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Abstract The aim of this paper is to develop fast second-order accurate
difference schemes for solving one- and two-dimensional time distributed-order
and Riesz space fractional diffusion equations. We adopt the same measures
for one- and two-dimensional problems as follows: we first transform the time
distributed-order fractional diffusion problem into the multi-term time-space
fractional diffusion problem with the composite trapezoid formula. Then, we
propose a second-order accurate difference scheme based on the interpolation
approximation on a special point to solve the resultant problem. Meanwhile,
the unconditional stability and convergence of the new difference scheme in
Lo-norm are proved. Furthermore, we find that the discretizations lead to a
series of Toeplitz systems which can be efficiently solved by Krylov subspace
methods with suitable circulant preconditioners. Finally, numerical results
are presented to show the effectiveness of the proposed difference methods
and demonstrate the fast convergence of our preconditioned Krylov subspace
methods.
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1. Introduction

Fractional diffusion equations (FDEs) have recently attracted considerable attention
and interest due to its wide applications [33,34]. Specifically, the time-fractional
anomalous diffusion equation has become the focus of intensive investigations from
both theoretical and practical perspectives [16,24,29].

Recently, the time-fractional anomalous diffusion equation with a single-term
temporal derivative has been discussed and studied [23]. In [27,28], the two-term
time FDE was reported for describing processes that tend to be less anomalous.
More generalized models were also developed as multi-term FDEs [2,39], where sev-
eral fractional derivatives were simultaneously involved. Although the single-term
and multi-term FDEs are used extensively in many scientific fields, it is difficult for
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them to describe the non-Markovian processes for continuous time-scale distribu-
tions. Therefore, the time distributed-order FDEs [3,38,40,41] began to attract the
attention of researchers. It can be considered as a generalization of the multi-term
FDESs and has been found to be an important tool for modeling ultraslow diffusion
processes and accelerating sub-diffusion [7,20].

Multiple numerical approaches [4,30,32] have emerged for solving the distributed-
order FDEs, among which the finite difference method has grown popular [11,17].
The numerical method presented in [19] for solving the distributed-order FDE con-
sists of: (a) approximation of the integral with a finite sum using a simple quadra-
ture rule so that the distributed order FDE is converted into a multi-term FDE and
(b) development of a numerical method to solve the resultant multi-term FDE. Such
idea is essential for numerically solving the distributed-order FDEs and should be
studied extensively. However, as far as we know, only a few algorithms have been
developed to solve the distribution-order FDEs based on this idea. Ye et al. [37] pro-
posed an implicit difference method for the time distributed-order and Riesz space
FDEs on bounded domains and proved the difference method was unconditionally
stable and convergent. An implicit numerical method of a new time distributed-
order and two-sided space-fractional advection-dispersion equation was constructed
by Hu et al. [17]. In [11], Gao et al. explored two alternating direction implic-
it difference schemes with the unconditional stability and convergence analysis for
solving the 2D distributed-order FDEs. Bu et al. [4] introduced the finite differ-
ence method for a class of distributed-order time FDEs on bounded domains. In
addition, most of these numerical approaches have no complete theoretical analysis
of stability and convergence, especially for the time distribution-order and spatial
FDEs [19,26].

In this paper, inspired by the above observations, we consider effective numer-
ical methods for the following new time distributed-order and Riesz space FDEs
(TDRFDEs):

DY u(x,t) = Au(x,t) + f(x,1), x€Q, 0<t<T, (1.1)
u(x, t)|xeag =0, 0<t<T, (1.2)
u(x,0) = ¢p(x), x€Q, (1.3)

where a € (0,1], A is an operator and the function f(x,t) is the source term with
sufficient smoothness. In particular, if Q = (z1,2r) C R, then

8
A=K 0

W? K >0, f(X,t):f(l‘,t);

if Q= (zr,7r) X (yr,yr) C R?, then

P 97

A=K —— + Ko——
AR R

Ki,K, >0, f(x,t)=f(z,9,t),
where 8,7 € (1,2], and the % is the Riesz fractional derivative of order 8 € (1, 2]
defined as [18] (% is defined similarly)

2
9%u(z,t) {_2005(571'/12)F(2ﬁ)ddz? Lof e =€ Pulg tyde, 1< B<2,

Fulx.t) _ |~
0|x|P Tulz) =2,
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where T'(-) denotes the Gamma function. Moreover, the time distributed-order
operator Df(a) is defined by [31]

1
D:J(a)u(x,t) = / w(a)§ DXu(x, t)da,
0

where § D§* denotes the Caputo fractional derivative [25] which is defined as follows:

t —a ou
risay Jo(t =) Ge(x,6)dE, 0<a<l,
Ut(X,tL a=1,

6 Dfu(x,t) = {
and the non-negative weight function w(«) satisfies that
1
0 <w(a), wla) #0, a€0,1], 0 < / w(a)da < oo.
0

Nonlocal behavior has been remarked as one of the main characteristics of the
fractional differential operator. As a result, most numerical methods for FDEs
produce dense matrices or even full coefficient matrices in 1D cases [13,22]. Tra-
ditional methods, such as Gaussian elimination, need computational workload of
O(M?3) and memory capacity of O(M?), where M is the number of grid points [22].
Krylov subspace methods are studied and adopted to reduce the costs [12,14]. The
convergent speed of the Krylov subspace methods is dependent on the condition-
s of the discretized systems. To improve the performance of iterative methods,
many preconditioners [15,22,42] are always designed according to the structure of
the linear systems. For 1D cases, Wang et al. [36] made the important discovery
that the resultant systems had Toeplitz coefficient matrices. By exploiting this
structure, the memory requirement can be reduced from O(M?) to O(M), and the
fast Fourier transform (FFT) can be used to evaluate the matrix-vector product in
O(M log M) operations. Moreover, the coefficient matrices discretized from (1.1)-
(1.3) should be symmetric positive definite Toeplitz matrices due to the existence
of Riesz fractional derivatives. The circulant preconditioners [5,6,22] proved to be
good choices to accelerate the convergence of Krylov subspace methods when solving
the discretized linear systems. In high-dimensional cases, a nonsingular multilevel
circulant preconditioner was proposed by Lei et al. [21], which efficiently accelerated
the convergence rate of the Krylov subspace method. In [8], Chou et al. illustrated
the efficiency of applying an approximate inverse preconditioner to the high dimen-
sional FDEs when Krylov subspace methods are employed. They also showed that
under certain conditions, the normalized preconditioned matrix is equal to the sum
of an identity matrix, a matrix with small norm, and a matrix with low rank, such
that the preconditioned Krylov subspace method converges superlinearly.

In this paper, we focus on establishing a fast numerical method and investigating
the unconditional stability and convergence for solving the TDRFDEs (1.1)-(1.3).
We first transform TDRFDEs (1.1)-(1.3) into multi-term time-space FDEs based
on the composite trapezoid formula. Then we apply the interpolation approxima-
tion, as introduced by Gao et al. in [9], to approximate the time derivatives of the
multi-term time-space FDEs at a special point. The global second-order numerical
accuracy in time is independent to the order of fractional derivatives. To gather
numerical solutions with high-order accuracy in space, the fractional centred dif-
ference formula [37] is used to discrete the space Riesz derivative. Therefore we
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develop a new difference scheme which converges with the second-order accuracy in
time, space and distributed-order. On the other hand, by taking advantage of the
Toeplitz structure of the resultant linear systems, we adopt the Krylov subspace
method with efficient circulant preconditioners. It also proves that the eigenvalues
of the preconditioned matrices are clustered around 1, and the convergence rate of
our proposed iterative method is superlinear.

The rest of the paper is arranged as follows. In Section 2, we study the T-
DRFDEs in the 1D case and present its corresponding difference scheme. The
uniqueness, unconditional stability and convergence of the difference method are
proved. Meanwhile, we design a preconditioned Krylov subspace method to solve
the resultant Toeplitz linear system. In Section 3, the 2D TDRFDE:s is discussed.
We demonstrate that the difference scheme is uniquely solvable, unconditionally
stable and convergent with the second order. We also adopt the preconditioned
Krylov subspace method with suitable circulant preconditioners to handle the re-
sulting system. Numerical experiments are carried out in Section 4 to illustrate the
efficiency of our numerical approaches. Finally, the paper closes with conclusions
and remarks in Section 5.

2. 1D problem

Consider the following 1D TDRFDEs:

1 B
/ w(a)§ Dfu(z, t)da = Kw + flz,t), O0<z<L,0<t<T, (2.1)
0
u(0,t) =0, u(L,t)=0, 0<¢<T, (2.2)
u(z,0) = ¢(z), 0<z< L. (2.3)

In this section, we show that the discretizations for the distributed-order inte-
gral term of (2.1) by the composite trapezoid formula lead to multi-term time-space
FDE. We propose the second-order difference scheme based on the interpolation ap-
proximation on a special point to solve the multi-term equations. We also prove
that the difference scheme is uniquely solvable, unconditionally stable and con-
vergent with second-order accuracy in time, space and distributed-order integral
variables. Moreover, we propose an efficient implementation based on Krylov sub-
space solver with suitable circulant preconditioners to solve the resultant Toeplitz
linear system.

