-P method
for solving the deterministic Hamiltonian system (1.1) proposed in [4], respectively.
In the next section, we will show the SPAVF method (2.5) is convergent while the
methods (2.2) and (2.3) are not convergent for solving (2.1) generally.

3. Convergence analysis

Convergence analysis is important for numerical methods. A numerical method
that is not convergent is ineffective. In this section, we will analyze the mean-
square convergence order of the proposed SPAVF method (2.5) for solving (2.1) by
comparing the Taylor expansions of the numerical solution and the exact solution
term by term.

Theorem 3.1. Consider the SPAVF method (2.5) for solving (2.1). Assume the
matriz-valued functions S(z,y),T(z,y) € C*(R% x Rz R(diFdz)x(ditd2)) page y-
niformly bounded derivatives up to order 2, the scalar function I(z,y) € C3(R% x
R R) has uniformly bounded derivatives up to order 3. Then the SPAVF method
(2.5) has mean-square convergence order 1 for solving (2.1).

Proof. For convenience, we denote S = S(z,y), T = T(x,y). Partition the skew-
symmetric matrices S and T as

5 S1 5o T T 15 7
S3 Sy T3 Ty

where SAlA: (Si7j)d1><d17 AS2 = (S;,j)d1><d2;AS3 = (S§7j)d2Xd1j Sy = (Sij)dedz’
Ty = (T77 )ayxdy > To = (T97 )ay xdas T3 = (T37 )dyxdy» Ta = (Ty7 )dyxd,- Then

1,1 1dy oll 1,ds 1,1 1,dy 1,1 1,ds
ght ... ghdi ght . gl SR K I o
5(11171 o S;h,dl 5121171 . Sgl’dz Tldhl . Tldhdl T2dl,1 L T2dl:d2

S: T=

1,1 1,d7  ol,1 1,ds |’ 1,1 1,di 1,1 1,ds
Sit ... ghdi ght ... gl SRR S R

da,1 do,d1 gda2,1 d2,d2 d2,1 da,d1 rpda,1 da,d2
§dxt ... gl gdat . gd Tl ... pdad phel T

Rewrite (2.1) in the following component form as

d1 d2 dl d2
et =(3 Sy Lu+y Sy Ly )di4+ (Y Ty L+ Ty ' L) 0 dW (1), k=1,...,dy,
i=1 i=1 i=1 i=1

dy

do dy da
dyf = (>S5 L+ Sy L )dt+ (O T L+ Y Ty L) 0 dW (), k=1,...,da,

i=1 =1 =1 i=1
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where Sf’i, Sg’i, Sf;’i, Sff’i, le’i, TQk’i, Tf’i, Tf’i, I, I, are short notation-
s for SU(x,y), S5 (x,y), S5 (w,y), Sy (x,y), TF (x,y), Ty (x,y), Ty (x,y),
TF (z,y), Li(z,y), I (x,y), respectively.

For a fixed step size h > 0, we use the one-step approximation to prove the the-
orem, by assuming (2, yn) = (x(tn), y(ts)) at t,. First we analyze the component
expansion of the numerical solution (41, Yn+1) at tn41 = tn + h. From (2.5) we
have

dy

‘ 1
xZJrl :LL'E + ;h{z S{C,l(xn7 yn)(/o IQL’“ (€$n+1 + (1 - f)mn/yn)dg
. 1=1
+ / Im’i (gxn-‘rl + (1 - g)xnayn-‘rl)dg)
0
d2 ) 1
#2551 e
1=1

1
+/ Iyi (xnvgyrH»l + (1 - g)yn)dg)]
0

dy 1
+ §AW(h) |:ZT1]€, ( 92 +1a Y Qy + )(/IW (&mn-&-l""_(l_g)xnvyn)df
i=1 0

1
+/ Li(¢xpi + (1 — §)£L’myn+1)d§)
0

da 1
i, Tn+ Tn Yn T Yn
+ ZTS ( 5 =, 5 + )(/O Lyi(Tng1, EYng1 + (1 — &)yn)d§
i—1

1
+/0 Iyi ($n7§y’ﬂ+1 + (1 - g)yn)dg)]a k= 17 LR ,d17 (32)
and
1 dy y 1
yﬁJrl :yﬁ, + 2h|:z SS,l(xnvyn)</O I;El (£$n+1 + (]- - f)xnvyn)dg
) i=1
+/O I (£$n+l + (1 - f)l’n, yn+1)d§>

