
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 9, Number 4, August 2019, 1359–1392 DOI:10.11948/2156-907X.20180247

FAST SECOND-ORDER ACCURATE
DIFFERENCE SCHEMES FOR TIME

DISTRIBUTED-ORDER AND RIESZ SPACE
FRACTIONAL DIFFUSION EQUATIONS

Huanyan Jian1, Tingzhu Huang1,†, Xile Zhao1

and Yongliang Zhao1

Abstract The aim of this paper is to develop fast second-order accurate
difference schemes for solving one- and two-dimensional time distributed-order
and Riesz space fractional diffusion equations. We adopt the same measures
for one- and two-dimensional problems as follows: we first transform the time
distributed-order fractional diffusion problem into the multi-term time-space
fractional diffusion problem with the composite trapezoid formula. Then, we
propose a second-order accurate difference scheme based on the interpolation
approximation on a special point to solve the resultant problem. Meanwhile,
the unconditional stability and convergence of the new difference scheme in
L2-norm are proved. Furthermore, we find that the discretizations lead to a
series of Toeplitz systems which can be efficiently solved by Krylov subspace
methods with suitable circulant preconditioners. Finally, numerical results
are presented to show the effectiveness of the proposed difference methods
and demonstrate the fast convergence of our preconditioned Krylov subspace
methods.
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1. Introduction

Fractional diffusion equations (FDEs) have recently attracted considerable attention
and interest due to its wide applications [33, 34]. Specifically, the time-fractional
anomalous diffusion equation has become the focus of intensive investigations from
both theoretical and practical perspectives [16,24,29].

Recently, the time-fractional anomalous diffusion equation with a single-term
temporal derivative has been discussed and studied [23]. In [27, 28], the two-term
time FDE was reported for describing processes that tend to be less anomalous.
More generalized models were also developed as multi-term FDEs [2,39], where sev-
eral fractional derivatives were simultaneously involved. Although the single-term
and multi-term FDEs are used extensively in many scientific fields, it is difficult for
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them to describe the non-Markovian processes for continuous time-scale distribu-
tions. Therefore, the time distributed-order FDEs [3,38,40,41] began to attract the
attention of researchers. It can be considered as a generalization of the multi-term
FDEs and has been found to be an important tool for modeling ultraslow diffusion
processes and accelerating sub-diffusion [7, 20].

Multiple numerical approaches [4,30,32] have emerged for solving the distributed-
order FDEs, among which the finite difference method has grown popular [11, 17].
The numerical method presented in [19] for solving the distributed-order FDE con-
sists of: (a) approximation of the integral with a finite sum using a simple quadra-
ture rule so that the distributed order FDE is converted into a multi-term FDE and
(b) development of a numerical method to solve the resultant multi-term FDE. Such
idea is essential for numerically solving the distributed-order FDEs and should be
studied extensively. However, as far as we know, only a few algorithms have been
developed to solve the distribution-order FDEs based on this idea. Ye et al. [37] pro-
posed an implicit difference method for the time distributed-order and Riesz space
FDEs on bounded domains and proved the difference method was unconditionally
stable and convergent. An implicit numerical method of a new time distributed-
order and two-sided space-fractional advection-dispersion equation was constructed
by Hu et al. [17]. In [11], Gao et al. explored two alternating direction implic-
it difference schemes with the unconditional stability and convergence analysis for
solving the 2D distributed-order FDEs. Bu et al. [4] introduced the finite differ-
ence method for a class of distributed-order time FDEs on bounded domains. In
addition, most of these numerical approaches have no complete theoretical analysis
of stability and convergence, especially for the time distribution-order and spatial
FDEs [19,26].

In this paper, inspired by the above observations, we consider effective numer-
ical methods for the following new time distributed-order and Riesz space FDEs
(TDRFDEs):

D
ω(α)
t u(x, t) = Au(x, t) + f(x, t), x ∈ Ω, 0 < t ≤ T, (1.1)

u(x, t)|x∈∂Ω = 0, 0 ≤ t ≤ T, (1.2)

u(x, 0) = φ(x), x ∈ Ω, (1.3)

where α ∈ (0, 1], A is an operator and the function f(x, t) is the source term with
sufficient smoothness. In particular, if Ω = (xL, xR) ⊂ R, then

A = K
∂β

∂|x|β
, K > 0, f(x, t) = f(x, t);

if Ω = (xL, xR)× (yL, yR) ⊂ R2, then

A = K1
∂β

∂|x|β
+K2

∂γ

∂|y|γ
, K1,K2 > 0, f(x, t) = f(x, y, t),

where β, γ ∈ (1, 2], and the ∂β

∂|x|β is the Riesz fractional derivative of order β ∈ (1, 2]

defined as [18] ( ∂γ

∂|y|γ is defined similarly)

∂βu(x, t)

∂|x|β
=

{
− 1

2 cos(βπ/2)Γ(2−β)
d2

dx2

∫ xR
xL
|x− ξ|1−βu(ξ, t)dξ, 1 < β < 2,

∂2u(x,t)
∂x2 , β = 2,
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where Γ(·) denotes the Gamma function. Moreover, the time distributed-order

operator D
ω(α)
t is defined by [31]

D
ω(α)
t u(x, t) =

∫ 1

0

ω(α)C0 D
α
t u(x, t)dα,

where C0 D
α
t denotes the Caputo fractional derivative [25] which is defined as follows:

C
0 D

α
t u(x, t) =

{
1

Γ(1−α)

∫ t
0
(t− ξ)−α ∂u∂ξ (x, ξ)dξ, 0 < α < 1,

ut(x, t), α = 1,

and the non-negative weight function ω(α) satisfies that

0 ≤ ω(α), ω(α) 6= 0, α ∈ [0, 1], 0 <

∫ 1

0

ω(α)dα <∞.

Nonlocal behavior has been remarked as one of the main characteristics of the
fractional differential operator. As a result, most numerical methods for FDEs
produce dense matrices or even full coefficient matrices in 1D cases [13, 22]. Tra-
ditional methods, such as Gaussian elimination, need computational workload of
O(M3) and memory capacity of O(M2), where M is the number of grid points [22].
Krylov subspace methods are studied and adopted to reduce the costs [12,14]. The
convergent speed of the Krylov subspace methods is dependent on the condition-
s of the discretized systems. To improve the performance of iterative methods,
many preconditioners [15, 22, 42] are always designed according to the structure of
the linear systems. For 1D cases, Wang et al. [36] made the important discovery
that the resultant systems had Toeplitz coefficient matrices. By exploiting this
structure, the memory requirement can be reduced from O(M2) to O(M), and the
fast Fourier transform (FFT) can be used to evaluate the matrix-vector product in
O(M logM) operations. Moreover, the coefficient matrices discretized from (1.1)-
(1.3) should be symmetric positive definite Toeplitz matrices due to the existence
of Riesz fractional derivatives. The circulant preconditioners [5, 6, 22] proved to be
good choices to accelerate the convergence of Krylov subspace methods when solving
the discretized linear systems. In high-dimensional cases, a nonsingular multilevel
circulant preconditioner was proposed by Lei et al. [21], which efficiently accelerated
the convergence rate of the Krylov subspace method. In [8], Chou et al. illustrated
the efficiency of applying an approximate inverse preconditioner to the high dimen-
sional FDEs when Krylov subspace methods are employed. They also showed that
under certain conditions, the normalized preconditioned matrix is equal to the sum
of an identity matrix, a matrix with small norm, and a matrix with low rank, such
that the preconditioned Krylov subspace method converges superlinearly.

In this paper, we focus on establishing a fast numerical method and investigating
the unconditional stability and convergence for solving the TDRFDEs (1.1)-(1.3).
We first transform TDRFDEs (1.1)-(1.3) into multi-term time-space FDEs based
on the composite trapezoid formula. Then we apply the interpolation approxima-
tion, as introduced by Gao et al. in [9], to approximate the time derivatives of the
multi-term time-space FDEs at a special point. The global second-order numerical
accuracy in time is independent to the order of fractional derivatives. To gather
numerical solutions with high-order accuracy in space, the fractional centred dif-
ference formula [37] is used to discrete the space Riesz derivative. Therefore we
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develop a new difference scheme which converges with the second-order accuracy in
time, space and distributed-order. On the other hand, by taking advantage of the
Toeplitz structure of the resultant linear systems, we adopt the Krylov subspace
method with efficient circulant preconditioners. It also proves that the eigenvalues
of the preconditioned matrices are clustered around 1, and the convergence rate of
our proposed iterative method is superlinear.

The rest of the paper is arranged as follows. In Section 2, we study the T-
DRFDEs in the 1D case and present its corresponding difference scheme. The
uniqueness, unconditional stability and convergence of the difference method are
proved. Meanwhile, we design a preconditioned Krylov subspace method to solve
the resultant Toeplitz linear system. In Section 3, the 2D TDRFDEs is discussed.
We demonstrate that the difference scheme is uniquely solvable, unconditionally
stable and convergent with the second order. We also adopt the preconditioned
Krylov subspace method with suitable circulant preconditioners to handle the re-
sulting system. Numerical experiments are carried out in Section 4 to illustrate the
efficiency of our numerical approaches. Finally, the paper closes with conclusions
and remarks in Section 5.

2. 1D problem

Consider the following 1D TDRFDEs:∫ 1

0

ω(α)C0 D
α
t u(x, t)dα = K

∂βu(x, t)

∂|x|β
+ f(x, t), 0 < x < L, 0 < t ≤ T, (2.1)

u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T, (2.2)

u(x, 0) = φ(x), 0 < x < L. (2.3)

In this section, we show that the discretizations for the distributed-order inte-
gral term of (2.1) by the composite trapezoid formula lead to multi-term time-space
FDE. We propose the second-order difference scheme based on the interpolation ap-
proximation on a special point to solve the multi-term equations. We also prove
that the difference scheme is uniquely solvable, unconditionally stable and con-
vergent with second-order accuracy in time, space and distributed-order integral
variables. Moreover, we propose an efficient implementation based on Krylov sub-
space solver with suitable circulant preconditioners to solve the resultant Toeplitz
linear system.

2.1. Numerical discretization of the (2.1)-(2.3)

We first discretize the integral interval [0, 1] by the grid 0 = α0 < α1 < · · · <
α2J = 1 with ∆α = 1

2J and αl = l∆α, l = 0, 1, 2, · · · , 2J . The following lemma
gives a complete description of the numerical approximation to the distributed-order
integral term.

