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1. Introduction and main result

Consider the following noncooperative elliptic system
−4u = |v|q−2v in Ω,

−4v = f(u) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where q > 1, Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, and
f ∈ C(R).

Problem (1.1) arises naturally a steady states in reaction diffusion process. When
f(u) = |u|r−2u (where r > 1), problem (1.1) is also referred as Lane-Emden system
because it is a natural extension of Lane-Emden equation

−4u = |u|γ−2u (where γ is a constant) in Ω.

In the case N = 3, this equation arises in astrophysics and is used to model the
thermal behavior of a spherical cloud of gas acting under the mutual attraction of
its molecules and subject to the classical laws of thermodynamics. In the “model
case”, that is, q > 2 and f(x, s) = |s|r−2s with r > 2, there are many results about
non-existence or existence of solutions to problem (1.1). It is known (see [6, 7, 10])
that problem (1.1) admits a nontrivial solution provided

1 >
1

q
+

1

r
> 1− 2

N
. (1.2)
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If N = 2, this condition holds for any q > 2 and r > 2. If N ≥ 3, on the “critical
hyperbola”, i.e., the curve of (q, r) ∈ R2 satisfying 1

q + 1
r = 1− 2

N , non-existence of

solutions has been proved in [15] and [20] by the Pohozaev type argument because
of the lack of compactness. In addition, existence of solution to problem (1.1) has
been established in [9] in the case 0 < (q − 1)(r − 1) < 1.

For general f , Kristály in [12] has proved that there are infinitely many solutions
to problem (1.1) if f has a suitable oscillatory behavior. In the border-line case q =
N
N−2 , a critical growth of exponential type for f has been studied in [17]. Existence
and multiplicity of solutions to the subquadratic problem have been established in
[1–3]. As for the superquadratic problem, by assuming the Ambrosetti-Rabinowitz
type condition

(AR) there exist constants θ > q
q−1 and s′1 ≥ 0 such that

0 < θF (s) ≤ sf(s), ∀ |s| ≥ s′1,

where F (s) :=
∫ s

0
f(t)dt,

de Figueiredo and Ruf in [8] have obtained a nontrivial solution in a fractional
Sobolev space via the variational method. Salvatore in [18] has used the algebraic
approach based on the Pohozaev’s fibering method to obtain a nontrivial solution
provided that f further satisfies

(R) there exist two functions λ±(u) ∈ C1(S) with λ−(u) < 0 < λ+(u) such that

|λ±(u)|
q
q−1 −

∫
Ω

f(λ±(u)u)λ±(u)udx = 0,

where S is the unit sphere in the Banach space W 2, q
q−1 (Ω) ∩W 1, q

q−1

0 (Ω).

Moreover, if f is odd in s ∈ R, infinitely many pairs of weak solutions have been
obtained. Subsequently, dropping the assumption (R), Salvatore in [19] has proved
that problem (1.1) has infinitely many pairs of weak solutions via the variational
method. In addition, when 1 < q ≤ 2 if N = 2, 3, or 1 < q < N

N−2 if N ≥ 4, Chen
and Zou in [5] have generalized Salvatore’s results in [18,19] by replacing (AR) with

(GAR) there exist a constant s′2 ≥ 0 and a function θ ∈ C(R\(−s′2, s′2),R+) such
that

0 <

(
q

q − 1
+ θ(s)

)
F (s) ≤ sf(s), ∀ |s| ≥ s′2,

where θ satisfies lim
|s|→+∞

|s|θ(s) = lim
|s|→+∞

∫ |s|
s0

θ(t)

t
dt = +∞.

Obviously, (GAR) is essentially weaker than (AR). From 1 < q < 2 if N = 2, 3 or
1 < q < N

N−2 if N ≥ 4, one can deduces q
q−1 >

N
2 . When N ≥ 4, from N

N−2 ≤ q ≤ 2

it follows that 2 ≤ q
q−1 ≤

N
2 . In this paper, setting p := q

q−1 , our main results are
the following theorems.