da , 1
'y Sf’%xmyn)( / Ly (Easts Egnsn + (1 — ©)ya)de

i=1

1
[ d i+ (- i )|

dy 1

1 i Tn+Ty ntYn

+ iAW(h) |:Z T?ZC7 ( 92 + ’ Y 2?/ 1 )(/le (gxn+1+(1_§)xnayn)d§
i=1 0

1
+/ Imi (fxn-‘rl + (1 - f)xny yn-i-l)dg)
0

do 1
i/ Tn + Tn Yn + Yn
+ ZTf’ ( 9 +1v 9 - )(/0 [yi (Tnt1,§Ynt1 + (1 = Eyn)dE
i=1
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1
+ /0 Lyi (@, EYynyr + (1 — §)yn)d§)} , k=1,...,ds. (3.3)

For dealing with the integral terms in (3.2) and (3.3), we expand L. (§xp41 + (1 —

5)3:,,, yn)v Ly (fﬂ;‘n+1+(1—§)$n, yn-i-l)v Iyi (xn-‘rl’ gyn+1+(1_£)yn) and Iyi (Jtn, EYnt1+
(1 = &)yy,) around & = 0 to yield

Im’i (gxn-‘rl + (1 - g)xnayn)

dy
:Igci (xna yn) + g Z Ixixj ($n7 yn)(‘rzw—l - x%)
Jj=1
52 di dy
ZZII igd gt :vn,yn)( n+1 xn)(x£7,+1_m£z)7 i:17"'7d1’ (34)

jlll

I (§$n+1 + (1 - f)xmynﬂ)

di1
=1l (-Tna yn+1) + 5 Z Lyigi (I'm yn+1)($£l+1 - l‘gl)
j=1
2 dy dy
+7ZZII igpd gl ITHynJrl)( Tht+1 — n)(x’lﬂ+1_m£l)7 i=1,...,d, (35)
j=11=1

Lyi(Tns1,8Ynt1 + (1 —&)yn)

I (xn—&-layn +§Z yiyd xn-i—lvyn)(ygz—&-l —ygl)
Jj=1
do  do

ZZI iydyt xn-i-l,yn)(yn—&-l - yn)(yn+1 - yn) =1,... 7d2a (36)
j=11=1

52

Lyi (T, EYns1 + (1 —&)yn)

=1, (T, Yn) +§Z iy (T Yn) U1 — Y2)

2 dy  d2 , )
+ 9 ZZ yiyiyl Invyn)(y;-&-l - ygb)(yil-‘rl - y’fb)’ i = 17 te 7d2’ (37)

jlll

where Z,, and %, depend on z, and z,i1, 9, and g, depend on y, and Yn+1,
the notation i, is the second order partial derivative with respect to x and 27,
I,i,i,0 is the third order partial derivative with respect to 2, 27 and x!. After a
straightforward computation by substituting (3.4)-(3.7) into (3.2) and (3.3), then
expanding the functions

Iy (mnv ynJrl)v Iz/ (xn+1a yn)v Loigi (xna yn+1)7 Iy7yﬂ (xn+1a yn)v
Tllm(xn +2=’En+1 ’ Yn +2yn+1 ), T2;“($n +233n+1 7 Yn +2yn+1 ),
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ki Tn T Tntl Yn + Yny1 ki Tn T Tntl Yn + Ynyl
T3 ( 2 ) 2 )7 T4 ( 2 ) 2 )7

around (z,,yn), with plugging the expressions of foH —zF and yfwrl —yk we
obtain

dy da
ak | =ak 4 h{z SP L+ Y sgfy] + AW (h {ZT]“ T+ ZT§ I, }
i=1 i=1
1 & . & & . .
+ 5sz(h) Z TF Z Ly {Z T, + Z Tgvllyl}
i=1 j=1 =1 =1
1 dy ] do dy ) do ]
+ 5sz(h) Z Tr Z Liyi {Z T L+ Z Tivllyl}
i=1 j=1 =1 =1

d d
—I—%AWQ iinxg [in’llxz+iTQj’llyz}

i=1 j=1 =1 =1
1 dy  do dq ] do ]
ST D TR PSS 30
i=1 j=1 1=1 1=1

d d:
+ %AWQ ZTk ! Z yis {Z T 0+ Z Tgvlfy,}
=1 =1
dy d
+ %AWQ(h) Z T Z Lyiys [Z T L+ Z TZ’lIyz]
i=1 j=1 - _