2.1. Numerical discretization of the (2.1)-(2.3)

We first discretize the integral interval [0,1] by the grid 0 = ap < oy < -+ <
agy = 1 with Aa = % and oy = [Aa, 1 =0,1,2,---,2J. The following lemma
gives a complete description of the numerical approximation to the distributed-order

integral term.

Lemma 2.1 ( The composite trapezoid formula [10,11]). Let 2(a) € C?([0,1]),
then we have

2J

1 2
| #@)da = a0y diste) - 5520 ). we 0.0),
0 1=0
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0= 3. 1=0,2J,
T, 1<i<27 -1

Considering the left side of (2.1), let z(a) = w(a)§ Dfu(z,t) and using Lemma
2.1, we can obtain

where

1 2J
/ w(a)§ Diu(z, t)da = Aay  dyw(ay)§ Dimu(e, t) + O(Aa?). (2.4)
0 r=0
Let m = 2J, A\, = dyw(a,)Aa. The problem (2.1)-(2.3) is now converted into
the following multi-term time-space FDEs:

OPu(z,t
ZA Dy ):Kgr(xl;)—i—f(%t), O<az<L, 0<t<T, (2.5)
T
u(O,t) =0, wu(L,t)=0, 0<t<T, (2.6)
u(z,0) = ¢(z), 0<z<L. (2.7
Next, we discrete the domain [0, L] x [0,7] with 2; = ¢h (0 < ¢ < M) and
t, =n1 (0 < n < N), where h = ﬁ and 7 = % are space and time step sizes

respectively. Then we introduce the following preliminary lemma:

Lemma 2.2. Suppose

o) = é F(3>\_TQT)01QT [ (1 — %)] P g >0.

Let a = mln {1 - —}, b = max {1 — & }, we can obtain that the equation
0< 0<r<m

F(o)=0 has a unique positive root o* € [a, b], where
Qo 1

1 1
a—l—iorgaxm{ar}—l—Tzé, bzl—iognnm{ar}—l—?zl.

Proof. The proof is quite similar to Lemma 2.1 in [9] and thererfore is omitted.

O

For convenience, we let o = ¢, which means that o € [4, 1] satisfies F(0) = 0.

Let tp—140 = (n — 1+ 0)7, two lemmas are given below that will be useful in
the discretizations of the multi-term time-space FDEs later.

Lemma 2.3. Suppose u(t) € C3([to,ty]), consider the linear combination of multi-

term fractional derivatives > .S Dy u(t) at the point t = t,_14,, where A, (r =
r=0

0,1,2,---,m) > 0,0 < ag < g < -+ < amy < 1 and at least one of a;’s

belongs to (0,1). The second-order accurate interpolation approximation for the

m

S NS D u(t) ds as follows:

r=0

n—1

Z Ar§ DY u(tn—140) Z A(n) — u(tp—k—1)] + O(r*~*m),
r=0

k=0
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where

A(n Ay (n ar)
Z 2 _ ar ’
(n,a,) (a,)

in which cg =ay ", whenn =1;
Forn > 2, we have

oo + pen), k=0
cfmen) = { glen) b,(jil B, 1<k<n-2
](C ) b]((?‘r)7 k = n — 17

where
afm =o' Al = (14+0) " —(I-1+0) " (1>1),

[(l +o)y e —(1—1+ 0)2_(“]

- [((+o) +(l-1+0)"].

by = -

2—a,
In particular, when o, = 1, we have cén’a’) =1, (n o) = (1<k<n-—1); when

a, = 0, we have cén’ar) =0, c,(cn’(“) =1(1<k<n-1).
Proof. For a rigorous proof of this lemma, the reader is referred to [9]. O

Lemma 2.4 ( [37]). Suppose that u(z) € C°[0, L] satisfy the boundary condition
u(0) = u(L) = 0. The fractional centred difference formula for approximating the
Riesz derivatives when 1 < 8 < 2 is as follows:

Pu(z;) 5 = B
olz|F —h" k:%:M g uli-g) + O(h?),
where
g = (=D (8 +1)
FOOTB2-k+)0(B/2+k+1)

Assume that u(z,t) € C®3)([0,L] x [0,T]) is a solution to the problem (2.1)-
(2.3). Consider the equation (2.5) at (z;,tn—1+0), and we get

8ﬁu(mi, tnflJrO')

27 + f(zisth—140), (2.8)

Z)\ Diru(ziytn-140) = K

where 1 <i< M —1, 1 <n < N. For simplicity, we define

U =u(zi,t,), 0<i< M, 0<n<N;
f?71+02f($7;,tn,1+g), 0§Z§M7 ]-SHSN

Using Lemma 2.3, we have

n—1

S A DR (e ) = AT -t o). 2o)
r=0 =0
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By applying the second-order linear interpolation formula to the Riesz derivative
on the right side of equation (2.8), we obtain that

85u(:17,-,tn_1+5) 8ﬁu(xi,tn) 8ﬂu(xi,tn_1)

_ _ 2
ek =0 Blal? +(1-o0) o] + O(17). (2.10)

Furthermore, based on Lemma 2.4, we have

OPu(x;, ty _ : n
k=i—M

Combine formulae (2.10) and (2.11), and we get

=—h? 3" gD (Ul + (1 - ) UPSY] + Oh? + 72). (2.12)
k=i—M

85”(1‘2’; tn—l-l—a)
Oz

By substituting (2.9) and (2.12) into (2.8), we obtain

n—1 7
Z égcm Ot —up )y = - Kh? Z g;(f) [cU" )+ (1= o) U]
k=0 k=i—M
+ P + RY, (2.13)

where there exists a positive constant ¢; such that
IR <ei (RP+7°+Aa?), 1<i<M-1,1<n<N. (2.14)
Notice the initial-boundary conditions (2.6)-(2.7). We have

Ur=0, Uy =0, 0<n<N, (2.15)
U =¢(x;), 1<i<M—1. (2.16)

Suppose u¥ is the numerical approximation to u(x;,t;). By omitting the local
truncation error term R? in (2.13) and replacing the exact solution U with uf
in (2.13), (2.15)-(2.16), we can construct the following difference scheme for the
(2.1)-(2.3):

i

n—1
oA @t =~k Y g [ouly + (1= o)up ]+ £
k=0

k=i—M
1<i<M-1,1<n<N, (2.17)
uyg =0, upy =0, 0<n<N, (2.18)
u) = p(z;), 1<i<M-—1. (2.19)

2.2. Solvability, stability and convergence analysis

In this subsection, we analyze the unique solvability, unconditional stability and
convergence of the difference scheme (2.17)-(2.19) obtained in Section 2.1. Mean-
while, we show that the convergence orders of the proposed difference scheme are
two in space, time and distributed-order integral.
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We define Vi, = {v | v = (vo,v1, -+ ,vp—1,0a)%, vo = 0, vy = 0}. For all
v, w € Vj, the discrete inner product and the corresponding discrete Lo-norm are
defined as follows:
M—1
(v,w)=h Z viw;, and |jv] = +/(v,v).
i=1
Before introducing the properties on the solvability, unconditional stability and
convergence, several useful lemmas are prepared below.

Lemma 2.5 ( [37]). Let 1 < 8 < 2 and take g,(f) as defined in Lemma 2.4. We

ha”ue (B) F(,@-‘,—l) (ﬁ) (5)
= r2g/25m) = 05 9% = 9 <0, k=1,2,---,
> g =0, - ¥ ¢P<g? 1<i<sm-1,
k=—o00 k=—M+i
k0
B 1 8
g](“ : - (1 a ﬂ§;+k) gl(cjl7 kE>1.

U —ar n,o .
Lemma 2.6 ( [9]). Leté A(") =3 )\TWC( D k=0,1,--- ,n—1, as is defined
o ;
in Lemma 2.3, it holds

e ~ ]-_ T —
é(()n) Agﬂ)>...>67(zi)2> 1>Z)\ 2_a . 2& (n71+0) ar

Lemma 2.7 ( [1]). Let V represent the inner product space and (-,-) denote the

inner product with the induced norm || -||. Forv°, vt,---, v € V, when n > 1 we

have

Z A(n) n—k—l’ ov™ + (1 _ Z A(n) an—kHQ _ ||vn_k_1||2) )

Lemma 2.8 ( [35]). For1< 8 <2 and any v € V},, it holds that

M-1 M-—1
—h = Ph Z < Z gk vl k) v; < —ciﬂ)(ZL)fﬁh Z v?,

i=1 k=i—M i=1

® _ I LM S ﬁ)ﬁﬂ_

2 . _
where ¢.” = grg, with s = €™ Gy ga1E 1A | T(A/2HT) 2

We first consider the unique solvability of the numerical method (2.17)-(2.19).
Theorem 2.1. The difference scheme (2.17)-(2.19) is uniquely solvable.