Lemma 2.1 ( The composite trapezoid formula [10, 11]). Let z(α) ∈ C2([0, 1]),
then we have ∫ 1

0

z(α)dα = ∆α

2J∑
l=0

dlz(αl)−
∆α2

12
z(2)(η), η ∈ (0, 1),
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where

dl =

{
1
2 , l = 0, 2J,

1, 1 ≤ l ≤ 2J − 1.

Considering the left side of (2.1), let z(α) = ω(α)C0 D
α
t u(x, t) and using Lemma

2.1, we can obtain∫ 1

0

ω(α)C0 D
α
t u(x, t)dα = ∆α

2J∑
r=0

drω(αr)
C
0 D

αr
t u(x, t) +O(∆α2). (2.4)

Let m = 2J, λr = drω(αr)∆α. The problem (2.1)-(2.3) is now converted into
the following multi-term time-space FDEs:

m∑
r=0

λr
C
0 D

αr
t u(x, t) = K

∂βu(x, t)

∂|x|β
+ f(x, t), 0 < x < L, 0 < t ≤ T, (2.5)

u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T, (2.6)

u(x, 0) = φ(x), 0 < x < L. (2.7)

Next, we discrete the domain [0, L] × [0, T ] with xi = ih (0 ≤ i ≤ M) and
tn = nτ (0 ≤ n ≤ N), where h = L

M and τ = T
N are space and time step sizes

respectively. Then we introduce the following preliminary lemma:

Lemma 2.2. Suppose

F (σ) =

m∑
r=0

λr
Γ(3− αr)

σ1−αr
[
σ −

(
1− αr

2

)]
τ2−αr , σ ≥ 0.

Let a = min
0≤r≤m

{
1− αr

2

}
, b = max

0≤r≤m

{
1− αr

2

}
, we can obtain that the equation

F (σ) = 0 has a unique positive root σ∗ ∈ [a, b], where

a = 1− 1

2
max

0≤r≤m
{αr} = 1− αm

2
=

1

2
, b = 1− 1

2
min

0≤r≤m
{αr} = 1− α0

2
= 1.

Proof. The proof is quite similar to Lemma 2.1 in [9] and thererfore is omitted.

For convenience, we let σ = σ∗, which means that σ ∈ [ 1
2 , 1] satisfies F (σ) = 0.

Let tn−1+σ = (n − 1 + σ)τ , two lemmas are given below that will be useful in
the discretizations of the multi-term time-space FDEs later.

Lemma 2.3. Suppose u(t) ∈ C3([t0, tn]), consider the linear combination of multi-

term fractional derivatives
m∑
r=0

λr
C
0 D

αr
t u(t) at the point t = tn−1+σ, where λr (r =

0, 1, 2, · · · ,m) > 0, 0 ≤ α0 < α1 < · · · < αm ≤ 1 and at least one of αi’s
belongs to (0, 1). The second-order accurate interpolation approximation for the
m∑
r=0

λr
C
0 D

αr
t u(t) is as follows:

m∑
r=0

λr
C
0 D

αr
t u(tn−1+σ) =

n−1∑
k=0

ĉ
(n)
k [u(tn−k)− u(tn−k−1)] +O(τ3−αm),
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where

ĉ
(n)
k =

m∑
r=0

λr
τ−αr

Γ(2− αr)
c
(n,αr)
k ,

in which c
(n,αr)
0 = a

(αr)
0 , when n = 1;

For n ≥ 2, we have

c
(n,αr)
k =


a

(αr)
0 + b

(αr)
1 , k = 0,

a
(αr)
k + b

(αr)
k+1 − b

(αr)
k , 1 ≤ k ≤ n− 2,

a
(αr)
k − b(αr)

k , k = n− 1,

where

aαr0 = σ1−αr ; aαrl = (l + σ)1−αr − (l − 1 + σ)1−αr (l ≥ 1),

bαrl =
1

2− αr
[
(l + σ)2−αr − (l − 1 + σ)2−αr

]
− 1

2

[
(l + σ)1−αr + (l − 1 + σ)1−αr

]
.

In particular, when αr = 1, we have c
(n,αr)
0 = 1, c

(n,αr)
k = 0 (1 ≤ k ≤ n− 1); when

αr = 0, we have c
(n,αr)
0 = σ, c

(n,αr)
k = 1 (1 ≤ k ≤ n− 1).

Proof. For a rigorous proof of this lemma, the reader is referred to [9].

Lemma 2.4 ( [37]). Suppose that u(x) ∈ C5[0, L] satisfy the boundary condition
u(0) = u(L) = 0. The fractional centred difference formula for approximating the
Riesz derivatives when 1 < β ≤ 2 is as follows:

∂βu(xi)

∂|x|β
= −h−β

i∑
k=i−M

g
(β)
k u(xi−k) +O(h2),

where

g
(β)
k =

(−1)kΓ(β + 1)

Γ(β/2− k + 1)Γ(β/2 + k + 1)
.

Assume that u(x, t) ∈ C(5,3)([0, L] × [0, T ]) is a solution to the problem (2.1)-
(2.3). Consider the equation (2.5) at (xi, tn−1+σ), and we get

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) = K

∂βu(xi, tn−1+σ)

∂|x|β
+ f(xi, tn−1+σ), (2.8)

where 1 ≤ i ≤M − 1, 1 ≤ n ≤ N . For simplicity, we define

Uni = u(xi, tn), 0 ≤ i ≤M, 0 ≤ n ≤ N ;

fn−1+σ
i = f(xi, tn−1+σ), 0 ≤ i ≤M, 1 ≤ n ≤ N.

Using Lemma 2.3, we have

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) =

n−1∑
k=0

ĉ
(n)
k

(
Un−ki − Un−k−1

i

)
+O(τ3−αm). (2.9)
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By applying the second-order linear interpolation formula to the Riesz derivative
on the right side of equation (2.8), we obtain that

∂βu(xi, tn−1+σ)

∂|x|β
= σ

∂βu(xi, tn)

∂|x|β
+ (1− σ)

∂βu(xi, tn−1)

∂|x|β
+O(τ2). (2.10)

Furthermore, based on Lemma 2.4, we have

∂βu(xi, tn)

∂|x|β
= −h−β

i∑
k=i−M

g
(β)
k Uni−k +O(h2). (2.11)

Combine formulae (2.10) and (2.11), and we get

∂βu(xi, tn−1+σ)

∂|x|β
= −h−β

i∑
k=i−M

g
(β)
k

[
σUni−k + (1− σ)Un−1

i−k
]

+O(h2 + τ2). (2.12)

By substituting (2.9) and (2.12) into (2.8), we obtain

n−1∑
k=0

ĉ
(n)
k

(
Un−ki − Un−k−1

i

)
=−Kh−β

i∑
k=i−M

g
(β)
k

[
σUni−k + (1− σ)Un−1

i−k
]

+ fn−1+σ
i +Rni , (2.13)

where there exists a positive constant c1 such that

|Rni | ≤ c1
(
h2 + τ2 + ∆α2

)
, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N. (2.14)

Notice the initial-boundary conditions (2.6)-(2.7). We have

Un0 = 0, UnM = 0, 0 ≤ n ≤ N, (2.15)

U0
i = φ(xi), 1 ≤ i ≤M − 1. (2.16)

Suppose uki is the numerical approximation to u(xi, tk). By omitting the local
truncation error term Rni in (2.13) and replacing the exact solution Uni with uki
in (2.13), (2.15)-(2.16), we can construct the following difference scheme for the
(2.1)-(2.3):

n−1∑
k=0

ĉ
(n)
k

(
un−ki − un−k−1

i

)
= −Kh−β

i∑
k=i−M

g
(β)
k

[
σuni−k + (1− σ)un−1

i−k
]

+ fn−1+σ
i ,

1 ≤ i ≤M − 1, 1 ≤ n ≤ N, (2.17)

un0 = 0, unM = 0, 0 ≤ n ≤ N, (2.18)

u0
i = φ(xi), 1 ≤ i ≤M − 1. (2.19)

2.2. Solvability, stability and convergence analysis

In this subsection, we analyze the unique solvability, unconditional stability and
convergence of the difference scheme (2.17)-(2.19) obtained in Section 2.1. Mean-
while, we show that the convergence orders of the proposed difference scheme are
two in space, time and distributed-order integral.
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We define Vh = {v | v = (v0, v1, · · · , vM−1, vM )T , v0 = 0, vM = 0}. For all
v, w ∈ Vh, the discrete inner product and the corresponding discrete L2-norm are
defined as follows:

(v, w) = h

M−1∑
i=1

viwi, and ‖v‖ =
√

(v, v).

Before introducing the properties on the solvability, unconditional stability and
convergence, several useful lemmas are prepared below.

Lemma 2.5 ( [37]). Let 1 < β ≤ 2 and take g
(β)
k as defined in Lemma 2.4. We

have 
g

(β)
0 = Γ(β+1)

Γ2(β/2+1) ≥ 0, g
(β)
−k = g

(β)
k ≤ 0, k = 1, 2, · · · ,

∞∑
k=−∞

g
(β)
k = 0, −

i∑
k=−M+i
k 6=0

g
(β)
k ≤ g(β)

0 , 1 ≤ i ≤M − 1,

g
(β)
k =

(
1− β+1

β/2+k

)
g

(β)
k−1, k ≥ 1.

Lemma 2.6 ( [9]). Let ĉ
(n)
k =

m∑
r=0

λr
τ−αr

Γ(2−αr)c
(n,αr)
k , k = 0, 1, · · · , n−1, as is defined

in Lemma 2.3, it holds

ĉ
(n)
0 > ĉ

(n)
1 > · · · > ĉ

(n)
n−2 > ĉ

(n)
n−1 >

m∑
r=0

λr
τ−αr

Γ(2− αr)
· 1− αr

2
(n− 1 + σ)−αr .

Lemma 2.7 ( [1]). Let V represent the inner product space and (·, ·) denote the
inner product with the induced norm ‖ · ‖. For v0, v1, · · · , vn ∈ V , when n ≥ 1 we
have

n−1∑
k=0

ĉ
(n)
k

(
vn−k − vn−k−1, σvn + (1− σ)vn−1

)
≥ 1

2

n−1∑
k=0

ĉ
(n)
k

(
‖vn−k‖2 − ‖vn−k−1‖2

)
.