+ 5 AW ) 1T§x3y[ZT”ml+ZT” ]
=1 j=1

+%AW2 iinyiy[ZTﬂfl+ZT” }+R1,k—1 dy,
=1 j=1 =1 =1

(3.8)

with

Ry thW ZSk’ZIMC,{ZT”IrLJrZT”I}
+ hAW ZSkZ {ZTglexl+ZTg=l[yl}+...7 (3.9)

=1 =1

where the remainder R; consists of some terms of mean-square order greater than
1, say, terms with hRAW (h), AW3(h), h?, etc. In view of the the smoothness and
boundedness hypotheses on the functions S, 7', I and their derivatives, as well as the
properties of Wiener process that |E(hAW (h))| = 0, (E(hRAW (h))?)Y/? = O(h3/?),
|E(AW3(R))| = 0, (E(AW?3(h))?)Y/2 = O(h3/?), using the fundamental inequality
yields

|ERi| = O(h?), (ER})'/? = O(h*"?).
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Notice we omit the variables (z,,y,) of all the functions in (3.8) for the sake of
simplicity, for example, Sf’l = Sfﬂ(fﬁn, Yn), Ipi = i (T, yn), etc. Similarly, we can
deduce that

d1 d2
vy =k + h{z ST+ Z SL |+ aw )| ST L+ YT
=1 =1 =1

d1 1 d
+ %AWQ(h) > oyt Z Lyigs [Z T L+ Z TQ"lIyl]
i=1 j=1 = =1
d
+ %AWQ ZT?? . ZI»L iy [ZTg’lImz + ZzTi’lIyz]

=1 =1
dy dy dq do
Fawm S Tk »[ZTg’lzml +ZTngyl]
i=1 1 =1 =1
dy sz dq ‘ d2 ‘
+ AW2 R > Tyl [ZTg’lIml + ZTg’lIyl]
=1 j=1 = =1
1 ) da
Lawm) ZT;“Z [;Twﬂ +;Tg’lzyl]
d
+ %AWQ(h) ZTf’i Z Lyiys [Z TP 0+ Z lefyl]
i=1 j=1 =1 =1
ds di ’ dq da
+ AW2 (W) > T I, [ZTf’llxz +ZT2J"ZIyz]
1=1 j=1 = =
1 2 = & k, & N l
+ AW ()Y T, [ZTJ I +ZTJ ]+Rg, k=1,...,ds,
i=1 j=1 =1 =1

(3.10)

with

d
Ry :%hAW Z Sy me a3 [ZTf’llzz + iTg’llyz}
i=1 =1

=1
1 d
+ hAW Zs‘“z yj[ZTg’lIxz—&-ZQT;f’llyz]—&-
=1 =1

where |ERs| = O(h?), (ER3)'/? = O(h%/?). Also the variables (z,,%,) of all the
functions in (3.10) are omitted.

Next we will show the component expression of the exact solution (z(t, +
h),y(t, + h)) at t,41 = t, + h. Integrating on both sides of the first equation
in (3.1), we get the component of the exact solution z(t, + h) is

tn+h d1 tnt+h d2 ,
ok (tn + h) =2k +/ Zskzlxldw >S5t

tn
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toth d1 _ toth d2 _
+/ > TP Lo dW(t)+/ N T 0 dW (L), k=1,....d1.
t tn

n =1 i=1
By using the Stratonovich-Taylor expansion, we get
¥ (tn + h)

dy
=zk + hZSk” (@, Yn) i (Trs Yn)

tnt+h  ptatt d1 dq dy
/ / > (S L + 87 L) (O ST +Zsﬂ )dsdt
1= 1] 1 =1 =1
tn+h pta+t di di d1 ) d2
+/ / SN (S L+ 8V L) Y TP T + > T ) 0 dW (s)dt
tn n i=1j=1 =1 =1
4t di da
/ / ZZ (S5 Tas + 87 Tyiy ZSJIIL+ZSJ V)dsdt
=1 5=1
di  d2 dy
/ / ZZ Sy Lo+ Sy ey ) (O T +ZT” ) o dW (s)dt
=1 j=1 =1 =1