Theorem 1.1. Assume that p > N
2 and f satisfies

(f1) lim
s→0

F (s)

|s|p
= 0,
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(f2) lim
|s|→+∞

F (s)

|s|p
= +∞,

(f3) there exist constants s1 > 0, α > 0 and β > 0 such that

F (s)

|s|p
≤ α (sf(s)− pF (s)) + β

for |s| ≥ s1.

Then problem (1.1) has a nontrivial weak solution. If f satisfies the additional
condition

(f∗) f(s) is odd in s ∈ R,

then problem (1.1) has infinitely many pairs of weak solutions.

Remark 1.1. Theorem 1.1 generalizes Theorem 1.1 in [18] and Theorem 1.1 in [19],
and complements Theorems 1.1 in [5]. In fact,

(1) (AR) implies (f2) and (f3). Indeed, from (AR), one can deduce that

F (s) ≥ a1|s|θ − a2, ∀ s ∈ R,

where a1 and a2 are positive constants, which implies that (f2) holds. In
addition,

sf(s)− 2F (s) ≥ (θ − 2)F (s) ≥ (θ − 2)(s′1)p · F (s)

|s|p
, ∀ |s| ≥ s′1.

That is, (f3) holds.

(2) There are functions which satisfy the assumptions in Theorem 1.1 but don’t
satisfy (GAR). For example, let

F (s) = |s|θ + (θ − p)|s|θ−τ · sin2

(
|s|τ

τ

)
with θ > p + 1 and τ ∈ (1,min{p, θ − p}). It is easy to check that (f1), (f2)
and (f∗) are satisfied. Additional, by a simple calculation, we have

f(s)=θs|s|θ−2+(θ−p)(θ−τ)s|s|θ−τ−2 ·sin2

(
|s|τ

τ

)
+(θ−p)s|s|θ−2 ·sin

(
2|s|τ

τ

)
,

and

sf(s)−pF (s)=(θ−p)|s|θ
[
1+sin

(
2|s|τ

τ

)]
+(θ−p)(θ−p−τ)|s|θ−τ ·sin2

(
|s|τ

τ

)
.

Then

sf(s)− pF (s)

F (s)
= (θ − p) ·

[
1 + sin

(
2|s|τ
τ

)]
· |s|τ + (θ − p− τ) sin2

(
|s|τ
τ

)
|s|τ + (θ − p) sin2

(
|s|τ
τ

) .
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Setting sk =
[
τ(kπ + 3π

4 )
] 1
τ , k ∈ N+, it is easy to verify that

sk → +∞, sk ·
skf(sk)− pF (sk)

F (sk)
→ 0

as k → ∞. Hence, there is no function θ(s) such that lim
|s|→+∞

|s|θ(s) = +∞

and (p+ θ(s))F (s) ≤ sf(s). However, for |s| large, we have

F (s)

|s|p
≤ a3|s|θ−p ≤ a3|s|θ−τ ≤ a4(sf(s)− pF (s)),

where a3 and a4 are positive constants, so (f3) is satisfied.

Theorem 1.2. Assume that p ≤ N
2 and f satisfies (f1), (f2), and

(f4) there exist constants s2 > 0, α > 0, β > 0 and σ > N
2p such that(

F (s)

|s|p

)σ
≤ α (sf(s)− pF (s)) + β

for |s| ≥ s2,

(f5) there exist positive constants a5, a6 and r such that (1.2) holds and

|f(s)| ≤ a5|s|r−1 + a6

for s ∈ R.

Then problem (1.1) has a nontrivial weak solution. If f satisfies the additional
condition (f∗), then problem (1.1) has infinitely many pairs of weak solutions.

Remark 1.2. Theorem 1.2 generalizes Theorem 1.4 in [18] and Theorem 1.2 in [19].
In fact,

(1) Under the condition (f5), (AR) implies (f2) and (f4). As is shown in item (1)
in Remark 1.1, (f2) holds. In addition, from (1.2), one has

p < r <


Np
N−2p , p <

N
2 ,

+∞, p = N
2 .

Therefore,

r

r − p
>


N
2p , p <

N
2 ,

1, p = N
2 .