Lemma 2.8 ( [35]). For 1 < β ≤ 2 and any v ∈ Vh, it holds that

−h−βh
M−1∑
i=1

(
i∑

k=i−M

g
(β)
k vi−k

)
vi ≤ −c(β)

∗ (2L)−βh

M−1∑
i=1

v2
i ,

where c
(β)
∗ = 2

β rβ , with rβ = e−2 (4−β)(2−β)β
(6+β)(4+β)(2+β) ·

Γ(β+1)
Γ2(β/2+1)

(
3 + β

2

)β+1

.

We first consider the unique solvability of the numerical method (2.17)-(2.19).

Theorem 2.1. The difference scheme (2.17)-(2.19) is uniquely solvable.

Proof. Let un = (un0 , u
n
1 , u

n
2 , · · · , unM−1, u

n
M )T . According to (2.18) and (2.19),

the value of u0 is determined. Now suppose that {uk | 0 ≤ k ≤ n − 1} has been
determined. According to (2.17) and (2.18), we get a linear equation system with
respect to un. Then we only need to prove that the corresponding homogeneous
linear system

ĉ
(n)
0 uni = −Kσh−β

i∑
k=i−M

g
(β)
k uni−k, 1 ≤ i ≤M − 1, (2.20)
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un0 = 0, unM = 0 (2.21)

only has solution of 0.
We first rewrite the equation (2.20) as follows:[
ĉ
(n)
0 +Kσh−βg

(β)
0

]
uni = Kσh−β

i∑
k=i−M
k 6=0

(
−g(β)

k

)
uni−k, 1 ≤ i ≤M − 1. (2.22)

Let ‖un‖∞ = |unin |, where in ∈ {1, 2, · · · ,M − 1}. Let us consider equation (2.22)
with i = in and take absolute values on both sides of the equation. Based on Lemma
2.5 and the fact that the coefficients K > 0, it can be seen that[

ĉ
(n)
0 +Kσh−βg

(β)
0

]
‖un‖∞ ≤Kσh−β

in∑
k=in−M
k 6=0

(
−g(β)

k

)
|unin−k|

≤Kσh−β
in∑

k=in−M
k 6=0

(
−g(β)

k

)
‖un‖∞

≤Kσh−βg(β)
0 ‖un‖∞.

Therefore, ‖un‖∞ = 0 is derived, which indicates that the homogeneous linear
equations (2.20)-(2.21) have a single solution of 0.

We are now going to prove the unconditional stability of the difference scheme
(2.17)-(2.19) with respect to the initial value and the inhomogeneous term f(x, t).
The correlation result is shown in the following theorem.

Theorem 2.2. Let {uni | 0 ≤ i ≤M, 0 ≤ n ≤ N} be the solution of the difference
scheme (2.17)-(2.19). We have

‖un‖2 ≤ ‖u0‖2 +
(2L)β

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

max
1≤l≤n

‖f l−1+σ‖2, 1 ≤ n ≤ N,

where ‖f l−1+σ‖2 = h
M−1∑
i=1

(
f l−1+σ
i

)2
.

Proof. Multiplying (2.17) by h(σuni + (1− σ)un−1
i ) and summing up with i from

1 to M − 1, we get

n−1∑
k=0

ĉ
(n)
k h

M−1∑
i=1

(
un−ki − un−k−1

i

) [
σuni + (1− σ)un−1

i

]
=−Kh−βh

M−1∑
i=1

i∑
k=i−M

g
(β)
k

[
σuni−k + (1− σ)un−1

i−k
] [
σuni + (1− σ)un−1

i

]
+ h

M−1∑
i=1

fn−1+σ
i

[
σuni + (1− σ)un−1

i

]
, 1 ≤ n ≤ N. (2.23)

According to Lemma 2.7, it follows that

n−1∑
k=0

ĉ
(n)
k h

M−1∑
i=1

(
un−ki − un−k−1

i

) [
σuni + (1− σ)un−1

i

]
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=

n−1∑
k=0

ĉ
(n)
k

(
un−k − un−k−1, σun + (1− σ)un−1

)
≥1

2

n−1∑
k=0

ĉ
(n)
k

(
‖un−k‖2 − ‖un−k−1‖2

)
. (2.24)

Using Lemma 2.8, we obtain

−Kh−βh
M−1∑
i=1

i∑
k=i−M

g
(β)
k

[
σuni−k + (1− σ)un−1

i−k
] [
σuni + (1− σ)un−1

i

]
≤−Kc(β)

∗ (2L)−β‖σun + (1− σ)un−1‖2. (2.25)

In addition, by exploiting Cauchy-Schwarz inequality, we can get

h

M−1∑
i=1

fn−1+σ
i

[
σuni + (1− σ)un−1

i

]
≤‖fn−1+σ‖ · ‖σun + (1− σ)un−1‖

≤Kc(β)
∗ (2L)−β‖σun + (1− σ)un−1‖2 +

(2L)β

4Kc
(β)
∗
‖fn−1+σ‖2. (2.26)

By substituting (2.24)-(2.26) into (2.23), we have

1

2

n−1∑
k=0

ĉ
(n)
k

(
‖un−k‖2 − ‖un−k−1‖2

)
≤ (2L)β

4Kc
(β)
∗
‖fn−1+σ‖2, 1 ≤ n ≤ N. (2.27)

With the use of Lemma 2.6, we get

ĉ
(n)
n−1 ≥

m∑
r=0

λr
τ−αr

Γ(2− αr)
· 1− αr

2
(n− 1 + σ)−αr ≥ 1

2

m∑
r=0

λr
TαrΓ(1− αr)

. (2.28)

Combine (2.27) and (2.28), and we arrives at the following inequality:

ĉ
(n)
0 ‖un‖2 ≤

n−1∑
k=1

(
ĉ
(n)
k−1 − ĉ

(n)
k

)
‖un−k‖2 + ĉ

(n)
n−1‖u0‖2 +

(2L)β

2Kc
(β)
∗
‖ fn−1+σ ‖2

≤
n−1∑
k=1

(
ĉ
(n)
k−1 − ĉ

(n)
k

)
‖un−k‖2 + ĉ

(n)
n−1

‖u0‖2 +
(2L)β‖fn−1+σ‖2

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

 ,

where 1 ≤ n ≤ N . By applying the mathematical induction method to the above
inequality, we can get

‖un‖2 ≤ ‖u0‖2 +
(2L)β

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

max
1≤l≤n

‖f l−1+σ‖2, 1 ≤ n ≤ N.

This completes the proof.
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We have established the unconditional stability of the difference scheme (2.17)-
(2.19), and now we further show its convergence.

Suppose that {Uni | 0 ≤ i ≤M, 0 ≤ n ≤ N} is the exact solution of the system
(2.1)-(2.3) and {uni | 0 ≤ i ≤ M, 0 ≤ n ≤ N} is the numerical solution of the
difference scheme (2.17)-(2.19). Let eni = Uni − uni (0 ≤ i ≤M, 0 ≤ n ≤ N).

By subtracting (2.17)-(2.19) from (2.13), (2.15)-(2.16), respectively, we obtain
the system of error equations as follows:

n−1∑
k=0

ĉ
(n)
k

(
en−ki − en−k−1

i

)
= −Kh−β

i∑
k=i−M

g
(β)
k

[
σeni−k + (1− σ)en−1

i−k
]

+Rni ,

1 ≤ i ≤M − 1, 1 ≤ n ≤ N,
en0 = 0, enM = 0, 0 ≤ n ≤ N,
e0
i = 0, 1 ≤ i ≤M − 1.

By applying the conclusion of Theorem 2.2 and noticing (2.14), we have

‖en‖2 ≤
(2L)β max

1≤l≤n
‖Rl‖2

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

≤ (2L)β

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

[
c1
(
h2 + τ2 + ∆α2

)]2
L,

where 1 ≤ n ≤ N . Extract the square root on both sides of the equation above, we
get

‖en‖ ≤ c1

√√√√√ 2βLβ+1

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

(
h2 + τ2 + ∆α2

)
, 1 ≤ n ≤ N.

Therefore, we can get the following theorem.

Theorem 2.3. Suppose that the continuous problem (2.1)-(2.3) has a smooth solu-
tion u(x, t) ∈ C(5,3)(Ω× [0, T ]), and let uni be the solution of the difference scheme
(2.17)-(2.19). It holds that

‖en‖ ≤ c1

√√√√√ 2βLβ+1

Kc
(β)
∗

m∑
r=0

λr
TαrΓ(1−αr)

(
h2 + τ2 + ∆α2

)
, 1 ≤ n ≤ N.

2.3. Fast solution techniques with circulant preconditioner

We rewrite the proposed implicit difference scheme (2.17) as the following matrix
form at the time level n:

Anun = bn−1, n = 1, 2, . . . , N, (2.29)

where

An = ĉ
(n)
0 I + σKh−βG, (2.30)
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and

bn−1 = −(1− σ)Kh−βGun−1 +

n−1∑
k=1

(ĉ
(n)
k−1 − ĉ

(n)
k )un−k + ĉ

(n)
n−1u

0 + fn−1+σ.

Here I is the identity matrix of order M − 1 and

G =



g
(β)
0 g

(β)
−1 g

(β)
−2 · · · g

(β)
3−M g

(β)
2−M

g
(β)
1 g

(β)
0 g

(β)
−1 · · · g

(β)
4−M g

(β)
3−M

g
(β)
2 g

(β)
1 g

(β)
0 · · · g(β)

5−M g
(β)
4−M

...
...

...
. . .

...
...

g
(β)
M−3 g

(β)
M−4 g

(β)
M−5 · · · g

(β)
0 g

(β)
−1

g
(β)
M−2 g

(β)
M−3 g

(β)
M−4 · · · g

(β)
1 g

(β)
0


. (2.31)

It is obvious that G is a symmetric Toeplitz matrix (see [22]). Therefore, it can
be stored with only M − 1 entries and the FFT can be used to carry out the
matrix-vector product in only O((M − 1) log(M − 1)) operations.

The following lemma guarantees the invertibility of the matrix An defined in
(2.30).

Lemma 2.9. The coefficient matrix

An = ĉ
(n)
0 I + σKh−βG

of the linear system (2.29) is symmetric positive definite.

Proof. Let anij be the (i, j) entry of the An. We notice Lemma 2.5 and ĉ
(n)
0 > 0,

thus

|anii| −
M−1∑
j=1,j 6=i

|anij | =(ĉ
(n)
0 + σKh−βg

(β)
0 )− σKh−β(

i−1∑
j=−M+i+1,j 6=0

|g(β)
j |)

=ĉ
(n)
0 + σKh−β

i−1∑
j=−M+i+1

g
(β)
j

>ĉ
(n)
0 > 0.