+h Z 55 g xna yn)Iy‘ (xm yn)

t do di

n h’ n
+/t+ /t+ZZS’”I + S5 Iyigs) ZS“IZJFZSJ’ V)dsdt
tn t

n i=1j=1

tn+h  pto+t d2 di dy da
+/ / SN TSE L + 85 i) O TP L+ T3 ) 0 dW (s)dt
tn tn i=1j=1 =1 =1
tn+h ptn+t d2 do ) di d2
+ / / DD (S Ly + 85 ) O S3 L+ 53 ) dsdt
tn tn i=1 j=1 1=1 =1

tnth  ptott d2 do d d2
L R R 9 S(C A RERC S AMT) DEE MRS SE O MEYIAOL:
tn =1 =1

tn =1 j=1

+ AW (h ZT’“ (@ns Yn) Lt (T, Y)

tn+h pto+t d1 1 . dy
/ / S (T L + TP L, )(ZS“IZ+ZS“ )ds o dW (t)
tn =1 j=1 =1 =1
tn+h pty 4t d1 dy
/ / > (T L+ T i) ZT”I +ZT”I )odW (s)odW ()
tn i= 1] 1 =1

da

tnth  ptott d1 y y d . da .
/ / ST L 4 T L ) (S S L+ 83, )ds 0 dW (1)

tn i= 1] 1 =1 =1
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tnth ptn+t d1 da
/ / D (T L+ T Ty )( ZT”IHLZT” YodW (s)odW (t)

tn zljl

+AW ZTkl xnvyn (znayn)

tn+h  pto+t d2 dy
/ / S Ty + T3 Ly ZS“I z +ZSJ’ V)ds o dW (t)
tn tn i= 13 1
tn+h pto+t d2 dy
+/ / > (T L+ T Ty ZT”IEH—ZT”I YodW (s)odW ()
tn tn = 13 1 =1

tn+h tn+t 42 d» , i d2
+ / S TE L+ T (S S5 T+ S 81T ) dsodW (1)
tn tn = 1 Jj= 1 =1 =1

tnth ptntt d2 d2 , o d2
+/t /t DN (T Ly ATy Ty ) O T L+ Y T ) 0dW (5)0dW (1),

n n i=1 j=1 =1 =1

We repeat the Stratonovich-Taylor expanding procedure and take the terms of high-
er order (such as terms containing ft“+h ftﬁ_t dsodW (t), t h ftﬁ_t odW (s)dt

I fnth L "t dsdt) as remainder terms, then we have

tn
z®(t, + h)
dy ] da ]
=xk 4+ h[z SEE (T yn) Lyt (T yn) + Z SE (2, Yn) Lyi (x4, yn)}
i=1 i=1

ds
+ AW (h {ZTf“ (@ Yn) Lot (T yn) + 3 T3 xnayn)-[yi(ﬁrnvyn):|
=1
d1 d1 dl

1 l ;
+ iAWZ ZZT{;J xmyn (mnayn)[ZTfJ(zmyn)Iﬂcl(zmyn)

=1 j=1 =1

ZTJ l xnvyn (xnayn)]

1 l 1 z .
+ §AW2 ZZT{C x’myn i a:J(xvuyn)|:2Tf’l($n7yn)lzl(xnayn)

=1 j=1 =1

do
+ZT2j)l(xn7yn)Iyl(‘rnyyn):|
=1

1 2 di  d2 kZ di
+§AW ZZTMF $n7yn ml(xnayn |:ZTJ xnaQn)LEZ(znayn)

=1 j=1 =1

do .

YT )y )|

=1
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dy d2

1 i
F LAWY S T ) sy (e [zw ) ot (1)

=1 5=1

d2
+ Z le(xm yn)Iyl (zna yn)]

=1
1 da di . di .
+§AW2 ) D T (i, yn)I (xnay”)[sz’ (s Y ) Lt (T Y
1=1 j=1 =1
d
+ 3 T3 (0, yn) Ly (@, yn)]
=1
1 dy dy
LAWY T )y (s {ZTJ s ) Lot (s )
=1 5=1
d
+ Z Tg’l(xna yn)Iyl (:Z:n, yn):|
=1
1 dy  do i
k, il
+ §AW2 ZZTQ?; Ty Yn) 1, (xnayn) {ZTg (T, Yn ) Lt (T, Yn)
1=1j5=1 =1

da
+ Z Ti’l(xm yn)lyl (T, yn):|
=1

do da
1 i ;
FAWA) S T ) yw(xn,yn)[ZT;%%,%)@(%,%)
i=1 j=1 =1
do _ _
+ ZTi’l(xmyn)Iyz (xn,yn)] + Ry, k=1,...,dy, (3.11)
=1

with

ntt d1 dy _ dy _ d2 _
> (S5 T+ S7 L) TP Ly +> T3 ) 0 dW (s)dt
=1 =1

/t+h
tn ’Lljl

ntt dl da
/ / D (ST Lot Sy Ty ZT”I +ZT”I YodW (s)dt
i =1 =1

i=1 j= 1
tn+t dz dq i d2
S (SE L4 S5 Ty )Y TP L+ > TP ) odW (s)dt
tn 1= 1 Jj= 1 =1 =1