Taking arbitrarily σ ∈
(
N
2p ,

r
r−p

)
when p < N

2 or σ ∈
(

1, r
r−p

)
when p = N

2 ,

we have σ > 1 and pσ
σ−1 > r. Then from (f5) it follows that

lim
|s|→∞

F (s)

|s|
pσ
σ−1

= 0.
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Hence, there exists a constant s′3 > s′1 such that

0 <
F (s)

|s|
pσ
σ−1

≤ (θ − p)
1

σ−1

for |s| ≥ s′3, from this and (AR) we obtain(F (s)

|s|p
)σ
≤ (θ − p)F (s) ≤ sf(s)− pF (s)

for |s| ≥ s′3.

(2) There exists functions which satisfy the assumptions in Theorem 1.2 but don’t
satisfy (AR). Indeed, for the function F listed in Remark 1.1 with τ ∈ (0, p),

and θ ∈
(
p, (N−2τ)p

N−2p

)
when p < N

2 or θ ∈ (p,+∞) when p = N
2 , it is not

difficult to check that (f1), (f2), (f5) and (f∗) are satisfied. Besides this, for sk
given in Remark 1.1, one has

skf(sk)− pF (sk)

F (sk)
→ 0

as k → ∞, hence (AR) is not satisfied. However, for |s| large, there exists
positive constant a7 such that(

F (s)

|s|p

) θ−τ
θ−p

≤ a7

(
|s|θ−p

) θ−τ
θ−p = a7|s|θ−τ ≤ sf(s)− pF (s).

Setting σ := θ−τ
θ−p , then σ > N

2p when p = N
2 . When p < N

2 , from θ ∈(
p, (N−2τ)p

N−2p

)
it follows that σ > N

2p . To sum up, we can conclude that (f4) is

satisfied.

2. Preliminaries

System (1.1) is equivalent to the following p−biharmonic equation with Navier
boundary conditions {

4(|4u|p−24u) = f(u) in Ω,

u = 4u = 0 on ∂Ω,
(2.1)

which arises in the study of traveling waves in suspension bridges (see [13, 14])
and the study of the static deflection of an elastic plate in a fluid. Let E :=
W 2,p(Ω) ∩W 1,p

0 (Ω) endowed with the norm

‖u‖ =

(∫
Ω

|4u|pdx
) 1
p

which is equivalent to the usual intersection norm

‖u‖E = max
{
‖u‖W 2,p(Ω), ‖u‖W 1,p

0 (Ω)

}
.
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Thus, these following embedding mappings

E ↪→


Lν(Ω), ν < Np

N−2p , when p < N
2

Lν(Ω), ν < +∞, when p = N
2

CB(Ω), when p > N
2

are compact, where Lν(Ω) is the Lebesgue space with the norm |u|ν =
(∫

Ω
|u|νdx

) 1
ν ,

CB(Ω) is the space of the continuous bounded functions on Ω with the norm
‖u‖CB(Ω) = sup

x∈Ω
|u(x)|. We denote by Sν (respectively S∞) the imbedding con-

stant of E in Lν(Ω) (respectively in CB(Ω)), that is,

Sν |u|ν ≤ ‖u‖ (respectively S∞|u|CB(Ω) ≤ ‖u‖), ∀ u ∈ E.

Additionally, the functional Φ defined as

Φ(u) =
1

p

∫
Ω

|4u|pdx−
∫

Ω

F (u)dx, u ∈ E

belongs to C1(E, R),

〈Φ′(u), v〉 =

∫
Ω

|4u|p−24u4vdx−
∫

Ω

f(u)vdx, ∀u, v ∈ E,

and the weak solutions of problem (2.1) are exactly the critical points of Φ in E.

3. Proof of Theorems

In the following statement, we use Ci(i ∈ N+) to represent suitable positive con-
stants.

Lemma 3.1. When p > N
2 , assume that f satisfies (f1), then there exist positive

constants ρ and a such that Φ∂Bρ ≥ a, where and in what follows B% := {u ∈ E :
‖u‖ ≤ %} and ∂B% := {u ∈ E : ‖u‖ = %} for % > 0.

