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1. Introduction

Let A be an n× n complex matrix. The quadratic matrix equation

AXA = XAX (1.1)

is called the Yang-Baxter-like matrix equation. An equation of similar pattern first
appeared in [11] in 1967 and then in [1] in 1972 independently, and it has been named
the Yang-Baxter equation that has found many applications in the fields of quantum
theory, statistical mechanics, braid group and knot theory [12]. The Yang-Baxter
matrix equation is the counterpart of the classic Yang-Baxter equation in matrix
theory, and it has been investigated in recent years, see, for example, [3–5, 10, 13]
and the references therein. So far, most obtained solutions are commuting ones,
that is, the solutions X satisfying the commutability condition AX = XA. Finding
all non-commuting solutions and thus all the solutions of the Yang-Baxter matrix
equation is a challenging task, and up to now there are only isolated results toward
this goal for special classes of matrices.

In a previous paper [6], we were able to find all the solutions of (1.1) when
the square of A equals the identity matrix, using various spectral analysis and
perturbation results. Our purpose here is to solve the Yang-Baxter-like matrix
equation (1.1) for a given matrix A satisfying A3 = A, and our purpose is to find
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all solutions. Clearly, if A2 = I, then A3 = A, so our previous results should play
a role in the more general situation. Indeed, as can be seen from the next section,
the process of finding all solutions when A satisfies A3 = A contains the problem
of solving (1.1) with A2 = I.

This paper is organized as follows. We give some preliminary results in Section
2, and we also construct all the commuting solutions of (1.1). Then we solve the
matrix equation for different cases of the minimal polynomial. We conclude in
Section 5.

2. Preliminary Results

For the purpose of finding all solutions of (1.1) with A3 = A using solutions of
the same equation with A2 = I, we need the following lemma.

Lemma 2.1. Let A = diag{K,J} be an n× n matrix such that K is k × k. Then
the solutions of (1.1) are

X =

V C

B W

 , (2.1)

where the sub-matrices V,C,B,W satisfy

KVK = V KV + CJB,

KCJ = V KC + CJW,

JBK = BKV +WJB,

JWJ = BKC +WJW.

(2.2)

In particular, if J = 0, then (2.2) is reduced to

KVK = V KV,

V KC = 0,

BKV = 0,

BKC = 0.

(2.3)

Proof The lemma follows from

AXA =

K
J

V C

B W

K
J

 =

KVK KCJ

JBK JWJ


and

XAX =

V C

B W

K
J

V C

B W

 =

 V KV + CJB VKC + CJW

BKV +WJB BKC +WJW

 . �

Throughout the paper we assume that A is an n×n complex matrix with n ≥ 3
such that A3 = A. Our purpose is to find all the solutions to the corresponding
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matrix equation (1.1). Since A3 − A = 0, the polynomial p(λ) = λ3 − λ is an
annihilator of A, that is, p(A) = 0. Thus from the theory of matrix polynomials [7],
the minimal polynomial g(λ) of A, which is the unique annihilator of A with minimal
degree and leading coefficient 1, is a factor of p(λ).

It is well-known that the zeros of the minimal polynomial of any square matrix
give all the eigenvalues of the matrix and an eigenvalue λ0 is semisimple, that
is the algebraic multiplicity of λ0 equals its geometric multiplicity, if and only if
the multiplicity of λ0, as a zero of the minimal polynomial, is 1. Since p(λ) =
λ(λ−1)(λ+ 1), the eigenvalues of A constitute a subset of {0, 1,−1}. Furthermore,
each eigenvalue of A is semisimple, so A is diagonalizable. In other words, there is
a nonsingular matrix U such that AU = UD, where D is a diagonal matrix.

Now, there are several cases of the given matrix A for us to consider. We omit
the trivial cases that the minimal polynomial of A is g(λ) = λ or g(λ) = λ− 1. In
the former A = 0 and all matrices of the same order are solutions, and in the latter
A = I and the solutions are exactly all idempotents. It is also trivial to see that if
g(λ) = λ+ 1, then A = −I, and so all the solutions of (1.1) are the matrices B such
that B2 = −B, which will be called skew-idempotents. The remaining nontrivial
cases are listed as follows:

Case I. The minimal polynomial of A is g(λ) = λ(λ− 1).
Case II. The minimal polynomial of A is g(λ) = λ(λ+ 1).
Case III. The minimal polynomial of A is g(λ) = (λ− 1)(λ+ 1).
Case IV. The minimal polynomial of A is g(λ) = λ(λ− 1)(λ+ 1).