This implies that An is a strictly diagonally dominant matrix. According to Lemma
2.5, it is easy to prove that An is symmetric and all of its main diagonal elements
are positive. Hence, all its eigenvalues are positive.

It is well-known that the conjugate gradient (CG) method is a popular and
effective Krylov subspace method [22] for solving symmetric positive systems with
Toeplitz coefficient matrix. Nevertheless, the drawback of the CG method is its slow
convergence when the eigenvalues of the coefficient matrix An are not clustered [6].
To overtake this shortcoming, we use the preconditioned CG method (PCG) to
solve such linear systems [22].

We propose a circulant preconditioner, which is generated from the famous R.
Chan’s circulant preconditioner [5] to solve the Toeplitz linear system (2.29). For
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a Toeplitz matrix Gn ∈ Cn×n with form of (2.31), the R. Chan’s circulant pre-
conditioner Rn makes use of all the entries [5]. Its entries rij = ri−j are given
by

rk =


g0, k = 0,

gk + gk−n, 0 < k < n

rk+n, 0 < −k < n.

Then the PCG method is employed to solve the following preconditioned system

(Cn)−1Anun = (Cn)−1bn−1, n = 1, 2, . . . , N,

and the R. Chan’s-based circulant preconditioner Cn takes the following form

Cn = ĉ
(n)
0 I + σKh−βc(G).

More precisely, the first column of c(G) is given by

g
(β)
0

g
(β)
1 + g

(β)
2−M

g
(β)
2 + g

(β)
3−M

...

...

g
(β)
M−3 + g

(β)
−2

g
(β)
M−2 + g

(β)
−1



.

Below we discuss the basic properties of the circulant preconditioner Cn.

Lemma 2.10. The circulant preconditioner

Cn = ĉ
(n)
0 I + σKh−βc(G)

is a symmetric positive definite matrix.

Proof. As similar to Lemma 2.9, suppose cnij be the (i, j) entry of Cn. Based on

Lemma 2.5 and ĉ
(n)
0 > 0 we get

|cnii| −
M−1∑
j=1,j 6=i

|cnij | =(ĉ
(n)
0 + σKh−βg

(β)
0 )− σKh−β(

M−2∑
j=1

|g(β)
j + g

(β)
−j |)

=ĉ
(n)
0 + σKh−β

M−2∑
j=2−M

g
(β)
j

>ĉ
(n)
0 > 0,
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which implies that Cn is a strictly diagonally dominant matrix. From Lemma 2.5,
we can easily know that the main diagonal elements of Cn are positive and Cn is
symmetric. Therefore, Cn is a symmetric positive definite matrix.

Lemma 2.10 suggests that Cn is invertible. In addition, the eigenvalue distribu-
tions of preconditioned matrices (Cn)−1An are theoretically proven to be clustered
around 1 [5]. The convergence rate of PCG is superlinear [6]. We will numerical-
ly demonstrate in Section 4 that the circulant preconditioner has good clustering
eigenvalues. It is both numerically and theoretically guaranteed that the compu-
tational cost per iteration of PCG is O((M − 1) log(M − 1)) and the total cost at
each time step is O((M − 1) log(M − 1)).

3. 2D problem

Consider the following 2D TDRFDEs:

D
ω(α)
t u(x, y, t) = K1

∂βu(x, y, t)

∂|x|β
+K2

∂γu(x, y, t)

∂|y|γ
+ f(x, y, t),

(x, y) ∈ Ω, 0 < t ≤ T, (3.1)

u(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ T, (3.2)

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω, (3.3)

where Ω = (0, L1)×(0, L2), ∂Ω is the boundary of Ω, f(x, y, t) and φ(x, y) are given
functions. Especially, φ(x, y) = 0 holds when (x, y) ∈ ∂Ω.

In this section, we can directly extend the idea for solving the 1D problem (2.1)-
(2.3) to handle the 2D problem (3.1)-(3.3). We propose a second-order difference
scheme based on the interpolation approximation on a special point to solve the 2D
TDRFDEs. The unique solvability, unconditional stability and convergence of the
proposed difference scheme are also discussed. Furthermore, a multilevel circulant
preconditioner is proposed to accelerate the convergence rate of the Krylov subspace
method.

3.1. Numerical discretization for (3.1)-(3.3)

To derive the difference scheme of (3.1)-(3.3), we first divide the interval [0, L1] into
M1-subintervals with h1 = L1

M1
and xi = ih1 (0 ≤ i ≤ M1), and divide the interval

[0, L2] into M2-subintervals with h2 = L2

M2
and yj = jh2 (0 ≤ j ≤M2).

Denote ω = {(i, j) | 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1}, ∂ω = {(i, j) | (xi, yj) ∈
∂Ω}, ω̄ = ω

⋃
∂ω. We define

Unij = u(xi, yj , tn), (i, j) ∈ ω̄, 0 ≤ n ≤ N ;

fn−1+σ
ij = f(xi, yj , tn−1+σ), (i, j) ∈ ω̄, 1 ≤ n ≤ N.

Suppose u(x, y, t)∈C(5,5,3)(Ω×[0, T ]). Considering (3.1) at the point (xi, yj , tn−1+σ),
we have

D
ω(α)
t u(xi, yj , tn−1+σ) = K1

∂βu(xi, yj , tn−1+σ)

∂|x|β
+K2

∂γu(xi, yj , tn−1+σ)

∂|y|γ
+fn−1+σ

ij ,

(3.4)
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where (i, j) ∈ ω, 1 ≤ n ≤ N . Using Lemma 2.1 and Lemma 2.3, we get

D
ω(α)
t u(xi, yj , tn−1+σ) =

n−1∑
k=0

ĉ
(n)
k

(
Un−kij − Un−k−1

ij

)
+O

(
τ3−αm + ∆α2

)
. (3.5)

Moreover, by applying the second-order linear interpolation formula to the Riesz
derivative on the right side of (3.4) and using Lemma 2.4, we obtain

∂βu(xi, yj , tn−1+σ)

∂|x|β
= −h−β1

i∑
k=i−M1

g
(β)
k

[
σUni−k,j + (1− σ)Un−1

i−k,j

]
+O(h2

1 + τ2),

(3.6)

and

∂γu(xi, yj , tn−1+σ)

∂|y|γ
= −h−γ2

j∑
k=j−M2

g
(γ)
k

[
σUni,j−k + (1− σ)Un−1

i,j−k

]
+O(h2

2 + τ2).

(3.7)

By substituting (3.5)-(3.7) into (3.4), we can get

n−1∑
k=0

ĉ
(n)
k

(
Un−kij − Un−k−1

ij

)
=−K1h

−β
1

i∑
k=i−M1

g
(β)
k

[
σUni−k,j + (1− σ)Un−1

i−k,j

]

−K2h
−γ
2

j∑
k=j−M2

g
(γ)
k

[
σUni,j−k + (1− σ)Un−1

i,j−k

]
+ fn−1+σ

ij + Snij , (i, j) ∈ ω, 1 ≤ n ≤ N, (3.8)

where there exists a positive constant c2 such that

| Snij |≤ c2
(
h2

1 + h2
2 + τ2 + ∆α2

)
, (i, j) ∈ ω, 1 ≤ n ≤ N. (3.9)

Notice the initial and boundary conditions (3.2)-(3.3), and we have

Unij = 0, (i, j) ∈ ∂ω, 0 ≤ n ≤ N, (3.10)

U0
ij = φ(xi, yj), (i, j) ∈ ω. (3.11)

Thus, by neglecting the small term Snij in (3.8) and replacing the exact solution

Unij with the numerical ones ukij in (3.8) and (3.10)-(3.11), we can get the difference
scheme for solving (3.1)-(3.3) as follows:

n−1∑
k=0

ĉ
(n)
k

(
un−kij − un−k−1

ij

)
= −K1h

−β
1

i∑
k=i−M1

g
(β)
k

[
σuni−k,j + (1− σ)un−1

i−k,j

]

−K2h
−γ
2

j∑
k=j−M2

g
(γ)
k

[
σuni,j−k + (1− σ)un−1

i,j−k

]
+ fn−1+σ

ij , (i, j) ∈ ω, 1 ≤ n ≤ N, (3.12)

unij = 0, (i, j) ∈ ∂ω, 0 ≤ n ≤ N, (3.13)

u0
ij = φ(xi, yj), (i, j) ∈ ω. (3.14)



1374 H. Jian, T. Huang, X. Zhao & Y. Zhao

3.2. Solvability, stability and convergence analysis

In this subsection, we show that the difference scheme (3.12)-(3.14) is uniquely
solvable, unconditionally stable and convergent with the order of O(h2

1 + h2
2 + τ2 +

∆α2).
Let Vh = {v | v = {vij | (i, j) ∈ ω̄}}, V̂h = {v | v ∈ Vh; vij = 0 when (i, j) ∈ ∂ω}.

For any v, w ∈ V̂h, the discrete inner product and the corresponding discrete L2-
norms are defined as follows:

(v, w) = h1h2

M1−1∑
i=1

M2−1∑
j=1

vijwij , and ‖v‖ =
√

(v, v).

We now work towards showing the unique solvability of difference scheme (3.12)-
(3.14). The desired result is reported by the following theorem.

Theorem 3.1. The difference scheme (3.12)-(3.14) is uniquely solvable.

Proof. Let un = {unij | (i, j) ∈ ω̄}. According to (3.13)-(3.14), the value of u0

is determined. Now suppose that {uk | 0 ≤ k ≤ n − 1} has been determined.
According to (3.12) and (3.13), we get a linear equation system with respect to un.
Then we only need to prove that the corresponding homogeneous linear system

ĉ
(n)
0 unij = −K1σh

−β
1

i∑
k=i−M1

g
(β)
k uni−k,j −K2σh

−γ
2

j∑
k=j−M2

g
(γ)
k uni,j−k, (i, j) ∈ ω,

(3.15)

unij = 0, (i, j) ∈ ∂ω (3.16)

only has solution of 0.
We first rewrite the equation (3.15) as follows:[

ĉ
(n)
0 +K1σh

−β
1 g

(β)
0 +K2σh

−γ
2 g

(γ)
0

]
unij

=K1σh
−β
1

i∑
k=i−M1
k 6=0

(
−g(β)

k

)
uni−k,j +K2σh

−γ
2

j∑
k=j−M2
k 6=0

(
−g(γ)

k

)
uni,j−k. (3.17)

Let ‖un‖∞ =| unin,jn |, where (in, jn) ∈ ω. We consider the equation (3.17) with
(i, j) = (in, jn) and take absolute values on both sides of the equation. Noticing
that the coefficients K1 > 0, K2 > 0, based on Lemma 2.5 and using triangle
inequality, we have[

ĉ
(n)
0 +K1σh

−β
1 g

(β)
0 +K2σh

−γ
2 g

(γ)
0

]
‖un‖∞

=K1σh
−β
1

in∑
k=in−M1

k 6=0

(
−g(β)

k

)
|unin−k,jn |+K2σh

−γ
2

jn∑
k=jn−M2

k 6=0

(
−g(γ)

k

)
|unin,jn−k|

≤
[
K1σh

−β
1 g

(β)
0 +K2σh

−γ
2 g

(γ)
0

]
‖un‖∞.