Proof. Let u" = (u},uf,ul,--- ,u;_;,u;)T. According to (2.18) and (2.19),
the value of u° is determined. Now suppose that {u* | 0 < k < n — 1} has been
determined. According to (2.17) and (2.18), we get a linear equation system with
respect to u™. Then we only need to prove that the corresponding homogeneous
linear system

M = —Koh™? Z g Pup . 1<i<M -1, (2.20)
k=i—M
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ul =0, ul =0 (2.21)

only has solution of 0.
We first rewrite the equation (2.20) as follows:
& 4 Koh™P “3)] =Koh™ Y (—gff’)) ut ., 1<i<M-—1. (2.22)

k=i—M
k#0

Let ||u"||oo = |u} |, where i, € {1,2,---, M — 1}. Let us consider equation (2.22)
with i = 7,, and take absolute values on both sides of the equation. Based on Lemma
2.5 and the fact that the coefficients K > 0, it can be seen that

(267 + Koh =g | "l <Koh™? 37 (=gl fu 4l

k=ip— M
k#0

in

<kah™ 3 (=) "l

k=ip—M
k#0

<Koh ™ gi?|[u™]| s

Therefore, ||u"||s = 0 is derived, which indicates that the homogeneous linear
equations (2.20)-(2.21) have a single solution of 0. O

We are now going to prove the unconditional stability of the difference scheme
(2.17)-(2.19) with respect to the initial value and the inhomogeneous term f(x,t).
The correlation result is shown in the following theorem.

Theorem 2.2. Let {u’ | 0<i< M, 0 <n < N} be the solution of the difference
scheme (2.17)-(2.19). We have

R I pm— 0 —— ST PP

(8)
Ked ; Tarr(1 o)

M~—1 9
where |17 =1 X (£1714°)
i=1

Proof. Multiplying (2.17) by h(ou? 4 (1 — o)u ') and summing up with i from
1to M — 1, we get

ZA(n)h i -k ut— k— 1) [U’U, (170’)’(1” 1]
i=1

k=0

M-1 i
RPh Y 3 o o+ (1= o)ui] [oul + (1 - o)up ]

=1 k=i—M
M-1
+h YT foup + (1—0)up ], 1<n <N, (2.23)
=1

According to Lemma 2.7, it follows that

Z A(n)h Z -k _ k—l) [O’u? + (1 . O’)’U,?_l]

k=0
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_ éI(Cn) (unfk _ unfkfl’o,un + (1 _ O_)unfl)

M (|l H 2 = a2 (2.24)
Using Lemma 2.8, we obtain

— Kh™ Bh o [ouly + (1 — o)l [ou + (1 — o)ul ™
i—k

=1 k=1—M
<— K@D Pllou" + (1 — o)um 12 (2.25)

In addition, by exploiting Cauchy-Schwarz inequality, we can get

M-1

h Z 7 oul + (1 - o)ul

=1
<[lF 7 flou™ + (1= o)um
(2L)°

SIS (226)
Cx

KV (20) 8 lou™ + (1 — o)u™ 1) +

By substituting (2.24)-(2.26) into (2.23), we have

n—1
1 ~(n n— n—k— (2L)B
5 2 (M P = =12 <

k=0 Cx

SR 1< NG (2.27)

With the use of Lemma 2.6, we get

T 1—a,

re2-—o,) 2

l\DM—l

“(n—1+0)"

NE

4 >

n_

Ar Z 1 o (2.28)

:O

1
Il
o

Combine (2.27) and (2.28), and we arrives at the following inequality:

21y’
||u"||2<Z(ck L 0 i N T e o P

Cnl1 ”u

(B) < Ar
k=1 Kcy Z_:O TorT(1—ay)

)

n—1
) A gk 2 4 Ao (2L)° [+
<3 (A = ) R 0y | )

where 1 < n < N. By applying the mathematical induction method to the above
inequality, we can get
2L)#
||un||2 < Hu0||2+ 3 ( ) fgﬂx ||fl71+aH2’ 1<n< N.
B A <i<n
Ke, ZO TorT(1—ay)
=

This completes the proof. O
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We have established the unconditional stability of the difference scheme (2.17)-
(2.19), and now we further show its convergence.

Suppose that {U" | 0 <i < M, 0 <n < N} is the exact solution of the system
(2.1)-(2.3) and {u’ |0 < i < M, 0 <n < N} is the numerical solution of the
difference scheme (2.17)-(2.19). Let e = U —ul (0<i< M, 0 <n < N).

By subtracting (2.17)-(2.19) from (2.13), (2.15)-(2.16), respectively, we obtain
the system of error equations as follows:

— %

Z A(n) k_en- k_l) = —Kh " Z g,(f) loef o+ (1— o)e?__kl] + R?,
0 k=i—M

1<i<M-1,1<n<N,
eg =0, eyy=0, 0<n<N,
ed =0, 1<i<M-—1.

By applying the conclusion of Theorem 2.2 and noticing (2.14), we have

(2L)? max ||R!? 3
,LHQ < 1<I<n < (2L)

(8) . T e (B) < A
Ked ;)m Ked Z:Om

lle [e1 (h2+72+Aa2)]2L,

where 1 < n < N. Extract the square root on both sides of the equation above, we
get

lle™]] < e (h2+72+Aa2), 1<n<N.

Therefore, we can get the following theorem.

Theorem 2.3. Suppose that the continuous problem (2.1)-(2.3) has a smooth solu-
tion u(x,t) € C3)(Q x [0,T]), and let u} be the solution of the difference scheme
(2.17)-(2.19). It holds that

[e"]| < (h2+72+Aa2), 1<n<N.

2.3. Fast solution techniques with circulant preconditioner

We rewrite the proposed implicit difference scheme (2.17) as the following matrix
form at the time level n:

A ="t n=1,2,...,N, (2.29)

where
A" =M+ oKnPa, (2.30)
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and
n—1
0l = —(1— o) Kh 0Gum 1t + 3@, — &M yun kel 4 ot
k=1

Here I is the identity matrix of order M — 1 and

g g g8 g P
R A PR U G
B B (B ® B

g g g g g

a=|" 7 7 e (2.31)
91(5)_3 955)_4 91(5)_5 T g(()ﬂ) g(—Bl)
B8

DI ) AR O

It is obvious that G is a symmetric Toeplitz matrix (see [22]). Therefore, it can
be stored with only M — 1 entries and the FFT can be used to carry out the
matrix-vector product in only O((M — 1)log(M — 1)) operations.

The following lemma guarantees the invertibility of the matrix A™ defined in
(2.30).

Lemma 2.9. The coefficient matrix
A" =T+ oKh PG
of the linear system (2.29) is symmetric positive definite.

Proof. Let af; be the (i, j) entry of the A". We notice Lemma 2.5 and één) > 0,

thus
M-1 i—1
lafl = > lafl =& + oKh gy —oKn P Y g
J=1,3# j=—M+it+1,j70
1—1
=5 vokh? N g
Jj=—M+i+1
>eim > 0.

This implies that A™ is a strictly diagonally dominant matrix. According to Lemma
2.5, it is easy to prove that A™ is symmetric and all of its main diagonal elements
are positive. Hence, all its eigenvalues are positive. O

It is well-known that the conjugate gradient (CG) method is a popular and
effective Krylov subspace method [22] for solving symmetric positive systems with
Toeplitz coefficient matrix. Nevertheless, the drawback of the CG method is its slow
convergence when the eigenvalues of the coefficient matrix A™ are not clustered [6].
To overtake this shortcoming, we use the preconditioned CG method (PCG) to
solve such linear systems [22].

We propose a circulant preconditioner, which is generated from the famous R.
Chan’s circulant preconditioner [5] to solve the Toeplitz linear system (2.29). For
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a Toeplitz matrix G,, € C**™ with form of (2.31), the R. Chan’s circulant pre-
conditioner R,, makes use of all the entries [5]. Its entries Ty = Ti_j are given
by
90, k= 07
e =99kt gh—n, 0<k<n
Thtn, 0< —k<n.

Then the PCG method is employed to solve the following preconditioned system
(C™ A" = (Cc™)y" vt n=1,2,...,N,
and the R. Chan’s-based circulant preconditioner C™ takes the following form
cr =1+ oKh Pe(Q).
More precisely, the first column of ¢(G) is given by

i

(ﬁ) +g£ )M

(/3) + g(ﬁ)M

(ﬁ) )+ g(ﬁ)

B B
()_2+g(1)

Below we discuss the basic properties of the circulant preconditioner C".

Lemma 2.10. The circulant preconditioner
C" ="+ oKh Pe(G)
=G

s a symmetric positive definite matriz.