We give an analysis of each case above in the next section.

3. Solutions of the Matrix Equation

Our task in this section is to find all the solutions of the Yang-Baxter-like matrix
equation for each of the four cases listed at the end of the above section. Since A
is diagonalizable, we assume that in all cases, there is a nonsingular matrix U such
that AU = UD, where D is a diagonal matrix. Then, as can be shown easily,
solving the original Yang-Baxter-like matrix equation AXA = XAX is equivalent
to solving a simpler one

DYD = Y DY (3.1)

in the sense that, any solution Y to the latter gives rise to a solution X = UY U−1

to the former, and any solution X of (1.1) can be written as X = UY U−1 for some
solution Y of (3.1). More over, X is a commuting solution if and only if Y is a
commuting solution. Because of the equivalence, the similarity matrix U consisting
of linearly independent eigenvectors of A, is assumed to be known, and we only
solve (3.1) to get solutions of the original equation.

In the following we denote the rank of A by m. Then the Jordan form of A is

D = diag{K, 0}. (3.2)

We then partition Y as

Y =

V C

B W

 (3.3)
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according to the block structure of D.

3.1. Case I: A2 = A

Suppose A2 = A. Then the Jordan form of the idempotent A is

D = diag{Im, 0},

where Im is the m ×m identity matrix. The equation (1.1) in this case has been
studied previously by [2, 8], but for the completeness of the presentation, we sum-
marize the main results of [2, 8] in a different but equivalent form in the following
theorem.

Theorem 3.1. Let A be an n× n idempotent with rank m. Then all the solutions
of (1.1) are given by

X = U

V C

B W

U−1. (3.4)

Here W is an arbitrary (n−m)×(n−m) matrix and the other sub-matrices V,C,B
in (3.4) are constructed as follows: For any m×m nonsingular matrix S partitioned
as

S = [S1 S2] (3.5)

and its inverse partitioned as

S−1 =

 S̃1

S̃2

 , (3.6)

where S1 ism×s and S̃1 is s×m, them×m matrix V = S1S̃1, them×(n−m) matrix
C = S2E, and the (n−m)×m matrix B = GS̃2 with arbitrary (m− s)× (n−m)
matrix E and (n−m)× (m− s) matrix G satisfying GE = 0.

In addition, X is a commuting solution if and only if E = 0 and G = 0.

3.2. Case II: A2 = −A
Under the assumption that A2 = −A, the Jordan form of the skew-idempotent

A is D = diag{−Im, 0}. By applying Lemma 2.1 to D, we see that the equation
(3.1) with Y given by (3.3) is equivalent to

V 2 = −V, V C = 0, BV = 0, BC = 0. (3.7)

Using the same approach as in [8], we have the following conclusion.

Theorem 3.2. Let A be an n × n matrix such that A2 = −A with rank m. Then
all the solutions of (1.1) are given by (3.4), where the (n−m)× (n−m) matrix W
is arbitrary, and given any m ×m nonsingular matrix S partitioned as (3.5) and
its inverse partitioned as (3.6),

V = −S1S̃1, C = S2E and B = GS̃2
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with arbitrary (m−s)×(n−m) matrix E and (n−m)×(m−s) matrix G satisfying
GE = 0.

In addition, X is a commuting solution if and only if E = 0 and G = 0.

3.3. Case III: A2 = I

In this case A is nonsingular with two eigenvalues 1 and −1. Let k be the
multiplicity of eigenvalue 1, and let D = diag{Ik,−In−k} be the Jordan form of A.
To solve the equation (3.1), we partition Y as

Y =

 S F

E T

 (3.8)

accordingly. Then the system (2.2) in Lemma 2.1 becomes

S = S2 − FE,

F = FT − SF,

E = TE − ES,

T = EF − T 2.

(3.9)

All commuting solutions and non-commuting solutions of the above system have
been found in [9] and [6] respectively. We summarize the main results as the fol-
lowing theorem.

Theorem 3.3. Let A be an n × n matrix such that A2 = I, and let k be the
multiplicity of eigenvalue 1. Then

1. All the commuting solutions of (1.1) are given by

X = U

S 0

0 T

U−1,

where S and T satisfy
S2 = S and T 2 = −T.