where the remainder Ry consists of some terms of mean-square order greater than 1
such as terms with ft bttt s)dt, ft A ft "L o dW (s)odW (T) o

t

dW (t ft"+h ftt”_t dsdt, etc. In view of the smoothness and boundedness hy-

potheses on the functions S, T, I and their derivatives, as well as the properties of
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multiple Stratonovich stochastic integrals that

tnth ptn+t
B( / / - o dW(s)dt)] =0,
tn tn

E(/tmh /tw' o dW(s)dt)*)'/* = O(h*?),
tnt+h tn+t tn+T
E(/tn /t /tl - odW(s)odW (7)o dW (t))| =0,
tn+h tn+t tn+T7
o ) o o 2\1/2 _ 3/2
B( / / / AW (s) 0 AW (1) o dW (£))2)/? = O(/2),

application of the fundamental inequality yields
[ERy| = O(h?), (ER2)1? = O(h*2),
Similarly, we obtain

y*(tn + h)
dy

—y§+h[25kz(wmyn xn,yn +ZS wnvyn (xnayn):|

i=1

dy
+ AW (h) [ZT;”(mn, Yn ) pi (T, Yn) + ZTfﬂ(a;n, Yn)Lyi (x4, yn)}

i—1 =1
1 di di il
ki ol
+ iAWQ ZZTBzJ xnvyn ($n7yn) |:ZT1J (xmyn)fzz (xn,yn)
i=1 j=1 =1
do )
_"_ZTQJ,Z(xmyn)Iyz(xmyn)]
=1
1 dy dy
+ iAWZ ZZTkz fﬁnyyn i an,yn |:ZTJ .Tn,yn (l‘nayn)
=1 5=1
d2
—‘,—ZTJZ xmyn)f (l’nayn)]
=1
di da al
kz ol
+ AW2 Z TByJ wnvyn (mn7yn)|:ZT?f (m"’y”)lzl(xn’yn)
i=1 j=1 =1
d2
¥
=1
1 dy dso
+ §AW2 ZZTIC’L l’n,yn wiyi ;L'n,yn |:ZTJ Z'nayn (Inayn)
=1 5=1

da
1,0
3 T )y <zn,yn>]
=1
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dy dy dy

1 i
# FAW0) S0 TS (ot (net)| 3T ) e )
=1 j=1 =1
d
+ Z TQJJ(xm yn)Iyl (zna yn)]
1=1
1 dy dy . d
+ 5AW2(h) SO T @ yn) s (Tn yn) {ZT#(%, Yr) Lot (T2 Y )
i=1j=1 1=1
d
+ 3 T3 (0, yn) Ly (@, yn)]
1=1
1 dy do di
+ 5AW2 ZZTZ/? xnvyn (xnayn){ZTg,l(xnayn)le(mnayn)
1=1 j=1 =1

da
+ Z Ti’l(xm yn)Iyl (xna yn):|
=1

ds do
1 ,
+ AW (h) Y D T (0, ) Ly (0, ) |:ZT3]J($'M Yn) Lot (T, Yn)

1=1j5=1 =1
da ) _
+ ZTX’Z(.Tn’yn)IyZ (xnayn):| + R27 k = 17' . ,d27 (312)
=1
with
tnth ptn+t dl dy dy _ da _
Ry / D (S5 L + 85 Lo ) O TP L + > T ,0) 0 dW (s)dt
tn i= 1 j= 1 =1 =1
tnth pto+t d1 dz
/ / D (S5 Tai + 85 Tyiys ZT”IxZ +ZT”1 ) o dW (s)dt
tn =1 j=1 =1 =1
tnth pto+t d2 d1
/ / > (ST + Sy i) ZTJIIHLZT” ) o dW (s)dt

tn =1 j5=1

9

where |ERy| = O(h?), (ER3)'/? = O(h3/?).
Comparing (3.8) with (3.11), (3.10) with (3.12), respectively, we derive that

Therefore, the SPAVF method (2.5) has mean-square convergence order 1 according
o [21]. O

Remark 3.1. If we replace S(2y,,yn) by S(Znt1,Yn+1) OF S((a:n + Zpni1)/2, (Yn +
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Yn+1)/2) in the method (2.5), the method is still convergent with mean-square order
1.