Proof. As similar to Lemma 2.9, suppose ¢y be the (i,7) entry of C™. Based on

Lemma 2.5 and c(() ") >0 we get

M-1 M—2
el = D 1l =@ + oKh Py —oKh (Y 1g)” + g%)))
=171 Jj=1
M—2
=) +oKn 7 Y gW
j=2—-M

A1)

>¢éy >0,
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which implies that C™ is a strictly diagonally dominant matrix. From Lemma 2.5,
we can easily know that the main diagonal elements of C"™ are positive and C" is
symmetric. Therefore, C™ is a symmetric positive definite matrix. O

Lemma 2.10 suggests that C™ is invertible. In addition, the eigenvalue distribu-
tions of preconditioned matrices (C™)~1A™ are theoretically proven to be clustered
around 1 [5]. The convergence rate of PCG is superlinear [6]. We will numerical-
ly demonstrate in Section 4 that the circulant preconditioner has good clustering
eigenvalues. It is both numerically and theoretically guaranteed that the compu-
tational cost per iteration of PCG is O((M — 1)log(M — 1)) and the total cost at
each time step is O((M — 1) log(M — 1)).

3. 2D problem

Consider the following 2D TDRFDEs:

u(z, y,t)
d|z|?

Iu(z,y,)
Jr x’ 7t b
R f(@,y,1)

(z,y) €Q, 0<t < T, (3.1)
u(z,y,t) =0, (2,y) €09, 0<t<T,
u(x,y,0) = ¢(z,y), (z,y) €,

where Q = (0, L1) x (0, Lg), 9 is the boundary of Q, f(z,y,t) and ¢(z,y) are given
functions. Especially, ¢(x,y) = 0 holds when (z,y) € 09.

In this section, we can directly extend the idea for solving the 1D problem (2.1)-
(2.3) to handle the 2D problem (3.1)-(3.3). We propose a second-order difference
scheme based on the interpolation approximation on a special point to solve the 2D
TDRFDEs. The unique solvability, unconditional stability and convergence of the
proposed difference scheme are also discussed. Furthermore, a multilevel circulant
preconditioner is proposed to accelerate the convergence rate of the Krylov subspace
method.

DY,y t) = K, + K>

3.1. Numerical discretization for (3.1)-(3.3)

To derive the difference scheme of (3.1)-(3.3), we first divide the interval [0, L;] into
M;-subintervals with h; = ]\% and x; = thy (0 <4 < M;), and divide the interval
[0, L3] into May-subintervals with hy = ALTQZ and y; = jho (0 < j < My).

Denote w = {(Za]) | 1 < 7 § Ml - 17 1 S] § M2 - 1}3 Ow = {(Za]) | (xiayj) €
00}, 0 =wlJOw. We define

Uinjzu(xivyjatn)a (i,j)G(IJ, OSTL<N;
fin_1+a = f(xiayjatn—1+o)7 (17]) €w, 1<n<N.

Suppose u(z, y,t) € C53) (Qx[0,T]). Considering (3.1) at the point (i, y;, tn—1+0),
we have

aﬂyu(l‘% Yjs tn—1+0)
Oyl

66U($1‘, Yjs tTL—1+U)
Ol

DY u(ws, gy tn140) = K + fre

1] ?

(3.4)

+ K>
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where (4,j) € w, 1 <n < N. Using Lemma 2.1 and Lemma 2.3, we get

n—1
DY u(wi, gy o) = 3 ) (ULTF = UL + O (7570 + Aa?) . (3.5)
k=0
Moreover, by applying the second-order linear interpolation formula to the Riesz
derivative on the right side of (3.4) and using Lemma 2.4, we obtain

8ﬁu($i7 Yjs tnflJra)
9lx|P

=—h? 3 o7 U+ (1= Ul | + O+,
k=i—M;
(3.6)

and
J

87“(33‘79‘775 —1+U) — n
] _h;k ZM o [oUl; o+ (1= U] + O3 + 72).
=J)— M2

(3.7)

By substituting (3.5)-(3.7) into (3.4), we can get
ZAM) Uiy~ * Uf}_k—l) :*thfﬁ Z gz(f) [UUin—k,j (1-0)UiZ klj]
0 k=i—M;
J
— Kby 3 g [oUn e+ (1 - o)UY
k=j— M,

fn 1+U+SZ;7

(1,7) Ew, 1 <n <N, (3.8)
where there exists a positive constant ¢y such that
| ST < ca (Bl +h3+7°+Ad®), (i,j) €Ew, 1<n<N. (3.9)
Notice the initial and boundary conditions (3.2)-(3.3), and we have
U;=0, (i,j) €0w, 0<n <N, (3.10)
Uioj = ¢(zi,y5), (4,7) € w. (3.11)

Thus, by neglecting the small term S7; in (3.8) and replacing the exact solution
U;; with the numerical ones uk & in (3. 8) and (3.10)-(3.11), we can get the difference
scheme for solving (3.1)-(3.3) as follows:

- i

Z e (™ ) = Kb 3T o [y + (0 -0
k=0 k=i— M,
d ( )
—Eohyt Y o ol o+ (1= o]
k=j—Ms
+ 7, (i) €w, 1<n <N, (3.12)
u; =0, (4,j) € 0w, 0<n <N, (3.13)

u?j = (b(xiayj)? (Zaj) € w. (314)
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3.2. Solvability, stability and convergence analysis

In this subsection, we show that the difference scheme (3.12)-(3.14) is uniquely
solvable, unconditionally stable and convergent with the order of O(h? + h3 + 72 +
Aa?).

Let Vi, = {v |v = {vij | (1,§) € ©}}, Vi = {v | v € Viu; vij = Owhen (i, ) € dw}.
For any v, w € Vh, the discrete inner product and the corresponding discrete Lo-
norms are defined as follows:

M;—1Mzy—1

( = hihs Z Z VijWij, and H’UH = m

We now work towards showing the unique solvability of difference scheme (3.12)-
(3.14). The desired result is reported by the following theorem.

Theorem 3.1. The difference scheme (3.12)-(3.14) is uniquely solvable.

Proof. Let u" = {u}; | (i,j) € @}. According to (3.13)-(3.14), the value of u°
is determined. Now suppose that {u* | 0 < k < n — 1} has been determined.
According to (3.12) and (3.13), we get a linear equation system with respect to u™.
Then we only need to prove that the corresponding homogeneous linear system

& uly = ~Kyohy? Z 9 iy — Kooy Z 9wl (009) € w
k=i— M1 _,] M2
u. =0, (i,7) € dw (3.16)

only has solution of 0.
We first rewrite the equation (3.15) as follows:

{(n)—i—KlO'h B (IB)"’KQO'h/ ’)’gé ):| 1]

J

—Kyoh;"” i: ( (ﬂ)) ui ;i + Kaohy " Z (—g,(J))uﬁj_k. (3.17)

k=i— M k=j— My
k0 k0
Let [|u"|oc =| u, ; |, where (in,jn) € w. We consider the equation (3.17) with

(i,5) = (in,Jjn) and take absolute values on both sides of the equation. Noticing
that the coefficients Ky > 0, Ko > 0, based on Lemma 2.5 and using triangle
inequality, we have

[+ Kaohy o + Kaohy g0 | Ju”

Jn

Ko 3 (=0) lt |+ Kooy 37 (=0i7)

k=in—M; k=jn— Mgz
k#0 k#0

< [Kiohi g + Kaoh 607 u"

Therefore, we get ||u"|| = 0, which indicates that the homogeneous linear equa-
tions (3.15)-(3.16) only have solution 0. According to the mathematical induction,
the difference scheme (3.12)-(3.14) is uniquely solvable. O
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We will now discuss the unconditional stability of the difference scheme (3.12)-
(3.14).

Theorem 3.2. Let {u; | (i,j) € @, 0 <n < N} be the solution of the difference
scheme (3.12)-(3.14). We have

(2L1)"  (2Ls)"
(5) K c(’Y)

1
2 < )+ 5 s 1 1< <N,

; Tarr(1 )

My—1My—1

where || f'=11||2 = hihsy Z Z ( = 1+‘7) .

i=

Proof. By multiplying (3.12) by hihe[ou}; + (1 — o)u};
with respect to w, we get

y 7 and summing up (4, 5)

- My—1 My—1
ZA(n)hth Z Z e k— 1) [O’U%ﬁ*(l*d)u?j_l]
k=0 i=1 gj=1
My—1 Mi—1 i
:—thQZ{hl hq Z Z gk louj 4 j+(1—0o)uf” kj] [Uu%—k(l—o)ufj*l]}
=1 k=1— M,
M;—1 My—1 j
_K2hlz{h Thy Z Z (7) ul i+ (1—o)u fjjk] [au%+(1—a)u?j_1]}
j=1k=j—M>
My—1 My—1
+ hihy Z Z FI [ouls + (1= o)uf (3.18)

According to Lemma 2.7, it follows that

Mi—1M>y—1

Zc(n)hlhg Z Z — ke 1) [au%—k(l—a)u?j_l}

1 — n— n—k—
52 (" #12 = lu*1)2) (3.19)