2. All the non-commuting solutions of (1.1) are given by

X = U

 S F

E T

U−1,

where S is any k×k diagonalizable matrix and T is any (n−k)×(n−k) diagonalizable
matrix such that

(i) the nonzero matrices F and E have the same rank r such that

FEF =
3

4
F and EFE =

3

4
E;

(ii) S and T have eigenvalue −1/2 and 1/2 of multiplicity r, respectively;
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(iii) the nonzero columns of F and nonzero rows of E are eigenvectors and
left eigenvectors of S respectively associated with eigenvalue −1/2, and the nonzero
columns of E and nonzero rows of F are eigenvectors and left eigenvectors of T
respectively associated with eigenvalue 1/2;

(iv) the other eigenvalues of S and T belong to {0, 1} and {0,−1}, respectively.

3.4. Case IV: A3 = A

Now we consider the remaining case that the minimal polynomial of A is g(λ) =
λ3 − λ. Assume that the rank of A is m and the multiplicity of eigenvalue 1 is k.
Then we can write the Jordan form of A as D = diag{Ik,−Im−k, 0}. By the general
result of [4], all the commuting solutions of DYD = Y DY are Y = diag{S, T,W},
where S = S2, T = −T 2, and W is arbitrary. Hence we have the following result.

Theorem 3.4. Let A be an n×n matrix such that A3 = A with minimal polynomial
λ3 − λ. Suppose the rank of A is m and the multiplicity of eigenvalue 1 is k. Then
all the commuting solutions of (1.1) are given by

X = Udiag{S, T,W}U−1,

where S is any k× k idempotent, T is any (m− k)× (m− k) skew idempotent, and
W is any (n−m)× (n−m) matrix.

To find all the non-commuting solutions, we write D as (3.2) with

K = diag{Ik,−Im−k}

and partition Y in (3.1) as in (3.3), where V has the same size as K. Then from
the equivalent system (2.3), we see immediately that W is arbitrary for all of its
solutions, so in the remainder of the paper it can be any (n−m)× (n−m) matrix.
Before we investigate the general structure of the solutions of (2.3), we consider
several special cases first for which the following result is easy to prove.

Proposition 3.1. Let A be an n × n matrix such that A3 = A with rank m and
minimal polynomial λ3 − λ. Then:

(i) If V = 0, then all solutions (0, C,B,W ) of (2.3) are such that BKC = 0.
In particular, if in addition C = 0 or B = 0, then all solutions are (0, 0, B,W ) or
(0, C, 0,W ), respectively.

(ii) If C = 0, then all solution (V, 0, B,W ) of (2.3) are such that V is a solution
of the Yang-Baxter-like matrix equation KVK = V KV and all rows of B belong to
the left null space of KV . If in addition B = 0, then all the solutions are commuting.

(iii) If B = 0, then all solution (V,C, 0,W ) of (2.3) are such that V is a solution
of the Yang-Baxter matrix-like equation KVK = V KV and all columns of C belong
to the null space of V K. If in addition C = 0, then all the solutions are commuting.

From now on we focus on solving (2.3) for all non-commuting solutions of (3.1).
Since the first equation of (2.3) is just the Yang-Baxter-like matrix equation for the
nonsingular matrix K = diag{Ik,−Im−k} that satisfies the condition K2 = Im, its
general solution has been constructed in Theorem 3.3. Then for each such obtained
solution V , we solve the remaining three equations of (2.3) to get B and C. This
verifies our earlier claim that all solutions X of the original matrix equation (1.1)
can be obtained from all the solutions Y of the matrix equation (3.1) for a matrix
D = diag{K, 0} with K2 = I, thanks to Lemma 2.1.
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By Theorem 3.3, all solutions V of the first equation KVK = V KV of (2.3) are

V =

 S F

E T

 , (3.10)

where S is any k × k diagonalizable matrix and T is any (m− k)× (m− k) diago-
nalizable matrix such that (i) the matrices F and E have the same rank r ≥ 0, and
satisfy FEF = 3

4F and EFE = 3
4E; (ii) S and T have eigenvalue −1/2 and 1/2 of

multiplicity r, respectively; (iii) the nonzero columns of F and nonzero rows of E
are eigenvectors and left eigenvectors of S respectively associated with eigenvalue
−1/2, and the nonzero columns of E and nonzero rows of F are eigenvectors and
left eigenvectors of T respectively associated with eigenvalue 1/2; (iv) the other
eigenvalues of S and T belong to {0, 1} and {0,−1}, respectively; (v) a solution V
is commuting if and only if E = 0 and F = 0, and in this case S is an idempotent
and T is a skew idempotent.