Remark 3.2. Although the method (2.2) can preserve the conserved quantity I,
following the way in proving Theorem 3.1, we get that

di  do dy do
2 (t,+h)—ak :%AW2(h) SN T Ly [ZTQZIIZ + ZTZ’ZIyz}
i=1 j=1 =1 =1
1 do dy ‘ dy ) do )
- 5AW%) SN T {ZT{’I.@ + ZTg’l[yl} o
i=1 j=1 =1 =1
1 di da d1 d2
Y (tn+h)—yk :§AW2(h) SN T Ly, [ZT?{JIIZ + ZTZ’ZIyz]
i=1 j=1 =1 =1
1 da di ) d1 ] d2 .
- 5AWQ(h) SN T Ly {ZT{UIZ + ZTg’lIyl] T
i=1 j=1 =1 =1

so the method (2.2) is not convergent for solving (2.1) generally. Similarly, the
method (2.3) is not convergent generally either.

For a more general case of stochastic partitioned system which contains s par-
titions as following

dat La(xt 22, ... 2%)
da? L2 (2t 22, ... 2%)
=S(zt 2?,..., z%) dt

dx*® Ls (2t 22, ... 2%)
La(zt, 2%,.. . 2%)
L (2t 22, .. 2®

+T(at,2?%,...,2%) o dW(t), (3.13)

Ls (2t 22, ... 2%)

where I is a conserved quantity, S and T are skew-symmetry matrices, * € R%, i =

1,...,s. Similar with (2.2) and (2.3), we can define two numerical methods as
1
x}LH xl fo Iw1(§x;+1 + (=&l 22, ... x)dE
1 S
x%+1 x% f() 17;2 (:I:'}L-'rl? £IEL+1 + (1 - 5)1'3“ e ,In)d€
S S 1 S S
xn-i—l Ty fo I’»L'S (x711+17 x%+1a s ag‘rn-l-l + (1 - g)‘rn)dg
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Jo Lor &by + (1= Ol @, )de

f m2 xn lagxn 1+(175)x72177m$7,)d£
+ AW () Tosgen | T :

fo xs n+17 n+17 --751'787,-4-1 + (1 = §&)x;,)d¢

(3.14)
and
xh ), fo (€l + (1=l x%-&-lﬂ ey Typ)dE
2 B x2 s fo w2 (@, &a2  + (1= 822, ... xdq)dE
Ty 41 xy, fo wo(Th,xp, s + (1 —&)xy)dE

fo gzn-&-l =+ (1 7€)z7lnx72L+17"'7x757,+1)d£
2wl &2+ (1—8a2,... 25, ,)dE
£ AW (R Tty ot i A :
2 :

fo n7 n? "7£$n+1 + (1 _5) n)dé—
(3.15)

where S, and Tt are S(zh, ... 25) and T((z} + 2L, 1)/2,. ., (a5 +25,,)/2)
for short, respectively. Then we define the corresponding SPAVF method by

Tyt x, fa+an fa+an
2 2 2 2 2 2
xn+1 xn fn +gn fn +gn
— } + %hSn ) + %AW(h)Tn+(;1+l) . )
T34 5, n T 9n fa+an
(3.16)
with
ylL fo fl'n+1 + (1 f)ﬂf}” x%ﬂ R xfl)dg
2 B fo w2 (@h g, 822+ (1= 822, ... xs)dE
s 1
n fo Ips x%+1,x%+1, N S R (1—&)zy)dE
gvlz fo g‘rnJrl + (1 - g)‘r'rw anrl? .. axfz+1)d€
g% . fo I xmg‘rn-{-l + (1 - f)xgu i a$Z+1)d€

gvsz fo n7 n,-.-,§$n+1+(1—§) n)d§
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It is easy to prove the method (3.16) preserves the conserved quantity I of (3.13)
along the way proving Theorem 2.2. Furthermore, similar with Theorem 3.1, we
can derive that the SPAVF method (3.16) is of order 1 in the mean-square sense
for solving (3.13) under certain conditions.

4. Numerical examples

In this section, we will employ the proposed SPAVF methods to solve several com-
mon stochastic systems with a conserved quantity. Three examples are given below
to demonstrate the effectiveness of the SPAVF methods in preserving the conserved
quantity and the convergence order.

Example 4.1.