Using Lemma 2.8, we obtain

M;—1 i

—hh S Y o ot + (= o] [ou + (1 - o)
1=1 k=i—DM,
M;—1

<—P@L) P h Y [ou + (1 —o)ul ) (3.20)
=1
and
Ms—1
—h3The Y Z 2 [ uls o+ (1 —o—)ugg_lk} loufs + (1= o)uf; ']
j=1 k=j—M,
Mgfl 9
<-c (2L2) 7 he Z [ou; 4 (1 — a)u?j_l] . (3.21)
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By substituting (3.19)-(3.21) into (3.18), we get

1 . A n— n—k—
52 & (Il =* ) = a1
k=0

M;—1 May—1 9
< — ch(ﬂ) 2L1 Bh 1ho Z Z O’u + o‘)un,_l]

ij
=1 g=1
My—1 My—1

— Ko (2L0) Yy ko Z Z ouly + (1 — o)ul ']’

Mi—1 Ms—1
bt ST S R ot 1 o)
=1 j=1

< — ch('B)(2L1)75||au” + (1= o)u™
— K2 (2L) 7 |Jou™ + (1 — o)u 2|2
+ 1 flou™ + (1= o)u™ |

B v
J1e)’ | L)
—16 Kl CS«IB) KQCSK’Y)

)%, 1<n<N. (3.22)

With the use of Lemma 2.6, we have

A(n) > .170[,,‘ _1 7ar>} m )\T 2
Z)‘ 3oy 2 it —2§Tm~r(1—%)' (3:23)

By combining (3.22) and (3.23), we arrive at the following inequality:

& w1
n—1
R - R 20,)7 (L) | If" 0P

< (C(n) ")) ”un k||2+cgl") HUOH2+ ( 1 +

kz::l k=t ! chiﬁ) KQC,(.:Y) 8
n—1
<> (A =)

k=1

(7 (2L1) (2L2) 1 n—1+o
R e e e A 3
Lo “ X iy

where 1 < n < N. Applying the mathematical induction method to the above
inequality, we can get the conclusion of Theorem 3.2. This completes the proof.
O
Now we will prove that the proposed difference scheme (3.12)-(3.14) is uncondi-
tionally convergent in Lo-norm with the quadratic-order accuracy in all variables.
Suppose that {U% | (i,j) € @, 0 <n < N} is the exact solution of the system
(3.1)-(3.3) and {uf; | (4,j) € @, 0 < n < N} is the numerical solution of the
difference scheme (3.12)-(3.14). Let e}, = UJs —uf; ((4,j) € @, 0 <n < N).
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By subtracting (3.12)-(3.14) from (3.8), (3.10)-(3.11), respectively, we can get
the following error equations:

n—1
Zégl) (S;Lj—k I k— 1) *th B Z |: e, k.j =+ (1 — U)e:l—_krl,]:|

k=0 k=i—M;

j
— Kyhy"” Z g,(:) {Ue?,j_k +(1- 0)62;—14
k=j—DM>

+ S, (i,j) Ew, 1 <n <N,

’L]’

el =0, (i,j) €0w, 0<n <N,

Applying the conclusion of Theorem 3.2 and noticing (3.9), we have

e oL [@LD7 | (2La)7] 1
le ™ <3 | e & | Z
1Cx 2Cx Z T‘lrl"(l o)

! [(2L1)7  (2L,)7] 1

-4 _chiﬁ) KQC,(,;Y)

max HSlH2
1<i<n

[ea (h3 + h3+ 7%+ Aa?)]? Ly Lo.

m
} : Ap

- TorT(1—
=0 (I-ay)

By extracting the square root on both sides of the above equation, we acquire

2l
2

lle" || < (h? + h3+ 7> + Ad?),

(2L)8 (2L2)7] LyLy
(8) ™) A
K¢, Kaex TZ;O TorT(i=ar)

where 1 < n < N. Now, the following result can be arrived.

Theorem 3.3. Suppose that the continuous problem (3.1)-(3.3) has a smooth so-
lution u(z,y,t) € C®53(Q x [0,T]), and let u; be the solution of the difference
scheme (3.12)-(3.14). it holds that

len)l < 2

5 (R +h3+7°+ Aa?) , 1<n<N.

(2Ly)8 (2L2)A’] LiL,y

@) Ol N
ch* K2C* 720 T“TF({*QT)

3.3. Fast solution techniques with circulant preconditioner

Let
un — (un .« .. un un ... un un PRI un )T
- 1,1» s UMp—1,17 %1,2» » YM;—1,20 Y1, Ma—1> s UMy —1,M>—1/) >

T
= (fﬁh 7f]7v11171,17f{t27"' 7f]7\141—1,2af1n,M2717"' 7f]7\14171,M271) .

Then the implicit difference scheme (3.12) can be rewritten in the matrix form

M"'u" =p" ', n=1,2,...,N, (3.24)
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in which
M" =&V + 0KihiP L, ® Gy + 0Kohy "Gy @ I, (3.25)
and
Pl == (1 —0)[K1h P, ® G + Kohy "Gy @ I Ju
n—1
+ (één_)l . é’(ﬁn))unfk + éflnjluo + fnflJro'7
=1

=

where ® denotes the Kronecker product, I, Is and I3 are identity matrices with
orders of My —1, My —1 and (M; —1)(My — 1), respectively. G € R(Mi—)x(Mi—1)
and G., € R(M2=1D)x(M2=1) are Toeplitz matrices and have forms as (2.31).

The following lemma guarantees the invertibility of the coefficient matrix M™.

Lemma 3.1. The coefficient matrix
M" =" 15+ oK 1hi P, © Gg + 0 Kohy "G, @ Iy
of the linear system (3.24) is symmetric positive definite.

Proof. According to Lemma 2.5 and the definitions of the matrices Gg and G,
one can prove that Gz and G, are symmetric positive definite matrices. Therefore,
the matrices I» ® Gg and G, ® I; are also symmetric positive definite. Given that

& > 0 and K > 0, it is easy to show that the matrix M™, which is defined by
(3.25), is also a symmetric positive definite matrix. O

We also use the CG method for solving the linear system (3.24). In order to
improve the performance and reliability of the CG method, the preconditioning
techniques are exploited. We refer to the coefficient matrix M™ as a block Toeplitz
matrix with Toeplitz blocks (BTTB) [5], Therefore the following level-2 circulant
preconditioner which is a block circulant matrix with circulant blocks (BCCB) is
considered:

Cy =M + oK hiP I ® ¢(Gg) + 0 Kahy " e(G,) @ I

Similarly, we discuss the properties of the circulant preconditioner C% in the
following.

Lemma 3.2. The level-2 circulant preconditioner
Cy =I5+ oK hTP L ® o(Gg) + 0Kahy Ye(G,) ® I
s a symmetric positive definite matriz.

Proof. According to the proof of Lemma 2.10, it is easy to see that ¢(Gg) and
¢(G,) are symmetric positive definite matrices. Then, as similar to the Lemma 3.1,
we can prove that the level-2 circulant preconditioner C'§ is a symmetric positive
definite matrix. O

According to Lemma 3.2, we can know that the preconditioner C¥ is nonsingular.
Theoretically, for the BCCB matrix C¥, the spectrum of (C3)~1M™ is clustered
around 1 except for at most O(M; — 1) + O(M; — 1) outlying eigenvalues [5]. When
the PCG method is used to solve (3.24), the convergence rate will be fast. In
Section 4, we will also present numerical examples to demonstrate the usefulness of
the proposed circulant preconditioner C§. Thus, the total complexity of the PCG
method with preconditioner C¥ for solving the (3.24) remains O((M; — 1)(M3 —
1)log(My — 1)(Ms — 1)).
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4. Numerical example

In this section, we carry out numerical examples to demonstrate the second-order
accuracy of the proposed difference schemes and the computational efficiency of
the preconditioned Krylov subspace methods. At each time level, we employ the
Cholesky method, the CG method and the PCG method for solving the resultant
linear systems, respectively. The initial guess for all method is chosen as the zero
vector and the stopping criterion is ||r®|y/||r(? |y < 10712, where 7(*) is the
residual vector after k iterations. Number of iterations required for convergence and
CPU time of each method are reported. All numerical experiments are performed in
MATLAB (R2016a) on a desktop with 16GB RAM, Inter (R) Core (TM) i7-8700K
CPU @3.70GHz.

In Tables 4 and 8, “CPU(s)” denotes the total CPU time in seconds to solve the
linear systems, and “Iter” denotes the average number of iterations over 10 runs.
For the PCG method, we also report the Strang-based circulant preconditioner [22]
S™ and the T. Chan’s-based circulant preconditioner [5] 7. In all tables, “Chol”
denotes the Cholesky method, “PCG(S)” is the PCG with the Strang-based precon-
ditioner, “PCG(T)” is the PCG with the T. Chan’s-based circulant preconditioner,
and “PCG(C)” is the PCG with the proposed circulant preconditioner. Among
them, the circulant preconditioner S™ is shown below, and the circulant precondi-
tioner T takes the same form except that we replace the S with 7.