Proof. We denote by |Ω| the Lebesgue measure of Ω, then from (f1), for ε ∈(
0,

Sp∞
2p|Ω|

)
, there exists a constant δ > 0 such that

|F (s)| ≤ ε|s|p

for |s| < δ. Thus, arbitrarily taking ρ ∈ (0, S∞δ), we have

|u(x)| ≤ ‖u‖
S∞
≤ ρ

S∞
< δ in Ω, ∀ u ∈ Bρ,

this leads to

Φ(u) ≥ 1

p
‖u‖p − ε

∫
Ω

|u|pdx ≥
(

1

p
− ε|Ω|
Sp∞

)
‖u‖p ≥ 1

2p
‖u‖p, ∀ u ∈ Bρ.

Setting a := 1
2p · ρ

p > 0, then we have Φ∂Bρ ≥ a.
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Lemma 3.2. When p ≤ N
2 , assume that f satisfies (f1) and (f5), then there exist

positive constants ρ and a such that Φ∂Bρ ≥ a.

Proof. By (f1) and (f5), for ε ∈
(

0,
Spp

2p|Ω|

)
, there exists a constant C(ε) > 0 such

that
|F (s)| ≤ ε|s|p + C(ε)|s|r

for s ∈ R. Then we have

Φ(u) ≥ 1

p
‖u‖p − ε

∫
Ω

|u|pdx− C(ε)

∫
Ω

|u|rdx

≥
(

1

p
− ε|Ω|

Spp

)
‖u‖p − C(ε)

∫
Ω

|u|rdx

≥
(

1

2p
− C(ε)

Srr
‖u‖r−p

)
‖u‖p.

Setting ρ =
(

Srr
4pC(ε)

) 1
r−p

and a = 1
4p · ρ

p > 0, then we have Φ∂Bρ ≥ a.

Lemma 3.3. Assume that f satisfies (f2), then there exists u0 ∈ E with ‖u0‖ > ρ
such that Φ(u0) < 0.

Proof. From (f2) it follows that for every K > 0, there exists a positive constant
CK such that

F (s) ≥ K

p
· |s|p − CK (3.1)

for s ∈ R. Hence, for arbitrary φ ∈ E with ‖φ‖ = 1, fixing K > 1
|φ|pp , we have

Φ(tφ) ≤ |t|
p

p

(
‖φ‖p −K

∫
Ω

|φ|pdx
)

+CK · |Ω| =
|t|p

p

(
1−K

∫
Ω

|φ|pdx
)

+CK · |Ω|.

Setting t0 =
(

2pCK ·|Ω|
K|φ|pp−1

) 1
p

and u0 := t0φ, then one has Φ(u0) ≤ −CK |Ω| < 0.

Lemma 3.4. When p > N
2 , assume that (f2) and (f3) hold, then Φ satisfies the (C)

condition, that is, for every c ∈ R and any sequence {un} such that

‖Φ′(un)‖(1 + ‖un‖)→ 0 and Φ(un)→ c as n→∞ (3.2)

has a convergent subsequence.

Proof. Firstly, we show that {un} is bounded in E. We argue by contradiction.
If {un} is unbounded, then ‖un‖ → +∞ as n→∞ after passing to a subsequence.
Setting wn = un

‖un‖ , then ‖wn‖ = 1. Up to a subsequence, we may assume that

wn ⇀ w weakly in E and wn → w strongly in CB(Ω). (3.3)

By (f2), there exists a positive constant M1 > s1 such that

F (s)

|s|p
≥ 1 (3.4)
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for |s| ≥M1. Thus, there is a positive constant LM1
such that

|F (s)| ≤ LM1
(3.5)

for |s| ≤M1. From (3.4) and (3.5), we have

F (s) ≥ |s|p − LM1
−Mp

1 ≥ −LM1
−Mp

1 (3.6)

for s ∈ R.
Let Ω

′
:= {x ∈ Ω : w(x) 6= 0}, then for x ∈ Ω

′
, we have un(x) = wn(x)‖un‖ →

∞ as n→∞, which implies that

lim
n→∞

F (un(x))

|un(x)|p
= +∞. (3.7)

If |Ω′ | > 0, (3.2) together with (3.6) leads to

1

p
− c+ o(1)

‖un‖p
=

∫
Ω

F (un)

‖un‖p
dx

=

∫
Ω′

F (un)

|un|p
|wn|pdx+

∫
Ω\Ω′

F (un)

‖un‖p
dx

≥
∫

Ω′

F (un)

|un|p
|wn|pdx−

(LM1 +Mp
1 ) · |Ω|

‖un‖p
.