Consider the Kubo stochastic oscillator

dp(t) = —aq(t)dt — bq(t) o dW (¢), t € [0,T],

(4.1)
dq(t) = ap(t)dt + bp(t) o dW (t), t € [0,T],
which can be rewritten in the form of (2.1) as
dp(t 0— t 0—b t
p(t) ) _ a) (PO 4l p(t) odW(t), t€[0,T], (4.2)
dq(t) a 0 q(t) b 0 q(t)

where I(p,q) = (p? + ¢*)/2 is the conserved quantity. We use this example to
demonstrate the convergence order of the proposed SPAVF method because com-
pared to those equations whose exact solutions cannot be expressed explicitly, (4.1)
has the following explicit exact solution

p(t) = po cos(at + bW (t)) — go sin(at + bW (1)),
q(t) = po sin(at + bW (t)) + qo cos(at + bW (1)),

where pg = p(0), go = ¢(0) are initial values, so that the convergence order results
we derive are more convincing.

We employ the SPAVF method (2.5) to solve (4.2). Choose the initial values
po = 0.5, go = 0 and the coefficients a = 1, b = 0.5. Figure 1 demonstrates
the convergence rate of the SPAVF method (2.5) for solving (4.2), where we use
1000 independent sample paths, and for each path, the SPAVF method (2.5) is
implemented with five different step sizes: h = 274,27%,276 277 2-8  We calculate
the mean-square errors at the terminal 7' =1 by

1000
D (p(1,wi) = pa(wi)2 + la(1,wi) — g (wi)[?)/1000,

i=1

and show the results in a log-log plot in Figure 1. By comparing with the reference
line with slope 1, we see the proposed SPAVF method (2.5) is of mean-square
order 1. To demonstrate the long-term behavior of the proposed method, we set
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1p,.,)-1(0 G0

200 250 300 350 200 50 500

Figure 2. Phase space plot of the numerical Figure 3. Errors |I(pn,qn) — I(po, qo)| com-
solution computed by the SPAVF method (2.5) puted by the SPAVF method (2.5) solving (4.2)
solving (4.2) with h = 0.1 on [0, 500]. with h = 0.1 on [0, 500].

a long computational interval [0,500]. Figure 2 reports the numerical solutions of
a sample phase trajectory of (4.2) simulated by the SPAVF method (2.5) on the
interval [0, 500] with step size h = 0.1, from which we find the numerical solutions
lie on the circle determined by the conserved quantity. Figure 3 exhibits the errors
[I(pn,qn) — I(po, qo)| of the proposed SPAVF method (2.5) on the interval [0, 500]
with step size h = 0.1, which shows the SPAVF method (2.5) can preserve the
conserved quantity I(p,q) exactly.

Example 4.2.
This model [9,12] describes the dynamical behavior of the fluid system by using
the dimensionless equations in the Stratonovich sense
dr =wvdt, t >0,
dv = (F(r) —v)dt + (2ag)z o dW(t), t >0, (4.3)
de = v2dt — v(2ae)? o dW (1), t > 0,
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where r denotes the position, v denotes the velocity, € denotes the energy of the
fluid system, F(r) = —9V (r)/dr denotes the conservative force, and « denotes the
dimensionless heat capacity of the fluid. The system (4.3) has a conserved quantity
E(r,v,e) = V(r) + v?/2 + e. Rewrite (4.3) in the form of (3.13) as

dr —F(r) —F(r)
dv | = S(r,v,¢e) v dt +T(r,v,¢) v odW(t), t >0, (4.4)

de 1 1
where
0 v? v—v3
S(rv,e) =1 —v? 0 F(r)—v—v*F(r) |,
v3—vv?F(r)— F(r) +v 0
0 —v 02
T(’I’7U7E) = (2C¥€)% [ 0 1+ ’IJF(T)

—v? —1 —vF(r) 0

Notice (4.3) is nonlinear, the conserved quantity E is not quadratic, and the skew-
symmetric matrices S and T are not constant, so that this example is very different
from Example 4.1. Based on the three-partition form (4.4), we apply the SPAVF
method (3.16) to solving (4.4). The experiments are performed using the bistable
potential V(r) = B(r*—2r?) with the coefficients o = 1/4, 8 = 1. The initial values
are chosen as r(0) = rg = 0, v(0) = vg = 0, €(0) = ¢g = 1. Figure 4 reports the
phase portrait by using the SPAVF method (3.16) to simulate a sample path on the
long interval [0, 500] with step size h = 0.1, which shows the numerical solutions lie
on the manifold. Figure 5 reports the errors |E(ry,, v, €,) — E(ro, vo, €0)| computed
by the SPAVF method (3.16) on the interval [0, 500] with step size h = 0.1, which
indicates the SPAVF method (3.16) can preserve the conserved quantity E exactly.