S* =& I+ oKh ?s(G)
and
Sy =I5+ oK hiPI, © s(Gp) + 0K3hy 's(G,) @ I,
where s(-) denotes the Strang circulant preconditioner for the Toeplitz matrix. More

precisely, the first column of the criculant matrix s(Gpg) is given by

i

o
i

)
I8

®)
1Y +1-m

e

g (_ ﬂl)
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Example 4.1. Consider the following 1D time distributed-order and Riesz space
fractional diffusion problem:

1 8 ‘

/ (5 — a)§ Du(z, t)da = W +flat), 0O<z<1, 0<t<T,
0 xr

uw(0,t) =0, u(l,t) =0, 0<t<T,

u(z,0) =0, 0<z<l,
with f(z,t) = fo(z,t) — ct*[fi(z,t) — 3fa(w,t) + 3f3(x,t) — fa(x,t)], where ¢ =

fm, fo(z,t) = 24¢3(t — 1)23(1 — x)3/Int, and

fi(@, t)=T(4)/T(4 = B)[a* P + (1 - 2)* 7],
fo(w,t)=T(5)/T(5 = B)[a*~F + (1 — 2)* 7],
fa(w,6)=T(6)/T(6 = B)[«"F + (1 —)° "],
falw, t)=T(7)/T(7 = B)[z57 + (1 — 2)5F).

The exact solution of this example is given by u(z,t) = t*23(1 — z)3.

Let e(h, 1, Aa) = Jmax |u(zi, tn, Aa) — ul|, where u(x;, tn, Aa) and ul are the
oiing
exact solution and numerical solution with the step sizes h, 7 and Ac«, respectively.
We define the convergence orders as

e(h, 7, Ax)
e(h/2, 7, Ac)

e(h, 7, Ax)
e(h,7/2, Aa)

e(h, 7, Ax)

ten =1 _elh, 7, Ac)
rateh =082 e(h, 7, Aa/2)

,rate; =log, ,rateaqo =logy

We take J = 50, M = 50, N = 50. Fig. 1 shows a comparison between the
exact solutions and numerical solutions of the difference scheme (2.17)-(2.19) when

solving Example 4.1 with different 8 and T'. The good agreement between numerical
solutions with the exact solutions can be clearly seen.

008 , T 008
/v"‘\x iy
*
0.07 f X 0.07
0.06 \ 006
i \
¢ *
005 | \ 005
i X i k
= / \ =
X004 r A 2004
3 / \ 3
] oons, \ 2oeey
0.03 b4 o e, X 1 0.03 hd o *.
P X Y Y,
¥ . \ & .
0.02 [ P * ‘\ 4 0.02 L Y *
s % o "
/ \ .
F oy ‘\’ *\ * ’/ 5 x
oot ;& 44e * " 1 oot P POV \’\ X 1
<4< 4. 4 2
o g v“n“" o e R NOU “
o et . . e RPPH4 o Lewiteeat® . . e A2
0 02 04 06 08 1 0 02 04 06 08 1
X X
(@) f =13 (b) B =18

Figure 1. Exact solutions (lines) and numerical solutions (symbols) of Example 4.1: (a) 8 = 1.3 at T =
1.5 (stars), 1.2 (rhombus), 0.8 (triangles); (b) 8 = 1.8 at T' = 1.5 (stars), 1.2 (rhombus), 0.8 (triangles).
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Some numerical results of the maximum errors as well as the spatial convergence
orders for Example 4.1 with § = 1.2, 1.5 and 1.8 when T'= 1.5, J = 50, N = 1000
are recorded in Table 1. The second-order convergence of the difference scheme
(2.17)-(2.19) in space can be obtained, and the results are in good agreement with
what we expect.

Table 1. Maximum errors and spatial convergence orders of difference scheme (2.17)-(2.19) for Example
4.1 with T' = 1.5; J = 50; N = 1000.

F=12 B=15 F=18
M e(h, 7, Ax) raten e(h, T, Aa) ratenp e(h, 7, Aa) ratep,
32 3.423357e-05 - 6.057253e-05 - 9.145302e-05 -
64 8.665990e-06  1.9820  1.538522e-05 1.9771  2.313195e-05 1.9831
128  2.165532e-06  2.0006  3.847714e-06 1.9995  5.789457e-06  1.9984
256 5.410059e-07 2.0010 9.617429e-07 2.0003 1.449718e-06 1.9977
512 1.353449e-07  1.9990  2.404824e-07  1.9997  3.637954e-07  1.9946

When T' = 1.5, J = 50, M = 1000, Table 2 provides numerical results of the
maximum errors and the temporal convergence orders for Example 4.1 with different
. Form Table 2, we can see that the temporal convergence order of the difference
scheme (2.17)-(2.19) is 2, which is consistent with the theoretical analysis.

Table 2. Maximum errors and temporal convergence orders of difference scheme (2.17)-(2.19) for Ex-
ample 4.1 with T' = 1.5; J = 50; M = 1000.

F=12 B=15 F=18
N e(h, 7, Ax) rater e(h, 7, Ax) rater e(h, 7, Aa) rater
8 5.113611e-04 - 6.193316e-04 - 7.401543e-04 -
16 1.294286e-04  1.9822  1.590357e-04  1.9614  1.921523e-04  1.9456
32 3.228485e-05  2.0032  4.014123e-05  1.9862  4.892436e-05  1.9736
64 8.019176e-06  2.0093  1.004941e-05 1.9980 1.231641e-05  1.9900
128  2.005007e-06  1.9998  2.508026e-06  2.0025  3.067275e-06  2.0056

Table 3 gives the maximum errors and distributed-order integral convergence
rate for Example 4.1 with g = 1.2, 1.5 and 1.8 respectively at T = 1.5, M =
2000, N = 2000 and various values of J. The desirable second-order convergence
of the difference scheme (2.17)-(2.19) is verified. According to the results listed in
these three tables, the convergence accuracy of the difference scheme (2.17)-(2.19)
of O(h? + 72 + Aa?) can be observed.

Table 3. Maximum errors and distributed-order integral convergence orders of difference scheme (2.17)-
(2.19) for Example 4.1 with 7' = 1.5; M = 2000; N = 2000.

B=12 B=15 p=18

J e(h, T, Aa) rateaa e(h, T, Aa) rateaa e(h, T, Aa) rateaa
2 3.774623e-05 3.492953e-05 3.152437e-05 -
4
8

9.457965e-06  1.9967  8.747785e-06  1.9975  7.889510e-06  1.9985
2.366072e-06  1.9990  2.185762e-06  2.0008  1.967605e-06  2.0035
6  5.917841e-07  1.9994  5.441518e-07  2.0061  4.862444e-07  2.0167
2 1.480919e-07  1.9986  1.336461e-07  2.0256  1.158196e-07  2.0698

W =
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From Table 4, one can see that the CPU times of the PCG methods are much less
than that of the Cholesky method and the CG method. We also see that the PCG
methods exhibit excellent performance in terms of iteration steps, and the number
of iteration steps barely increases as M and IV increase rapidly. The performance
of the R. Chan’s-based circulant preconditioner is best among all.

Table 4. Comparisons on Example 4.1 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where 8 = 1.2, 1.5 and 1.8, J = 50 and T = 1.5.

Chol CG PCG(S) PCG(T) PCG(C)

B8 M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter
25 25 0.01 001 210 001 70 001 70 0.01 6.0
27 25 0.03 004 269 003 70 003 7.0 0.02 6.0
28 27 0.10 0.15 31.0 008 60 009 70 0.08 6.0
1.2 2° 28 092 070 359 032 60 034 70 031 6.0
210 929 77 1.75 400 0.74 60 08 7.0 0.73 6.0
211 210 8332  11.29 44.0 412 6.0 410 6.0 4.09 6.0

26 2% 0.01 0.02 310 0.01 80 001 9.0 0.01 6.0
27 25 0.03 006 49.0 003 70 0.03 9.0 0.02 6.0
28 27 0.10 027 730 009 70 010 9.0 0.08 6.0
1.5 2° 28 0.92 150 99.0 032 60 036 80 0.34 7.0
210 29 769 467 1260 079 70 08 80 0.79 7.0
ot 910 8313 3523 1580 446 7.0 480 80 4.45 7.0

260 25 .01 0.02 320 0.0l 80 0.01 100 0.01 6.0
2" 26 0.03 0.08 640 003 80 0.03 119 0.02 6.0
28 27 0.10 0.40 1200 009 75 0.11 13.0 0.08 6.0
1.8 2° 28 0091 322 2150 035 7.5 049 140 0.32 6.0
210 29 766 12.63 3640 074 6.0 1.16 140 0.84 7.8
2tt 210 8305 117.39 552.0 479 80 6.82 140 4.77 8.0

Table 5 reports the memory usage of the above methods for Example 4.1. As
seen from Table 5, the PCG methods and the CG method have similar performances
in terms of the memory requirement, and they are considerably better than the
Cholesky method. Because the direct method (the Cholesky method) needs to
store dense coefficient matrices, while the iterative methods (the PCG methods and
the CG method) do not need to store any dense matrices.