Then from (3.3) and (3.7), applying Fatou’s lemma gets

1

p
≥ lim inf

n→∞

(∫
Ω′

F (un)

|un|p
|wn|p −

(LM1
+Mp

1 ) · |Ω|
‖un‖p

)
≥ +∞,

a contradiction. Hence |Ω′ | = 0, that is, w = 0.
Setting

κ := max
|s|≤M1

|sf(s)− pF (s)|, Ωn := {x ∈ Ω : |un(x)| ≥M1},

we derive from (3.2), (3.5) and (f3) that

1

p
− c+ o(1)

‖un‖p
=

∫
Ω

F (un)

|un|p
|wn|pdx

=

∫
Ω\Ωn

F (un)

‖un‖p
dx+

∫
Ωn

F (un)

|un|p
|wn|pdx

≤ LM1 |Ω|
‖un‖p

+

∫
Ω

[α (unf(un)− pF (un)) + β + ακ] |wn|pdx

≤ LM1
|Ω|

‖un‖p
+ [(ακ+ β) |Ω|+ α (pΦ(un)− Φ′(un)un)] · ‖wn‖pCB(Ω).

By (3.3), letting n→∞ in the above inequality gives

1

p
≤ 0,

a contradiction. Hence, ‖un‖ is bounded in E.
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Let I(u) := 1
p

∫
Ω
|4u|pdx and J(u) :=

∫
Ω
F (u)dx, then I, J ∈ C1(E,R) with

〈I ′(u), h〉 =

∫
Ω

|4u|p−2(4u)(4h)dx, 〈J ′(u), h〉 =

∫
Ω

f(u)hdx, ∀ u, h ∈ E.

Moreover, J ′ : E → E∗ is compact, and

‖I ′(un)− I ′(um)‖∗ ≤ ‖Φ′(un)− Φ′(um)‖∗ + ‖J ′(un)− J ′(um)‖∗, (3.8)

where E∗ is the dual space of E and ‖ · ‖∗ denotes the norm in E∗. In addition, we
note that (see [11]), for ξ, η ∈ RN ,

(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
≥

C1|ξ − η|p, p ≥ 2,

C2 (1 + |ξ|+ |η|)p−2 |ξ − η|2, 1 < p < 2,

where (·, ·) denotes the Euclidean inner product in RN . When p ≥ 2, we have

〈I ′(un)− I ′(um), un − um〉 ≥ C1‖un − um‖p,

which implies that

‖I ′(un)− I ′(um)‖∗ ≥ C1‖un − um‖p−1. (3.9)

When 1 < p < 2, applying the Hölder inequality, we have

‖un − um‖p ≤ C3

∫
Ω

{[(
|4un|p−24un − |4um|p−24um

)
(4un −4um)

] p
2

}
× (1 + |4un|+ |4um|)

p(2−p)
2 dx

≤ C4

[∫
Ω

(|4un|p−24un − |4um|p−24um)(4un −4um)dx

] p
2

×
[∫

Ω

(1 + |4un|+ |4um|)pdx
] 2−p

2

≤ C5‖I ′(un)− I ′(um)‖
p
2
∗ ‖un − um‖

p
2 (1 + ‖un‖+ ‖um‖)

p(2−p)
2 ,

which implies

‖un − um‖ ≤ C6‖I ′(un)− I ′(um)‖∗(1 + ‖un‖+ ‖um‖)2−p

≤ C7‖I ′(un)− I ′(um)‖∗. (3.10)

From {un} is bounded and J ′ is compact, one deduces J ′(un) has a convergent
subsequence. Then from (3.2), (3.8), (3.9) or (3.10) it follows that {un} has a
convergent subsequence.

Lemma 3.5. Assume that (f2), (f4) and (f5) hold, then Φ satisfies the (C) condition.