Let V be any solution of the first equation in (2.3) described as above, so that
its four submatrices (S, F,E, T ) from the partition (3.10) are all known. We solve
the other three equations for C and B. Since K = diag{Ik,−Im−k}, we partition
C and B as

C =

C1

C2

 and B =
[
B1 B2

]
. (3.11)

Then the last three equations of (2.3) are S −F
E −T

C1

C2

 =

0

0

 , [B1 B2

] S F

−E −T

 =
[

0 0
]
, (3.12)

and

[
B1 B2

] C1

−C2

 = 0. (3.13)

In summary, we have proved the following theorem.

Theorem 3.5. Let A be an n×n matrix such that A3 = A with minimal polynomial
λ3 − λ. Suppose the rank of A is m and the multiplicity of eigenvalue 1 is k. Then
all the solutions of (1.1) are given by

X = U


S F C1

E T C2

B1 B2 W

U−1,

where the k× k matrix S, the k× (m− k) matrix F , the (m− k)× k matrix E, and
the (m− k)× (m− k) matrix T solve (3.9) and are given by Theorem 3.3 in which
n is replaced with m, any nonzero column vector c = [cT1 cT2 ]T of the m × (n −m)
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matrix [CT
1 CT

2 ]T and any nonzero row vector b = [b1 b2] of the (n−m)×m matrix
[B1 B2] are an eigenvector and a left eigenvector of the matrices S −F

E −T

 and

 S F

−E −T


respectively such that b1c1 = b2c2, and the (n−m)× (n−m) matrix W is arbitrary.

We present a 4× 4 example to illustrate the above theorem. Let

A =


0 −2 3 −1

−1 −1 3 −1

−1 −2 4 −1

−1 −4 7 −2

 .

Then A3 = A and the Jordan form of A is D = diag{1, 1,−1, 0} with AU = UD,
where

U =


1 1 1 1

2 1 1 1

3 2 1 1

4 3 2 1

 and U−1 =


−1 1 0 0

1 −2 1 0

0 1 −2 1

1 0 0 −1

 .

By Theorem 3.4, all commuting solutions of (1.1) are X = Udiag{S, t, w}, where S
is any 2 × 2 idempotent, t equals 0 or −1, and w is any number. From Theorem
3.5, all non-commuting solutions of (1.1) can be written as

X = U


S f c1

e 1
2 c2

b1 b2 w

U−1,

where w is an arbitrary number, S is any 2× 2 diagonalizable matrix with a simple
eigenvalue −1/2 and the other simple eigenvalue either 0 or 1 with a nonzero column
vector f and a nonzero row vector e right and left eigenvectors of S associated with
eigenvalue −1/2 such that ef = 3/4, and b = [b1 b2] and c = [cT1 c2]T are left and
right eigenvectors of the matricesS −f

e − 1
2

 and

 S f

−e − 1
2


respectively such that b1c1 = b2c2.

We can find the explicit expressions of

S =

 ξ ν
µ η
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for the two cases that the eigenvalues of S are {−1/2, 0} and {−1/2, 1}, respectively.
In the first case that the eigenvalues of S are −1/2 and 0, by the Vieta formula,

ξ + η = −1

2
, ξη − µν = 0.

Solving the above system gives

S =

− 1
4

(
1±
√

1− 16µν
)

ν

µ − 1
4

(
1∓
√

1− 16µν
)


with arbitrary complex numbers µ and ν.
Vieta’s formula for the second case that eigenvalues of S are −1/2 and 1 implies

that

ξ + η =
1

2
, ξη − µν = −1

2
,

from which

S =

 1
4

(
1±
√

9− 16µν
)

ν

µ 1
4

(
1∓
√

9− 16µν
)
 , ∀ µ, ν.

4. Conclusions

We have found all solutions of the Yang-Baxter-like matrix equation (1.1) for a
matrix A satisfying A3 = A, which has extended the previous results of [2, 6, 8, 9].
Our approach is direct and simple by means of the digitalization of A and a spectral
perturbation result. The same idea and technique in this paper can be applied to
find all solutions of (1.1) when A satisfies the condition A3 = −A or when Ak = A
for some k ∈ N.

Finding the solution set of (1.1) for a general matrix A is a hard task, and it is
hoped that special techniques can be employed to find all non-commuting solutions
of (1.1) for some other classes of the given matrix, for example the class of all
diagonalizable matrices. We hope to solve the general case in the future.
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