Figure 4. Phase space plot of the numeri- Figure 5. Errors |E(ry, vn, en)—E(r0, vo, €0)|
cal solution computed by the SPAVF method computed by the SPAVF method (3.16) solving
(3.16) solving (4.4) with h = 0.1 on [0, 500]. (4.4) with h = 0.1 on [0, 500].
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Example 4.3.

Consider the Hénon-Heiles system with perturbation as
de = JVH(z)dt + o JVH(z) o dW(t), t >0, (4.5)

where

0 I
r = (qlanaplaPZ)Ta J = 5
-1 0

I is a 2 x 2 identity matrix, H(z) = (¢? + ¢3 + p7 + p3)/2 + ¢iq> — ¢3/3 is the
conserved quantity. This model describes stellar motion with perturbation inside
the gravitational potential of a galaxy. Notice the equation (4.5) is also nonlinear
and the conserved quantity H is not quadratic. We rewrite (4.5) in the following
form with four partitions

dq 0 010 VH,, 0 000 VH,
d 0 001 VH, 0 0 O0c VH,
a2 _ q2 dt+ q2 o dW (1), t>0.
dpy -1 000 VH,, -0 0 00 VH,,
dpa 0 -100 VHp, 0 —c00 VH,,

(4.6)

Employ the SPAVF method (3.16) to solve (4.6). Mention that here we rewrite
(4.5) in a four-partition form but not a two-partition form (i.e., take (¢1,¢2) as a
partition and (p1,p2) as a partition) because our choice leads to a easier iterative
scheme, which shows the flexibility of the proposed SPAVF method through dividing
variables into different groups. Choose the coefficient o = 0.5, the initial values
71(0) = q10 = 0.1, q2(0) = g20 = 0.5, p2(0) = pao = 0, while p;(0) = p1o
is determined by Hy = (qf,o + 43,0 + Pl,o + P30)/2 + aiga20 — 43/3 and Hy =
1/6. Figure 6 reports the phase portrait by using the SPAVF method (3.16) to
simulate a sample path on the interval [0,500] with step size h = 0.1, which shows
the numerical solutions lie on the triangle manifold. Figure 7 reports the errors
|H(q1,n7q2,n7p1,nap2,n) — H(q170,q270,p170,p2,0)| computed by the SPAVF method
(3.16) on the interval [0, 500] with step size h = 0.1, where we can see the proposed
SPAVF method (3.16) has good performance in preserving the conserved quantity.

We mention that it seems the examples above don’t satisfy the hypotheses on
the boundedness in Theorem 3.1. In fact, the hypotheses on the boundedness can
be relaxed on the invariant manifold, see [7] for more details. Local boundedness is
sufficient to get the mean-square order 1 thanks to the conservative property of the
proposed SPAVF method.

Remark 4.1. Since the SPAVF methods (2.5) and (3.16) exactly preserve the
conserved quantity, one can find, for problems as presented in this section, for any
given initial value (zg,y0), a convex subset of the phase space containing almost
surely the numerical trajectories starting from (zg,yo) on which the functions S,
T and their derivatives up to order 2 as well as the function I and its derivatives
up to order 3 are bounded. Hence, the conclusion of Theorem 3.1 extends to these
cases straightforwardly.
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Figure 6. Phase space plot of the numeri- Figure 7. Errors |H(q1,n,42,n,P1,n,P2,n) —
cal solution computed by the SPAVF method H(q1.0,92,0,P1.0,P2,0)] computed by the S-
(3.16) solving (4.6) with h = 0.1 on [0, 500]. PAVF method (3.16) solving (4.6) with h = 0.1

on [0, 500].

5. Conclusions

This work is an extension of the deterministic partitioned averaged vector field meth-
ods [4] into the stochastic counterpart. An SPAVF method for more general SDEs
with a conserved quantity is proposed in this paper. We prove the SPAVF method
can preserve the conserved quantity, then elaborately analyze the convergence order
and derive the SPAVF method is convergent with mean-square order 1. In addition,
as a partitioned method, the SPAVF method is flexible in the choices of variables
grouping strategy, which could lead to more efficient schemes. Three examples of
linear /nonlinear equations with a quadratic/non-quadratic conserved quantity are
presented. Numerical experiments show the ability of the SPAVF method in pre-
serving the conserved quantity, and verify the convergence order result as well as
the flexibility of the proposed method.

Acknowledgments. The authors would like to thank the associate editor and
reviewers for helpful comments and suggestions.
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