Proof. For any sequence {un} satisfying (3.2), setting wn = un
‖un‖ , then ‖wn‖ = 1.

Up to a subsequence, we may assume that

wn ⇀ w weakly in E, wn → w strongly in Lν(Ω), wn(x)→ w(x) a.e. x ∈ Ω,
(3.11)
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where ν < Np
N−2p when p < N

2 or ν < +∞ when p = N
2 . Through a discussion the

same as that in proof of Lemma 3.4, we deduce from (f2) that w = 0.
Setting

κ′ := max
|s|≤M1

|sf(s)− pF (s)|, Ω′n := {x ∈ Ω : |un(x)| ≥M1},

we derive from (3.2), (3.4), (3.5) and (f4) that

1

p
− c+ o(1)

‖un‖p
=

∫
Ω

F (un)

|un|p
|wn|pdx

=

∫
Ω\Ω′n

F (un)

‖un‖p
dx+

∫
Ω′n

F (un)

|un|p
|wn|pdx

≤
∫

Ω\Ω′n

F (un)

‖un‖p
dx+

[∫
Ω′n

(
F (un)

|un|p

)σ
dx

] 1
σ
[∫

Ω′n

|wn|
pσ
σ−1 dx

]σ−1
σ

≤ LM1
|Ω|

‖un‖p
+

{∫
Ω

[α (unf(un)− pF (un)) + β + ακ′] dx

} 1
σ

· |un|ppσ
σ−1

≤ LM1
|Ω|

‖un‖p
+ [(ακ′ + β) |Ω|+ α (pΦ(un)− Φ′(un)un)]

1
σ · |un|ppσ

σ−1
.

Noting pσ
σ−1 < Np

N−2p when p < N
2 . Then by (3.11), letting n → ∞ in the above

inequality gives
1

p
≤ 0,

a contradiction. Hence, ‖un‖ is bounded in E. The reminders is just the same as
that in proof of Lemma 3.4.

In addition, similar to the argument of Theorem 9.12 in [16], one can prove the
following Z2 version of the Mountain Pass Theorem under the (C) condition.

Lemma 3.6. Let E be an infinite dimensional Banach space and Φ ∈ C1(E,R)
be even, satisfy the (C) condition, and Φ(0) = 0. If E = V ⊕ X, where V finite
dimensional, and Φ satisfies
(Φ1) there are constants ρ, b > 0 such that Φ∂Bρ∩X ≥ b,
(Φ2) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such that

Φ ≤ 0 on Ẽ \BR(Ẽ),

then I possesses an unbounded sequence of critical values.

Proof of Theorem 1.1. By Lemmas 3.1, 3.3 and 3.4, Φ possesses a mountain pass
geometry and satisfies the (C) condition. Then there is a nontrivial solution for
problem (2.1) as well as problem (1.1) by Theorem 2.6 in [4]. Moreover, Lemma 3.1

obviously implies (Φ1). For each finite dimensional subspace Ẽ ⊂ E, the set ∂B1∩Ẽ
is a compact subset of Ẽ. Hence the continuous functional

∫
Ω
|u|pdx : ∂B1∩ Ẽ → R

attains its minimum. So µ := minu∈∂B1∩Ẽ
∫

Ω
|u|pdx > 0. Fixing K > 1

µ , one gets

R(Ẽ) :=
(

2pCK ·|Ω|
Kµ−1

) 1
p

> 0. Thus, for u ∈ ∂B1 ∩ Ẽ and t ≥ R(Ẽ), it follows from

(3.1) that

Φ(tu) ≤ tp

p

(
1−K

∫
Ω

|u|pdx
)

+ CK · |Ω| ≤
(R(Ẽ))p

p
(1−Kµ) + CK · |Ω| ≤ 0,
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that is, Φ ≤ 0 on Ẽ \BR(Ẽ). Therefore, we can obtain infinitely many solutions for

problem (2.1) as well as problem (1.1) by applying Lemma 3.6. �

Proof of Theorem 1.2. By Lemmas 3.2, 3.3 and 3.5, Φ possesses a mountain pass
geometry and satisfies the (C) condition. The reminders is just the same as that in
proof of Theorem 1.1. �
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manuscript.
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