Therefore, we get ‖un‖∞ = 0, which indicates that the homogeneous linear equa-
tions (3.15)-(3.16) only have solution 0. According to the mathematical induction,
the difference scheme (3.12)-(3.14) is uniquely solvable.
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We will now discuss the unconditional stability of the difference scheme (3.12)-
(3.14).

Theorem 3.2. Let {unij | (i, j) ∈ ω̄, 0 ≤ n ≤ N} be the solution of the difference
scheme (3.12)-(3.14). We have

‖un‖2≤‖u0‖2+
1

4

[
(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
1

m∑
r=0

λr
TαrΓ(1−αr)

max
1≤l≤n

‖f l−1+σ‖2, 1≤n≤N,

where ‖f l−1+σ‖2 = h1h2

M1−1∑
i=1

M2−1∑
j=1

(
f l−1+σ
ij

)2
.

Proof. By multiplying (3.12) by h1h2[σunij + (1− σ)un−1
ij ] and summing up (i, j)

with respect to ω, we get

n−1∑
k=0

ĉ
(n)
k h1h2

M1−1∑
i=1

M2−1∑
j=1

(
un−kij − un−k−1

ij

) [
σunij + (1− σ)un−1

ij

]
=−K1h2

M2−1∑
j=1

{
h−β1 h1

M1−1∑
i=1

i∑
k=i−M1

g
(β)
k

[
σuni−k,j+(1−σ)un−1

i−k,j
] [
σunij+(1−σ)un−1

ij

] }
−K2h1

M1−1∑
i=1

{
h−γ2 h2

M2−1∑
j=1

j∑
k=j−M2

g
(γ)
k

[
σuni,j−k+(1−σ)un−1

i,j−k
] [
σunij+(1−σ)un−1

ij

] }
+ h1h2

M1−1∑
i=1

M2−1∑
j=1

fn−1+σ
ij

[
σunij + (1− σ)un−1

ij

]
. (3.18)

According to Lemma 2.7, it follows that

n−1∑
k=0

ĉ
(n)
k h1h2

M1−1∑
i=1

M2−1∑
j=1

(
un−kij − un−k−1

ij

) [
σunij + (1− σ)un−1

ij

]
≥1

2

n−1∑
k=0

ĉ
(n)
k

(
‖un−k‖2 − ‖un−k−1‖2

)
. (3.19)

Using Lemma 2.8, we obtain

− h−β1 h1

M1−1∑
i=1

i∑
k=i−M1

g
(β)
k

[
σuni−k,j + (1− σ)un−1

i−k,j

] [
σunij + (1− σ)un−1

ij

]
≤− c(β)

∗ (2L1)−βh1

M1−1∑
i=1

[
σunij + (1− σ)un−1

ij

]2
(3.20)

and

− h−γ2 h2

M2−1∑
j=1

j∑
k=j−M2

g
(γ)
k

[
σuni,j−k + (1− σ)un−1

i,j−k

] [
σunij + (1− σ)un−1

ij

]
≤− c(γ)

∗ (2L2)−γh2

M2−1∑
j=1

[
σunij + (1− σ)un−1

ij

]2
. (3.21)
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By substituting (3.19)-(3.21) into (3.18), we get

1

2

n−1∑
k=0

ĉ
(n)
k

(
‖un−k‖2 − ‖un−k−1‖2

)
≤−K1c

(β)
∗ (2L1)−βh1h2

M1−1∑
i=1

M2−1∑
j=1

[
σunij + (1− σ)un−1

ij

]2
−K2c

(γ)
∗ (2L2)−γh1h2

M1−1∑
i=1

M2−1∑
j=1

[
σunij + (1− σ)un−1

ij

]2
+ h1h2

M1−1∑
i=1

M2−1∑
j=1

fn−1+σ
ij

[
σunij + (1− σ)un−1

ij

]
≤−K1c

(β)
∗ (2L1)−β‖σun + (1− σ)un−1‖2

−K2c
(γ)
∗ (2L2)−γ‖σun + (1− σ)un−1‖2

+ ‖fn−1+σ‖ · ‖σun + (1− σ)un−1‖

≤ 1

16

[
(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
‖fn−1+σ‖2, 1 ≤ n ≤ N. (3.22)

With the use of Lemma 2.6, we have

ĉ
(n)
n−1 ≥

m∑
r=0

λr
τ−αr

Γ(2− αr)
· 1− αr

2
(n− 1 + σ)−αr ≥ 1

2

m∑
r=0

λr
TαrΓ(1− αr)

. (3.23)

By combining (3.22) and (3.23), we arrive at the following inequality:

ĉ
(n)
0 ‖un‖2

≤
n−1∑
k=1

(
ĉ
(n)
k−1 − ĉ

(n)
k

)
‖un−k‖2 + ĉ

(n)
n−1‖u0‖2 +

[
(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
‖fn−1+σ‖2

8

≤
n−1∑
k=1

(
ĉ
(n)
k−1 − ĉ

(n)
k

)
‖un−k‖2

+ ĉ
(n)
n−1

‖u0‖2 +
1

4

[
(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
1

m∑
r=0

λr
TαrΓ(1−αr)

‖fn−1+σ‖2

 ,

where 1 ≤ n ≤ N . Applying the mathematical induction method to the above
inequality, we can get the conclusion of Theorem 3.2. This completes the proof.

Now we will prove that the proposed difference scheme (3.12)-(3.14) is uncondi-
tionally convergent in L2-norm with the quadratic-order accuracy in all variables.

Suppose that {Unij | (i, j) ∈ ω̄, 0 ≤ n ≤ N} is the exact solution of the system
(3.1)-(3.3) and {unij | (i, j) ∈ ω̄, 0 ≤ n ≤ N} is the numerical solution of the
difference scheme (3.12)-(3.14). Let enij = Unij − unij ((i, j) ∈ ω̄, 0 ≤ n ≤ N).
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By subtracting (3.12)-(3.14) from (3.8), (3.10)-(3.11), respectively, we can get
the following error equations:

n−1∑
k=0

ĉ
(n)
k

(
en−kij − en−k−1

ij

)
= −K1h

−β
1

i∑
k=i−M1

g
(β)
k

[
σeni−k,j + (1− σ)en−1

i−k,j

]

−K2h
−γ
2

j∑
k=j−M2

g
(γ)
k

[
σeni,j−k + (1− σ)en−1

i,j−k

]
+ Snij , (i, j) ∈ ω, 1 ≤ n ≤ N,

enij = 0, (i, j) ∈ ∂ω, 0 ≤ n ≤ N,
e0
ij = 0, (i, j) ∈ ω.

Applying the conclusion of Theorem 3.2 and noticing (3.9), we have

‖en‖2 ≤1

4

[
(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
1

m∑
r=0

λr
TαrΓ(1−αr)

max
1≤l≤n

‖Sl‖2

≤1

4

[
(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
1

m∑
r=0

λr
TαrΓ(1−αr)

[
c2
(
h2

1 + h2
2 + τ2 + ∆α2

)]2
L1L2.

By extracting the square root on both sides of the above equation, we acquire

‖en‖ ≤ c2
2

√√√√√
[

(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
L1L2

m∑
r=0

λr
TαrΓ(1−αr)

(
h2

1 + h2
2 + τ2 + ∆α2

)
,

where 1 ≤ n ≤ N . Now, the following result can be arrived.

Theorem 3.3. Suppose that the continuous problem (3.1)-(3.3) has a smooth so-
lution u(x, y, t) ∈ C(5,5,3)(Ω × [0, T ]), and let unij be the solution of the difference
scheme (3.12)-(3.14). it holds that

‖en‖ ≤ c2
2

√√√√√
[

(2L1)β

K1c
(β)
∗

+
(2L2)γ

K2c
(γ)
∗

]
L1L2

m∑
r=0

λr
TαrΓ(1−αr)

(
h2

1 + h2
2 + τ2 + ∆α2

)
, 1≤n≤N.

3.3. Fast solution techniques with circulant preconditioner

Let

un = (un1,1, · · · , unM1−1,1, u
n
1,2, · · · , unM1−1,2, u

n
1,M2−1, · · · , unM1−1,M2−1)T ,

fn = (fn1,1, · · · , fnM1−1,1, f
n
1,2, · · · , fnM1−1,2, f

n
1,M2−1, · · · , fnM1−1,M2−1)T .

Then the implicit difference scheme (3.12) can be rewritten in the matrix form

Mnun = pn−1, n = 1, 2, . . . , N, (3.24)
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in which
Mn = ĉ

(n)
0 I3 + σK1h

−β
1 I2 ⊗Gβ + σK2h

−γ
2 Gγ ⊗ I1, (3.25)

and

pn−1 =− (1− σ)[K1h
−β
1 I2 ⊗Gβ +K2h

−γ
2 Gγ ⊗ I1]un−1

+

n−1∑
k=1

(ĉ
(n)
k−1 − ĉ

(n)
k )un−k + ĉ

(n)
n−1u

0 + fn−1+σ,

where ⊗ denotes the Kronecker product, I1, I2 and I3 are identity matrices with
orders of M1−1, M2−1 and (M1−1)(M2−1), respectively. Gβ ∈ R(M1−1)×(M1−1)

and Gγ ∈ R(M2−1)×(M2−1) are Toeplitz matrices and have forms as (2.31).
The following lemma guarantees the invertibility of the coefficient matrix Mn.

Lemma 3.1. The coefficient matrix

Mn = ĉ
(n)
0 I3 + σK1h

−β
1 I2 ⊗Gβ + σK2h

−γ
2 Gγ ⊗ I1

of the linear system (3.24) is symmetric positive definite.