Table 5. Memory comparisons on Example 4.1 between the Cholesky method, the CG method, and the
PCG methods, where 8 = 1.2, J = 50 and T' = 1.5.

M N Chol CG PCG(S) PCG(T) PCG(C)
29 28 4.65 MB 2.15 MB 2.15 MB 2.16 MB 2.16 MB
210 29 25.46 MB 9.16 MB 9.17 MB 9.17 MB 9.17 MB
211 219 11430 MB 38.73MB  38.75 MB  38.75 MB  38.76 MB

The spectrum of the original matrix A™ and the preconditioned matrix (C™)~* A"
are plotted in Figs. 2-3. We can see that the eigenvalues of the preconditioned ma-
trix (C™)~1A™ lie within a small interval around 1, expect for few outliers, yet all
the eigenvalues are well separated away from 0. This confirms that the circulant
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preconditioner have nice clustering properties.

1 1
+ )\I:eig(A") + )\I:eig(A")
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Figure 2. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for
Example 4.1 at time level (a) n = 0 and (b) n = 1, respectively, when M = N = 128, J = 50, 8 = 1.8,
and T = 1.5.

1 + )\i:eig(A") 1
+ A=eig(A")
* A =eig((C")*A") .
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Figure 3. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for
Example 4.1 at time level (a) n = 0 and (b) n = 1, respectively, when M = N = 256, J = 50, 8 = 1.8,
and T = 1.5.

Example 4.2. Consider the following 1D time distributed-order and Riesz space
fractional diffusion problem:

fol (5 - a)§ Dfu(z, t)da = % + f(z,t), 0<zxz<1, 0<t<T,

w(0,8) =0, u(l,t) =0, 0<t<T,
u(z,0) =0, 0<z<l,
where f(z,t) = 22t%.

Since we do not know the exact solution, we treat the calculated solution for a
very fine spatial mesh as the exact solution. The fine mesh is 2! x 22 (M x N).
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Table 6. Comparisons on Example 4.2 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where 8 = 1.2, 1.5 and 1.8, J = 50 and T = 1.5.

Chol CG PCG(S) PCG(T) PCG(C)

B M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter
25 27 0.00 001 312 000 90 000 9.0 0.00 8.0
27 25 0.01 0.02 391 0.0l 90 001 90 0.01 8.0
28 26 0.02 0.08 464 0.02 90 002 90 0.02 8.0
1.2 2° 27 041 0.40 53.6 0.13 10.0 0.13 9.0 0.13 9.0
210 928 375 1.09 608 033 96 031 9.0 0.31 9.0
21t 929 40.75 775 680 199 9.0 200 90 1.98 9.0

26 24 0.00 0.01 51.1 0.00 109 0.00 11.4 0.00 8.0
27 25 0.01 004 789 001 97 001 124 0.01 8.4
28 26 0.02 0.18 113.0 0.03 10.0 0.03 130 0.02 9.5
1.5 2° 27 044 1.10 151.7 0.14 10.0 0.17 130 0.14 9.9
210 98 3892 3.32 1950 0.34 100 041 127 0.33 10.0
2t 99 40.58  26.25 2447 234 11.0 250 120 2.32 11.0

26 2% 0.00 0.01 63.0 0.00 100 0.00 150 0.00 9.0
27 25 0.01 0.06 1200 0.01 109 0.02 170 0.01 9.0
28 26 0.02 0.34 2173 0.03 11.0 0.04 180 0.03 10.0
1.8 29 27 043 268 3781 0.14 102 0.24 20.0 0.13 10.0
210 98 381 10.09 603.4 035 100 0.61 202 0.33 10.0
211 29 4090 92.28 875.0 2.17 10.0 4.00 20.7 2.15 10.0

Table 7. Comparisons on Example 4.2 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where 8 = 1.2, 1.5 and 1.8, J = 50 and T" = 6.

Chol CG PCG(S) PCG(T) PCG(C)

B M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter
25 2% 0.00 0.01 39.1 0.00 100 0.00 10.0 0.00 8.0
27 25 0.01 0.03 54.1 0.01 97 0.01 11.0 0.01 9.0
28 25 0.02 0.11 70.5 0.02 100 002 11.0 0.02 9.0
1.2 29 27 0.38 0.64 87.7 0.12 100 0.13 11.0 0.12 9.0
210 28 362 1.81 1047 029 11.0 0.30 11.0 0.28 10.0
2t 99 3997 1295 1214 2.12 11.0 201 103 1.99 10.1

20 2% 0.00 0.01 55.8 0.00 11.0 0.00 132 0.00 8.0
27 25 0.01 0.05 92.1 0.01 119 0.01 141 0.01 10.0
28 26 0.02 0.22 1464 0.02 106 0.03 15.0 0.02 10.0
1.5 2° 27 0.38 1.60 2231 0.12 10.0 0.18 159 0.13 11.0
210 98 359 533 3198 029 11.0 0.38 151 0.29 11.0
211 29 39080  44.90 4295 2.11 11.0 273 150 2.10 11.0

26 2% 0.00 0.01 63.0 0.00 11.1 000 160 0.00 9.0
27 25 0.01 0.06 120.0 0.01 11.0 0.01 180 0.01 9.8
28 25 0.02 0.33  229.1  0.02 120 0.04 20.6 0.02 10.0
1.8 2° 27 0.37 298 4205 0.13 11.0 0.25 24.0 0.12 10.0
210 928 359 12.50 758.6 029 11.0 0.64 27.3 0.29 11.0
211 29 3955 136.81 1321.1 226 12.0 5.07 30.0 2.11 11.0
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From Tables 6-7, we see that the PCG methods exhibit excellent performance
both in terms of CPU time and iteration steps, and the proposed PCG(C) method
is the best one.

Table 8 reports the memory usage of the above methods for Example 4.2. As
seen from Table 8, the PCG methods and the CG method have similar performances
in terms of the memory requirement, and they are considerably better than the
Cholesky method.

Table 8. Memory comparisons on Example 4.2 between the Cholesky method, the CG method, and the
PCG methods, where 8 = 1.5, J = 50 and T' = 6.

M N Chol CG PCG(S) PCG(T) PCG(C)
29 27 3.06 MB 0.51 MB 0.51 MB 0.51 MB 0.51 MB
210 28 18.36 MB 1.95 MB 1.96 MB 1.96 MB 1.96 MB
211 29 83.43 MB 7.63 MB 7.66 MB 7.66 MB 7.66 MB

Example 4.3. Consider the following 2D time distributed-order and Riesz space
fractional diffusion problem:

JET(5 = )§ Deu(a, y, t)da = Luley | ey 4oy ),

Olz[? oyl
(x,y) €, 0<t<T,
u(x,y,t) =0, (z,y) €00, 0<t<T,

u(z,y,0) =0, (z,y) €L,
with = (0,1) x (0,1), and

f(z,y,1)
=fola,y,t) — ert'y> (1 = y)°[fi(z,y,t) = 3fo(w,y, 1) + 3f3(x,y,t) — fa(w,y,1)]
- 62t41153(1 - x)g[gl(xaya t) - 392($7yat) + 393('7:’ yvt) - 94(1‘7 y?t)]v

where ¢ = —m7 co = —W, and
folz,y,t) = 24t3(t — D23 (1 — 2)3y>*(1 — y)*/ Int,
fila,y,t) =T(4)/T(4 - B)[2* P + (1 —2)*7],
fa(a,y,t) =T(5)/T(5 — B)[z*F + (1 —x)*~7],
fa(z,y,0) =T(6)/T(6 — B)[z°" + (1 — 2)° 7],
fa(@,y,t) =T(7)/T(T = B)[2°F + (1 — 2)°77],
91(z,y, 1) =T(4) /T4 = N* 7+ (1 -y)*77],
g2(x,y,t) =T(5) /TG =N 7+ (1 —y)*77],
g3(x,y, 1) =T(6)/T(6 —)[y>~ 7 + (1 —y)°77],
9a(,y, 1) = T(7)/T(T=P* 7+ (1 -y)°* 7]

The exact solution of the example is u(z,t) = t*z3(1 — z)3y>(1 — y)3.
For simplicity, take hy = he = h, and M; = My = M. Let e(h,7,Aa) =
max [u(i, yj, tn, Acr) — |, where u(z;, y;, tn, Aa) and uj’; represent the

0<i<Mp, 0<j<My
0<n<N
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exact solution and numerical solution with the step sizes iNL, 7 and Aq, respectively.
The convergence orders are defined as

N h,7,Aa)  — ho7 Aa)  — h, T, A
ratep, =log, M,r —logQM rateaq, =logy ( )

e(h/2,1, Aa) e(h,7/2, Ac) e(h,7,Aa/2)

Fig. 4 exhibits the solution surface of Example 4.3 with J = 50, M =40, N =

10atT=1,=~v=18and T = 0.5, 8 = v = 1.3, respectively. It can be seen
that the numerical solutions are in good conformity with the exact solutions.