Proof. According to Lemma 2.5 and the definitions of the matrices Gβ and Gγ ,
one can prove that Gβ and Gγ are symmetric positive definite matrices. Therefore,
the matrices I2 ⊗Gβ and Gγ ⊗ I1 are also symmetric positive definite. Given that

ĉ
(n)
0 > 0 and K > 0, it is easy to show that the matrix Mn, which is defined by

(3.25), is also a symmetric positive definite matrix.
We also use the CG method for solving the linear system (3.24). In order to

improve the performance and reliability of the CG method, the preconditioning
techniques are exploited. We refer to the coefficient matrix Mn as a block Toeplitz
matrix with Toeplitz blocks (BTTB) [5], Therefore the following level-2 circulant
preconditioner which is a block circulant matrix with circulant blocks (BCCB) is
considered:

Cn2 = ĉ
(n)
0 I3 + σK1h

−β
1 I2 ⊗ c(Gβ) + σK2h

−γ
2 c(Gγ)⊗ I1.

Similarly, we discuss the properties of the circulant preconditioner Cn2 in the
following.

Lemma 3.2. The level-2 circulant preconditioner

Cn2 = ĉ
(n)
0 I3 + σK1h

−β
1 I2 ⊗ c(Gβ) + σK2h

−γ
2 c(Gγ)⊗ I1

is a symmetric positive definite matrix.

Proof. According to the proof of Lemma 2.10, it is easy to see that c(Gβ) and
c(Gγ) are symmetric positive definite matrices. Then, as similar to the Lemma 3.1,
we can prove that the level-2 circulant preconditioner Cn2 is a symmetric positive
definite matrix.

According to Lemma 3.2, we can know that the preconditioner Cn2 is nonsingular.
Theoretically, for the BCCB matrix Cn2 , the spectrum of (Cn2 )−1Mn is clustered
around 1 except for at most O(M1−1)+O(M2−1) outlying eigenvalues [5]. When
the PCG method is used to solve (3.24), the convergence rate will be fast. In
Section 4, we will also present numerical examples to demonstrate the usefulness of
the proposed circulant preconditioner Cn2 . Thus, the total complexity of the PCG
method with preconditioner Cn2 for solving the (3.24) remains O((M1 − 1)(M2 −
1) log(M1 − 1)(M2 − 1)).
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4. Numerical example

In this section, we carry out numerical examples to demonstrate the second-order
accuracy of the proposed difference schemes and the computational efficiency of
the preconditioned Krylov subspace methods. At each time level, we employ the
Cholesky method, the CG method and the PCG method for solving the resultant
linear systems, respectively. The initial guess for all method is chosen as the zero
vector and the stopping criterion is ‖r(k)‖2/‖r(0)‖2 < 10−12, where r(k) is the
residual vector after k iterations. Number of iterations required for convergence and
CPU time of each method are reported. All numerical experiments are performed in
MATLAB (R2016a) on a desktop with 16GB RAM, Inter (R) Core (TM) i7-8700K
CPU @3.70GHz.

In Tables 4 and 8, “CPU(s)” denotes the total CPU time in seconds to solve the
linear systems, and “Iter” denotes the average number of iterations over 10 runs.
For the PCG method, we also report the Strang-based circulant preconditioner [22]
Sn and the T. Chan’s-based circulant preconditioner [5] Tn. In all tables, “Chol”
denotes the Cholesky method, “PCG(S)” is the PCG with the Strang-based precon-
ditioner, “PCG(T)” is the PCG with the T. Chan’s-based circulant preconditioner,
and “PCG(C)” is the PCG with the proposed circulant preconditioner. Among
them, the circulant preconditioner Sn is shown below, and the circulant precondi-
tioner Tn takes the same form except that we replace the S with T .

Sn = ĉ
(n)
0 I + σKh−βs(G)

and

Sn2 = ĉ
(n)
0 I3 + σK1h

−β
1 I2 ⊗ s(Gβ) + σK2h

−γ
2 s(Gγ)⊗ I1,

where s(·) denotes the Strang circulant preconditioner for the Toeplitz matrix. More
precisely, the first column of the criculant matrix s(Gβ) is given by

g
(β)
0

g
(β)
1

g
(β)
2

...

g
(β)

bM2 c−1

g
(β)

bM2 c+1−M
...

g
(β)
−2

g
(β)
−1



.
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Example 4.1. Consider the following 1D time distributed-order and Riesz space
fractional diffusion problem:

∫ 1

0

Γ(5− α)C0 D
α
t u(x, t)dα =

∂βu(x, t)

∂ | x |β
+ f(x, t), 0 < x < 1, 0 < t ≤ T,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = 0, 0 < x < 1,

with f(x, t) = f0(x, t) − ct4 [f1(x, t)− 3f2(x, t) + 3f3(x, t)− f4(x, t)] , where c =
− 1

2 cos(βπ/2) , f0(x, t) = 24t3(t− 1)x3(1− x)3/ ln t, and

f1(x, t)=Γ(4)/Γ(4− β)[x3−β + (1− x)3−β ],

f2(x, t)=Γ(5)/Γ(5− β)[x4−β + (1− x)4−β ],

f3(x, t)=Γ(6)/Γ(6− β)[x5−β + (1− x)5−β ],

f4(x, t)=Γ(7)/Γ(7− β)[x6−β + (1− x)6−β ].

The exact solution of this example is given by u(x, t) = t4x3(1− x)3.

Let e(h, τ,∆α) = max
0≤i≤M
0≤n≤N

|u(xi, tn,∆α)− uni |, where u(xi, tn,∆α) and uni are the

exact solution and numerical solution with the step sizes h, τ and ∆α, respectively.
We define the convergence orders as

rateh=log2

e(h, τ,∆α)

e(h/2, τ,∆α)
, rateτ =log2

e(h, τ,∆α)

e(h, τ/2,∆α)
, rate∆α=log2

e(h, τ,∆α)

e(h, τ,∆α/2)
.

We take J = 50, M = 50, N = 50. Fig. 1 shows a comparison between the
exact solutions and numerical solutions of the difference scheme (2.17)-(2.19) when
solving Example 4.1 with different β and T . The good agreement between numerical
solutions with the exact solutions can be clearly seen.
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(a) β = 1.3

0 0.2 0.4 0.6 0.8 1

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

u
(x

,T
)

(b) β = 1.8

Figure 1. Exact solutions (lines) and numerical solutions (symbols) of Example 4.1: (a) β = 1.3 at T =
1.5 (stars), 1.2 (rhombus), 0.8 (triangles); (b) β = 1.8 at T = 1.5 (stars), 1.2 (rhombus), 0.8 (triangles).
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Some numerical results of the maximum errors as well as the spatial convergence
orders for Example 4.1 with β = 1.2, 1.5 and 1.8 when T = 1.5, J = 50, N = 1000
are recorded in Table 1. The second-order convergence of the difference scheme
(2.17)-(2.19) in space can be obtained, and the results are in good agreement with
what we expect.

Table 1. Maximum errors and spatial convergence orders of difference scheme (2.17)-(2.19) for Example
4.1 with T = 1.5; J = 50; N = 1000.

β = 1.2 β = 1.5 β = 1.8

M e(h, τ,∆α) rateh e(h, τ,∆α) rateh e(h, τ,∆α) rateh
32 3.423357e-05 - 6.057253e-05 - 9.145302e-05 -
64 8.665990e-06 1.9820 1.538522e-05 1.9771 2.313195e-05 1.9831
128 2.165532e-06 2.0006 3.847714e-06 1.9995 5.789457e-06 1.9984
256 5.410059e-07 2.0010 9.617429e-07 2.0003 1.449718e-06 1.9977
512 1.353449e-07 1.9990 2.404824e-07 1.9997 3.637954e-07 1.9946

When T = 1.5, J = 50, M = 1000, Table 2 provides numerical results of the
maximum errors and the temporal convergence orders for Example 4.1 with different
β. Form Table 2, we can see that the temporal convergence order of the difference
scheme (2.17)-(2.19) is 2, which is consistent with the theoretical analysis.

Table 2. Maximum errors and temporal convergence orders of difference scheme (2.17)-(2.19) for Ex-
ample 4.1 with T = 1.5; J = 50; M = 1000.

β = 1.2 β = 1.5 β = 1.8

N e(h, τ,∆α) rateτ e(h, τ,∆α) rateτ e(h, τ,∆α) rateτ
8 5.113611e-04 - 6.193316e-04 - 7.401543e-04 -
16 1.294286e-04 1.9822 1.590357e-04 1.9614 1.921523e-04 1.9456
32 3.228485e-05 2.0032 4.014123e-05 1.9862 4.892436e-05 1.9736
64 8.019176e-06 2.0093 1.004941e-05 1.9980 1.231641e-05 1.9900
128 2.005007e-06 1.9998 2.508026e-06 2.0025 3.067275e-06 2.0056

Table 3 gives the maximum errors and distributed-order integral convergence
rate for Example 4.1 with β = 1.2, 1.5 and 1.8 respectively at T = 1.5, M =
2000, N = 2000 and various values of J . The desirable second-order convergence
of the difference scheme (2.17)-(2.19) is verified. According to the results listed in
these three tables, the convergence accuracy of the difference scheme (2.17)-(2.19)
of O(h2 + τ2 + ∆α2) can be observed.

Table 3. Maximum errors and distributed-order integral convergence orders of difference scheme (2.17)-
(2.19) for Example 4.1 with T = 1.5; M = 2000; N = 2000.

β = 1.2 β = 1.5 β = 1.8

J e(h, τ,∆α) rate∆α e(h, τ,∆α) rate∆α e(h, τ,∆α) rate∆α

2 3.774623e-05 - 3.492953e-05 - 3.152437e-05 -
4 9.457965e-06 1.9967 8.747785e-06 1.9975 7.889510e-06 1.9985
8 2.366072e-06 1.9990 2.185762e-06 2.0008 1.967605e-06 2.0035
16 5.917841e-07 1.9994 5.441518e-07 2.0061 4.862444e-07 2.0167
32 1.480919e-07 1.9986 1.336461e-07 2.0256 1.158196e-07 2.0698
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From Table 4, one can see that the CPU times of the PCG methods are much less
than that of the Cholesky method and the CG method. We also see that the PCG
methods exhibit excellent performance in terms of iteration steps, and the number
of iteration steps barely increases as M and N increase rapidly. The performance
of the R. Chan’s-based circulant preconditioner is best among all.

Table 4. Comparisons on Example 4.1 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where β = 1.2, 1.5 and 1.8, J = 50 and T = 1.5.

Chol CG PCG(S) PCG(T) PCG(C)

β M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter

26 25 0.01 0.01 21.0 0.01 7.0 0.01 7.0 0.01 6.0
27 26 0.03 0.04 26.9 0.03 7.0 0.03 7.0 0.02 6.0
28 27 0.10 0.15 31.0 0.08 6.0 0.09 7.0 0.08 6.0

1.2 29 28 0.92 0.70 35.9 0.32 6.0 0.34 7.0 0.31 6.0
210 29 7.71 1.75 40.0 0.74 6.0 0.80 7.0 0.73 6.0
211 210 83.32 11.29 44.0 4.12 6.0 4.10 6.0 4.09 6.0

26 25 0.01 0.02 31.0 0.01 8.0 0.01 9.0 0.01 6.0
27 26 0.03 0.06 49.0 0.03 7.0 0.03 9.0 0.02 6.0
28 27 0.10 0.27 73.0 0.09 7.0 0.10 9.0 0.08 6.0

1.5 29 28 0.92 1.50 99.0 0.32 6.0 0.36 8.0 0.34 7.0
210 29 7.69 4.67 126.0 0.79 7.0 0.85 8.0 0.79 7.0
211 210 83.13 35.23 158.0 4.46 7.0 4.80 8.0 4.45 7.0

26 25 0.01 0.02 32.0 0.01 8.0 0.01 10.0 0.01 6.0
27 26 0.03 0.08 64.0 0.03 8.0 0.03 11.9 0.02 6.0
28 27 0.10 0.40 120.0 0.09 7.5 0.11 13.0 0.08 6.0

1.8 29 28 0.91 3.22 215.0 0.35 7.5 0.49 14.0 0.32 6.0
210 29 7.66 12.63 364.0 0.74 6.0 1.16 14.0 0.84 7.8
211 210 83.05 117.39 552.0 4.79 8.0 6.82 14.0 4.77 8.0

Table 5 reports the memory usage of the above methods for Example 4.1. As
seen from Table 5, the PCG methods and the CG method have similar performances
in terms of the memory requirement, and they are considerably better than the
Cholesky method. Because the direct method (the Cholesky method) needs to
store dense coefficient matrices, while the iterative methods (the PCG methods and
the CG method) do not need to store any dense matrices.

Table 5. Memory comparisons on Example 4.1 between the Cholesky method, the CG method, and the
PCG methods, where β = 1.2, J = 50 and T = 1.5.

M N Chol CG PCG(S) PCG(T) PCG(C)

29 28 4.65 MB 2.15 MB 2.15 MB 2.16 MB 2.16 MB
210 29 25.46 MB 9.16 MB 9.17 MB 9.17 MB 9.17 MB
211 210 114.30 MB 38.73 MB 38.75 MB 38.75 MB 38.76 MB

The spectrum of the original matrixAn and the preconditioned matrix (Cn)−1An

are plotted in Figs. 2-3. We can see that the eigenvalues of the preconditioned ma-
trix (Cn)−1An lie within a small interval around 1, expect for few outliers, yet all
the eigenvalues are well separated away from 0. This confirms that the circulant
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preconditioner have nice clustering properties.
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Figure 2. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for
Example 4.1 at time level (a) n = 0 and (b) n = 1, respectively, when M = N = 128, J = 50, β = 1.8,
and T = 1.5.
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Figure 3. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for
Example 4.1 at time level (a) n = 0 and (b) n = 1, respectively, when M = N = 256, J = 50, β = 1.8,
and T = 1.5.

Example 4.2. Consider the following 1D time distributed-order and Riesz space
fractional diffusion problem:

∫ 1

0
Γ(5− α)C0 D

α
t u(x, t)dα = ∂βu(x,t)

∂|x|β + f(x, t), 0 < x < 1, 0 < t ≤ T,
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = 0, 0 < x < 1,

where f(x, t) = x2t2.

Since we do not know the exact solution, we treat the calculated solution for a
very fine spatial mesh as the exact solution. The fine mesh is 212 × 212, (M ×N).
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Table 6. Comparisons on Example 4.2 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where β = 1.2, 1.5 and 1.8, J = 50 and T = 1.5.

Chol CG PCG(S) PCG(T) PCG(C)

β M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter

26 24 0.00 0.01 31.2 0.00 9.0 0.00 9.0 0.00 8.0
27 25 0.01 0.02 39.1 0.01 9.0 0.01 9.0 0.01 8.0
28 26 0.02 0.08 46.4 0.02 9.0 0.02 9.0 0.02 8.0

1.2 29 27 0.41 0.40 53.6 0.13 10.0 0.13 9.0 0.13 9.0
210 28 3.75 1.09 60.8 0.33 9.6 0.31 9.0 0.31 9.0
211 29 40.75 7.75 68.0 1.99 9.0 2.00 9.0 1.98 9.0

26 24 0.00 0.01 51.1 0.00 10.9 0.00 11.4 0.00 8.0
27 25 0.01 0.04 78.9 0.01 9.7 0.01 12.4 0.01 8.4
28 26 0.02 0.18 113.0 0.03 10.0 0.03 13.0 0.02 9.5

1.5 29 27 0.44 1.10 151.7 0.14 10.0 0.17 13.0 0.14 9.9
210 28 3.82 3.32 195.0 0.34 10.0 0.41 12.7 0.33 10.0
211 29 40.58 26.25 244.7 2.34 11.0 2.50 12.0 2.32 11.0

26 24 0.00 0.01 63.0 0.00 10.0 0.00 15.0 0.00 9.0
27 25 0.01 0.06 120.0 0.01 10.9 0.02 17.0 0.01 9.0
28 26 0.02 0.34 217.3 0.03 11.0 0.04 18.0 0.03 10.0

1.8 29 27 0.43 2.68 378.1 0.14 10.2 0.24 20.0 0.13 10.0
210 28 3.81 10.09 603.4 0.35 10.0 0.61 20.2 0.33 10.0
211 29 40.90 92.28 875.0 2.17 10.0 4.00 20.7 2.15 10.0

Table 7. Comparisons on Example 4.2 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where β = 1.2, 1.5 and 1.8, J = 50 and T = 6.

Chol CG PCG(S) PCG(T) PCG(C)

β M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter

26 24 0.00 0.01 39.1 0.00 10.0 0.00 10.0 0.00 8.0
27 25 0.01 0.03 54.1 0.01 9.7 0.01 11.0 0.01 9.0
28 26 0.02 0.11 70.5 0.02 10.0 0.02 11.0 0.02 9.0

1.2 29 27 0.38 0.64 87.7 0.12 10.0 0.13 11.0 0.12 9.0
210 28 3.62 1.81 104.7 0.29 11.0 0.30 11.0 0.28 10.0
211 29 39.97 12.95 121.4 2.12 11.0 2.01 10.3 1.99 10.1

26 24 0.00 0.01 55.8 0.00 11.0 0.00 13.2 0.00 8.0
27 25 0.01 0.05 92.1 0.01 11.9 0.01 14.1 0.01 10.0
28 26 0.02 0.22 146.4 0.02 10.6 0.03 15.0 0.02 10.0

1.5 29 27 0.38 1.60 223.1 0.12 10.0 0.18 15.9 0.13 11.0
210 28 3.59 5.33 319.8 0.29 11.0 0.38 15.1 0.29 11.0
211 29 39.80 44.90 429.5 2.11 11.0 2.73 15.0 2.10 11.0

26 24 0.00 0.01 63.0 0.00 11.1 0.00 16.0 0.00 9.0
27 25 0.01 0.06 120.0 0.01 11.0 0.01 18.0 0.01 9.8
28 26 0.02 0.33 229.1 0.02 12.0 0.04 20.6 0.02 10.0

1.8 29 27 0.37 2.98 420.5 0.13 11.0 0.25 24.0 0.12 10.0
210 28 3.59 12.50 758.6 0.29 11.0 0.64 27.3 0.29 11.0
211 29 39.55 136.81 1321.1 2.26 12.0 5.07 30.0 2.11 11.0
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From Tables 6-7, we see that the PCG methods exhibit excellent performance
both in terms of CPU time and iteration steps, and the proposed PCG(C) method
is the best one.

Table 8 reports the memory usage of the above methods for Example 4.2. As
seen from Table 8, the PCG methods and the CG method have similar performances
in terms of the memory requirement, and they are considerably better than the
Cholesky method.

Table 8. Memory comparisons on Example 4.2 between the Cholesky method, the CG method, and the
PCG methods, where β = 1.5, J = 50 and T = 6.

M N Chol CG PCG(S) PCG(T) PCG(C)

29 27 3.06 MB 0.51 MB 0.51 MB 0.51 MB 0.51 MB
210 28 18.36 MB 1.95 MB 1.96 MB 1.96 MB 1.96 MB
211 29 83.43 MB 7.63 MB 7.66 MB 7.66 MB 7.66 MB

Example 4.3. Consider the following 2D time distributed-order and Riesz space
fractional diffusion problem:

∫ 1

0
Γ(5− α)C0 D

α
t u(x, y, t)dα = ∂βu(x,y,t)

∂|x|β + ∂γu(x,y,t)
∂|y|γ + f(x, y, t),

(x, y) ∈ Ω, 0 < t ≤ T,
u(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ T,
u(x, y, 0) = 0, (x, y) ∈ Ω,

with Ω = (0, 1)× (0, 1), and

f(x, y, t)

=f0(x, y, t)− c1t4y3(1− y)3[f1(x, y, t)− 3f2(x, y, t) + 3f3(x, y, t)− f4(x, y, t)]

− c2t4x3(1− x)3[g1(x, y, t)− 3g2(x, y, t) + 3g3(x, y, t)− g4(x, y, t)],

where c1 = − 1
2 cos(βπ/2) , c2 = − 1

2 cos(γπ/2) , and

f0(x, y, t) = 24t3(t− 1)x3(1− x)3y3(1− y)3/ ln t,

f1(x, y, t) = Γ(4)/Γ(4− β)[x3−β + (1− x)3−β ],

f2(x, y, t) = Γ(5)/Γ(5− β)[x4−β + (1− x)4−β ],

f3(x, y, t) = Γ(6)/Γ(6− β)[x5−β + (1− x)5−β ],

f4(x, y, t) = Γ(7)/Γ(7− β)[x6−β + (1− x)6−β ],

g1(x, y, t) = Γ(4)/Γ(4− γ)[y3−γ + (1− y)3−γ ],

g2(x, y, t) = Γ(5)/Γ(5− γ)[y4−γ + (1− y)4−γ ],

g3(x, y, t) = Γ(6)/Γ(6− γ)[y5−γ + (1− y)5−γ ],

g4(x, y, t) = Γ(7)/Γ(7− γ)[y6−γ + (1− y)6−γ ].