%107
25
7N \
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Figure 4. The solution surfaces obtained from Example 4.3 at J = 50, M =40 and N = 10: (a) the
exact solution with T' = 1, 8 = v = 1.8; (b) the numerical solution with 7' =1, 8 = v = 1.8 by the
scheme (3.12)-(3.14); (c) the exact solution with T'= 0.5, 8 = v = 1.3; (d) the numerical solution with
T = 0.5, B = v = 1.3 by the scheme (3.12)-(3.14);

When T' = 1.5, J = 50 and N = 2000, Table 9 lists the maximum errors and
convergence orders in spatial of the difference scheme with f = v = 1.2, 1.5 and
1.8, respectively. From the numerical results we can conclude that the difference
scheme (3.12)-(3.14) has the second-order convergence in spatial directions.
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Table 9. Maximum errors and spatial convergence orders of difference scheme (3.12)-(3.14) for Example
4.3 with T' = 1.5; J = 50; N = 2000.

B=~v=12 B=~v=15 B=~v=18
M e(h, 7, Ac) raten, e(h, 7, Ac) ratey, e(h, T, Ac) rater,
8 1.287397e-05 - 2.196133e-05 - 3.333244e-05 -
16 3.193383e-06  2.0113  5.413665e-06  2.0203  8.121444e-06  2.0371
32 7.961929e-07  2.0039  1.348003e-06  2.0058  2.016181e-06  2.0101
64  1.982329e-07  2.0059  3.360192e-07  2.0042  5.025245e-07  2.0044
128  4.880024e-08  2.0222  8.327729e-08  2.0125  1.249136e-07  2.0083

When taking the fixed T = 1.5, J = 50, M = 100, the maximum errors and
convergence orders in temporal of the difference scheme (3.12)-(3.14) with § =y =
1.2, 1.5 and 1.8 are listed in Table 10, respectively. From the numerical results in
Table 10 we can clearly see that the convergence order in temporal of the difference
scheme (3.12)-(3.14) is also nearly 2, which is in accord with the theoretical analysis.

Table 10. Maximum errors and temporal convergence orders of difference scheme (3.12)-(3.14) for
Example 4.3 with T = 1.5; J = 50; M = 300.

B=~v=12 B=~v=15 B=~v=18
N e(h, T, Ac) rate, e(h, 7, Ac) rate, e(h, 7, Ac) rate,
4 4.143174e-05 - 4.904054e-05 - 5.654620e-05 -
8 1.114619e-05  1.8942  1.334121e-05 1.8781  1.550841e-05  1.8664
16 2.888455e-06  1.9482  3.479612e-06  1.9389  4.067734e-06  1.9308
32 7.263603e-07 1.9915 8.810213e-07  1.9817  1.031666e-06  1.9792
64  1.767839e-07  2.0387  2.124202e-07  2.0523  2.460280e-07  2.0681

The numerical accuracy of scheme (3.12)-(3.14) for Example 4.3 in distributed-
order integral variable is investigated. When T' = 1.5, J = 50, M = 100, Table 11
displays the computational results using the difference scheme (3.12)-(3.14) with § =
v =1.2, 1.5 and 1.8, respectively. One can draw the conclusion that the convergence
accuracy in distributed-order integral variable is O(Aa?). Namely, the numerical
convergence order of the difference scheme (3.12)-(3.14) is O(h? + h3 + 72 + Aa?).

Table 11. Maximum errors and distributed-order integral convergence orders of difference scheme
(3.12)-(3.14) for Example 4.3 with T" = 1.5; M = 800; N = 2000.
B=~v=12 B=~v=15 B=~v=18

J e(ﬁ, 7, Ax) rateaa e(ﬁ7 7, Aa) rateaa e(ﬁ7 7, Aa) rateaq

1 2.037150e-06 - 1.777609e-06 - 1.489954e-06 -

2 5.120092e-07 1.9923 4.455139e-07 1.9964 3.719972e-07  2.0019

4 1.274115e-07 2.0067 1.101005e-07 2.0166 9.090557e-08 2.0329

8  3.105365e-08 2.0367 2.609633e-08 2.0769 2.053103e-08 2.1466

From Table 12, we can observe that the CPU time of the PCG method with
circulant preconditioners is much less than that of the Cholesky method and the
CG method. We also see that the number of iteration steps of the PCG method
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barely increases as the number of the spatial grid points increases. The performance
of the R. Chan’s-based circulant preconditioner is best amongst all.

Table 12. Comparisons on Example 4.3 between the Cholesky method, the CG method, and the PCG
method with different circulant preconditioners, where 8 = v = 1.2, 1.5, 1.8, J = 50 and T' = 1.5.

Chol CG PCG(S) PCG(T) PCG(C)

=y M N CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter
2% 23 0.01 0.01 10.0 0.01 100 001 &80 0.01 7.0
24 2% 0.02 0.03 150 0.03 90 003 81 0.03 9.0
1.2 25 25 0.29 029 19.0 022 100 021 9.0 0.21 9.0
26 26 16.55 142 230 106 100 1.01 9.0 1.06 10.0
27 27 2029.77 16.32 27.0 10.06 100 952 9.0 10.04 10.0

23 22 0.01 0.01 10.0 0.01 12.0 0.01 80 0.01 8.0
24 2% 0.03 0.04 200 003 121 0.03 11.0 0.03 10.0
1.5 2% 25 0.30 042 319 027 13.0 0.25 120 0.24 12.0
26 26 16.52 225 460 1.21 130 120 13.0 1.20 13.0
27 27 2030.88 31.66 63.0 12.17 14.0 11.84 13.4 12.16 14.0

23 22 0.01 0.01 10.0 0.01 140 001 9.0 0.01 8.0
2t 2* 0.03 0.05 259 004 150 0.04 13.0 0.03 11.0
1.8 2% 25  0.30 0.56 45.0 0.30 16.1 0.30 16.0 0.26 13.0
26 26 16.33 345 79.0 143 179 149 19.0 1.29 15.0
27 27 1999.64 59.59 128.0 14.78 18.9 16.94 23.0 13.74 16.9

Table 13 reports the memory usage of the above methods for Example 4.3. From
Table 13, we can see that the PCG methods and the CG method have similar perfor-
mances in terms of the memory requirement, and they are considerably better than
the Cholesky method. Because the direct method needs to store dense coefficient
matrices, while the iterative methods do not need to store any dense matrices.

Table 13. Memory comparisons on Example 4.3 between the Cholesky method, the CG method, and
the PCG methods, where 8 = 1.8, J = 50 and T = 1.5.

M N Chol CG PCG(S) PCG(T) PCG(C)
25 2P 7.91 MB 0.14 MB 0.16 MB 0.15 MB 0.15 MB
26 26 129.35 MB 1.41 MB 1.51 MB 1.43 MB 1.43 MB
27 27 2045.17 MB 1229 MB 1252 MB  12.36 MB  12.36 MB

The spectrum of the matrix M™ and the preconditioned matrix (C3)~'M™ are
plotted in Figs. 5-6. These two figures also confirm that the circulant preconditioner
have nice clustering properties. It shows that the eigenvalues of the preconditioned
matrix are well grouped around 1 expect for few outliers. The vast majority of the
eigenvalues are well separated away from 0.

5. Conclusion

In this paper, efficient second-order difference schemes are proposed for one- and
two-dimensional TDRFDEs. We first discretize the time distributed-order integral
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Figure 5. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for

Example 4.3 at time level (a) n = 0 and (b) n = 1, respectively, when M=N=64,J =50,8=n~=
1.5, and T = 1.5.
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Figure 6. Spectrum of original matrice (red) and R. Chan’s-based preconditioned matrice (blue) for
Example 4.3 at time level (a) n = 0 and (b) n = 1, respectively, when M = N = 128, J = 50, 8 = v =
1.5, and T' = 1.5.

term by using composite trapezoid formula and transform the TDRFDEs into the
multi-term time-space FDEs. Then we solve the multi-term time-space FDEs with
the second-order accurate interpolation approximation on a special point. We prove
that the proposed difference schemes are uniquely solvable, unconditionally stable
and convergent in the mesh Ly-norm with second-order accuracy in time, space and
distributed-order integral variables. Moreover, we have proposed an efficient imple-
mentation of the proposed scheme based on the PCG method with R. Chan’s-based
circulant preconditioner, which only requires O((M —1)log(M —1)) computational
complexity and O((M — 1) storage cost. Numerical experiments confirm the theo-
retical results and show the effectiveness of the proposed preconditioned method. In
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future work, we will focus on the development of the effective numerical methods for
solving high-dimensional time distributed-order fractional diffusion-wave equations.
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