The exact solution of the example is u(x, t) = t4x3(1− x)3y3(1− y)3.

For simplicity, take h1 = h2 = h̃, and M1 = M2 = M̃ . Let e(h̃, τ,∆α) =
max

0≤i≤M1, 0≤j≤M2
0≤n≤N

|u(xi, yj , tn,∆α)−unij |, where u(xi, yj , tn,∆α) and unij represent the
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exact solution and numerical solution with the step sizes h̃, τ and ∆α, respectively.
The convergence orders are defined as

r̃ateh=log2

e(h̃, τ,∆α)

e(h̃/2, τ,∆α)
, r̃ateτ =log2

e(h̃, τ,∆α)

e(h̃, τ/2,∆α)
, r̃ate∆α=log2

e(h̃, τ,∆α)

e(h̃, τ,∆α/2)
.

Fig. 4 exhibits the solution surface of Example 4.3 with J = 50, M̃ =40, N =
10 at T = 1, β = γ = 1.8 and T = 0.5, β = γ = 1.3, respectively. It can be seen
that the numerical solutions are in good conformity with the exact solutions.
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Figure 4. The solution surfaces obtained from Example 4.3 at J = 50, M̃ =40 and N = 10: (a) the
exact solution with T = 1, β = γ = 1.8; (b) the numerical solution with T = 1, β = γ = 1.8 by the
scheme (3.12)-(3.14); (c) the exact solution with T = 0.5, β = γ = 1.3; (d) the numerical solution with
T = 0.5, β = γ = 1.3 by the scheme (3.12)-(3.14);

When T = 1.5, J = 50 and N = 2000, Table 9 lists the maximum errors and
convergence orders in spatial of the difference scheme with β = γ = 1.2, 1.5 and
1.8, respectively. From the numerical results we can conclude that the difference
scheme (3.12)-(3.14) has the second-order convergence in spatial directions.
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Table 9. Maximum errors and spatial convergence orders of difference scheme (3.12)-(3.14) for Example
4.3 with T = 1.5; J = 50; N = 2000.

β = γ = 1.2 β = γ = 1.5 β = γ = 1.8

M̃ e(h̃, τ,∆α) r̃ateh e(h̃, τ,∆α) r̃ateh e(h̃, τ,∆α) r̃ateh
8 1.287397e-05 - 2.196133e-05 - 3.333244e-05 -
16 3.193383e-06 2.0113 5.413665e-06 2.0203 8.121444e-06 2.0371
32 7.961929e-07 2.0039 1.348003e-06 2.0058 2.016181e-06 2.0101
64 1.982329e-07 2.0059 3.360192e-07 2.0042 5.025245e-07 2.0044
128 4.880024e-08 2.0222 8.327729e-08 2.0125 1.249136e-07 2.0083

When taking the fixed T = 1.5, J = 50, M̃ = 100, the maximum errors and
convergence orders in temporal of the difference scheme (3.12)-(3.14) with β = γ =
1.2, 1.5 and 1.8 are listed in Table 10, respectively. From the numerical results in
Table 10 we can clearly see that the convergence order in temporal of the difference
scheme (3.12)-(3.14) is also nearly 2, which is in accord with the theoretical analysis.

Table 10. Maximum errors and temporal convergence orders of difference scheme (3.12)-(3.14) for

Example 4.3 with T = 1.5; J = 50; M̃ = 300.

β = γ = 1.2 β = γ = 1.5 β = γ = 1.8

N e(h̃, τ,∆α) r̃ateτ e(h̃, τ,∆α) r̃ateτ e(h̃, τ,∆α) r̃ateτ
4 4.143174e-05 - 4.904054e-05 - 5.654620e-05 -
8 1.114619e-05 1.8942 1.334121e-05 1.8781 1.550841e-05 1.8664
16 2.888455e-06 1.9482 3.479612e-06 1.9389 4.067734e-06 1.9308
32 7.263603e-07 1.9915 8.810213e-07 1.9817 1.031666e-06 1.9792
64 1.767839e-07 2.0387 2.124202e-07 2.0523 2.460280e-07 2.0681

The numerical accuracy of scheme (3.12)-(3.14) for Example 4.3 in distributed-

order integral variable is investigated. When T = 1.5, J = 50, M̃ = 100, Table 11
displays the computational results using the difference scheme (3.12)-(3.14) with β =
γ = 1.2, 1.5 and 1.8, respectively. One can draw the conclusion that the convergence
accuracy in distributed-order integral variable is O(∆α2). Namely, the numerical
convergence order of the difference scheme (3.12)-(3.14) is O(h2

1 +h2
2 + τ2 + ∆α2).

Table 11. Maximum errors and distributed-order integral convergence orders of difference scheme

(3.12)-(3.14) for Example 4.3 with T = 1.5; M̃ = 800; N = 2000.

β = γ = 1.2 β = γ = 1.5 β = γ = 1.8

J e(h̃, τ,∆α) r̃ate∆α e(h̃, τ,∆α) r̃ate∆α e(h̃, τ,∆α) r̃ate∆α

1 2.037150e-06 - 1.777609e-06 - 1.489954e-06 -
2 5.120092e-07 1.9923 4.455139e-07 1.9964 3.719972e-07 2.0019
4 1.274115e-07 2.0067 1.101005e-07 2.0166 9.090557e-08 2.0329
8 3.105365e-08 2.0367 2.609633e-08 2.0769 2.053103e-08 2.1466

From Table 12, we can observe that the CPU time of the PCG method with
circulant preconditioners is much less than that of the Cholesky method and the
CG method. We also see that the number of iteration steps of the PCG method
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barely increases as the number of the spatial grid points increases. The performance
of the R. Chan’s-based circulant preconditioner is best amongst all.

Table 12. Comparisons on Example 4.3 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where β = γ = 1.2, 1.5, 1.8, J = 50 and T = 1.5.

Chol CG PCG(S) PCG(T) PCG(C)

β=γ M̃ N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter

23 23 0.01 0.01 10.0 0.01 10.0 0.01 8.0 0.01 7.0
24 24 0.02 0.03 15.0 0.03 9.0 0.03 8.1 0.03 9.0

1.2 25 25 0.29 0.29 19.0 0.22 10.0 0.21 9.0 0.21 9.0
26 26 16.55 1.42 23.0 1.06 10.0 1.01 9.0 1.06 10.0
27 27 2029.77 16.32 27.0 10.06 10.0 9.52 9.0 10.04 10.0

23 23 0.01 0.01 10.0 0.01 12.0 0.01 8.0 0.01 8.0
24 24 0.03 0.04 20.0 0.03 12.1 0.03 11.0 0.03 10.0

1.5 25 25 0.30 0.42 31.9 0.27 13.0 0.25 12.0 0.24 12.0
26 26 16.52 2.25 46.0 1.21 13.0 1.20 13.0 1.20 13.0
27 27 2030.88 31.66 63.0 12.17 14.0 11.84 13.4 12.16 14.0

23 23 0.01 0.01 10.0 0.01 14.0 0.01 9.0 0.01 8.0
24 24 0.03 0.05 25.9 0.04 15.0 0.04 13.0 0.03 11.0

1.8 25 25 0.30 0.56 45.0 0.30 16.1 0.30 16.0 0.26 13.0
26 26 16.33 3.45 79.0 1.43 17.9 1.49 19.0 1.29 15.0
27 27 1999.64 59.59 128.0 14.78 18.9 16.94 23.0 13.74 16.9

Table 13 reports the memory usage of the above methods for Example 4.3. From
Table 13, we can see that the PCG methods and the CG method have similar perfor-
mances in terms of the memory requirement, and they are considerably better than
the Cholesky method. Because the direct method needs to store dense coefficient
matrices, while the iterative methods do not need to store any dense matrices.

Table 13. Memory comparisons on Example 4.3 between the Cholesky method, the CG method, and
the PCG methods, where β = 1.8, J = 50 and T = 1.5.

M N Chol CG PCG(S) PCG(T) PCG(C)

25 25 7.91 MB 0.14 MB 0.16 MB 0.15 MB 0.15 MB
26 26 129.35 MB 1.41 MB 1.51 MB 1.43 MB 1.43 MB
27 27 2045.17 MB 12.29 MB 12.52 MB 12.36 MB 12.36 MB

The spectrum of the matrix Mn and the preconditioned matrix (Cn2 )−1Mn are
plotted in Figs. 5-6. These two figures also confirm that the circulant preconditioner
have nice clustering properties. It shows that the eigenvalues of the preconditioned
matrix are well grouped around 1 expect for few outliers. The vast majority of the
eigenvalues are well separated away from 0.

5. Conclusion

In this paper, efficient second-order difference schemes are proposed for one- and
two-dimensional TDRFDEs. We first discretize the time distributed-order integral
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Figure 5. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for

Example 4.3 at time level (a) n = 0 and (b) n = 1, respectively, when M̃ = N = 64, J = 50, β = γ =
1.5, and T = 1.5.
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Figure 6. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for

Example 4.3 at time level (a) n = 0 and (b) n = 1, respectively, when M̃ = N = 128, J = 50, β = γ =
1.5, and T = 1.5.

term by using composite trapezoid formula and transform the TDRFDEs into the
multi-term time-space FDEs. Then we solve the multi-term time-space FDEs with
the second-order accurate interpolation approximation on a special point. We prove
that the proposed difference schemes are uniquely solvable, unconditionally stable
and convergent in the mesh L2-norm with second-order accuracy in time, space and
distributed-order integral variables. Moreover, we have proposed an efficient imple-
mentation of the proposed scheme based on the PCG method with R. Chan’s-based
circulant preconditioner, which only requires O((M −1) log(M −1)) computational
complexity and O((M − 1) storage cost. Numerical experiments confirm the theo-
retical results and show the effectiveness of the proposed preconditioned method. In
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future work, we will focus on the development of the effective numerical methods for
solving high-dimensional time distributed-order fractional diffusion-wave equations.
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