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SURVEY ON APPLICATIONS OF
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Abstract Semi-tensor product (STP) method of matrices has received more
and more attention from the communities of both engineering and economics
in recent years. This paper presents a comprehensive survey on the applica-
tions of STP method in the theory of networked evolutionary games. In the
beginning, some preliminary results on STP method are recalled. Then, the
applications of STP method in many kinds of networked evolutionary games,
such as general networked evolutionary games, networked evolutionary games
with finite memories, networked evolutionary games defined on finite network-
s, and random networked evolutionary games, are reviewed. Finally, several
research problems in the future are predicted.
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1. Introduction

The importance of networked evolutionary games (NEGs) has been fully recognized
in recent years, and the investigation of NEGs has attracted much attention from
physical, social, and engineering communities. The theory of NEGs was estab-
lished after Nowak and May [89] introduced a network to the classical framework
of evolutionary games [2,92]. In the network, nodes and edges denote, respectively,
players and interaction relationship among players. In a NEG, players have their
own specialized strategy updating rules, which are affected by their neighbors, to
update their own strategy. This handling coincides with many practical economic
activities, where every person often just plays game with its neighbors, who may
be its friends or relatives, rather than plays game with all the other persons, like
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in normal multi-player games [87]. The earliest work [89] investigated the cooper-
ation emergence and persistence of Prisoner’s Dilemma Game on two-dimensional
lattices. With the development of complex networks, many great works have been
made toward NEGs.

The most appealing research topic, among the study of NEGs, is to analyze each
player’s behavior when the dynamics proceeds. Many results attempted to solve
it. [126], which studied the networked adaptive dynamics of Prisoner’s Dilemma
Game, proved that there existed a full-defective state or a highly cooperative steady
state. [116] simulated animal conflicts on different networks as a finite dynamical
game and it delineated that the evolution result was that whether one strategy
dominated or two strategies coexisted on the network. In addition to that, the
existing works on NEGs are mostly based on the mean-field method [3], and the
experiment or computer simulation method [45].

Recently, a new powerful mathematical tool, called the semi-tensor product
(STP) of matrices, has been proposed by Cheng [4]. Up to now, this method has
been successfully applied to the analysis and control of Boolean networks and mix-
valued logical networks, and many excellent results have been obtained [4, 5, 17,
18, 21–23, 32, 36–38, 40–42,46, 47, 75–77,79, 80, 86, 88, 96, 105–107, 110–112,123, 125].
Especially, [128] studied further results on the controllability of Boolean control net-
works. [129] investigated the optimal control of Boolean control networks. Pinning
control for the disturbance decoupling problem of Boolean networks was consid-
ered in [78]. In addition, with STP method in hands, there are many researchers
attempting to investigate NEGs in the view of control theory. [6] firstly analyzed
NEGs in the view of control theory. An algorithm was proposed by [13] to convert
the given NEGs into an algebraic expression based on “myopic best response adjust-
ment (MBRA) rule”. [118] studied the NEGs on finite networks and presented some
interesting results. [14] applied STP method to a class of event-triggered control for
finite evolutionary networked games. [102] converted weighted potential game to
weighted harmonic game. [8] and [35] investigated stochastic stability and stabiliza-
tion of n-person random evolutionary Boolean games and algebraic formulation and
Nash equilibrium of competitive diffusion games, respectively.

This paper gives a comprehensive survey on the applications of STP method in
the theory of networked evolutionary games. For different kinds of NEGs, including
general networked evolutionary games, networked evolutionary games with finite
memories, networked evolutionary games defined on finite networks, and random
networked evolutionary games, we delineate the basic applications of STP method
in them.

The remainder of the paper is organized as follows. Section 2 contains some
necessary preliminaries on STP and game theory. Section 3 presents the descrip-
tion of general NEGs. Section 4 delineates NEGs with finite memories. Section 5
describes the NEG defined on finite networks. Section 6 gives the basic description
of control of NEGs. Section 7 recalls random evolutionary games, which is followed
by a brief conclusion in Section 8.

Notations. Rm×n denotes the set of m × n real matrices. R+
m×n denotes the

set of m × n nonnegative real matrices. ∆n :=
{
δin | i = 1, 2, · · · , n

}
, where δin is

the i-th column of the identity matrix In. An n × t matrix M is called a logical
matrix, if M = [δi1n δi2n · · · δitn ], which is briefly denoted by M = δn[i1 i2 · · · it].
Define the set of n × t logical matrices as Ln×t. Coli(L) (Rowi(L)) is the i-th
column (row) of matrix L. For a set E, |E| denotes the number of elements in E.
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r = (r1, · · · , rk)T ∈ Rk is called a probabilistic vector, if ri ≥ 0, i = 1, · · · , k, and∑k
i=1 ri = 1. The set of k dimensional probabilistic vectors is denoted by Υk. If

M ∈ R+
m×n and Col(M) ⊂ Υm, M is called a probabilistic matrix. The set of m×n

probabilistic matrices is denoted by Υm×n.

2. Preliminaries

In this section, we give some necessary preliminaries, which will be used throughout
this paper.

Definition 2.1 ( [4]). The semi-tensor product of two matrices A ∈ Rm×n and
B ∈ Rp×t is defined as AnB = (A⊗ Iα

n
)(B⊗ Iα

p
), where α = lcm(n, p) is the least

common multiple of n and p, and ⊗ is the Kronecker product.

It is noted that the semi-tensor product is a generalization of the ordinary matrix
product, and thus we can simply call it “product” and omit the symbol “n” without
confusion.

Definition 2.2. Let M ∈ Rp×s and N ∈ Rq×s. Define the Khatri-Rao product
of M and N , denoted by M ∗ N , as M ∗ N = [Col1(M) n Col1(N) Col2(M) n
Col2(N) · · · Cols(M) n Cols(N)] ∈ Rpq×s.

The semi-tensor product of matrices has the following important properties.

Lemma 2.1 ( [4]). 1. Let X ∈ Rm and Y ∈ Rn be two column vectors. Then,
W[m,n]XY = Y X, where W[m,n] is called the swap matrix. Especially W[n,n] :=
W[n].

2. (pseudo-commutative property) Let X ∈ Rt and A ∈ Rm×n. Then, XA =
(It ⊗A)X holds.

Lemma 2.2 ( [6]). Assume X ∈ Υp and Y ∈ Υq. Define two dummy matrices,
named by “front-maintaining operator” (FMO) and “rear-maintaining operator”
(RMO) respectively, as:

Dp,q
f = δp[1 · · · 1︸ ︷︷ ︸

q

2 · · · 2︸ ︷︷ ︸
q

· · · p · · · p︸ ︷︷ ︸
q

],

Dp,q
r = δq[1 2 · · · q︸ ︷︷ ︸ 1 2 · · · q︸ ︷︷ ︸ · · · 1 2 · · · q︸ ︷︷ ︸︸ ︷︷ ︸

p

].

Then Dp,q
f XY = X, Dp,q

r XY = Y .

An n-ary pseudo-logical (or logical) function f(x1, x2, · · · , xn) is a mapping
from ∆n

k to R (or from ∆n
k to ∆m). The following result shows how to express a

pseudo-logical (or logical) function into its algebraic form.

Lemma 2.3 ( [21]). Let f : ∆n
k → R (or f : ∆n

k → ∆m) be a pseudo-logical (or
logical) function. Then there exists a unique matrix Mf ∈ R1×kn (or Mf ∈ Lm×kn),
called the structural matrix of f , such that

f(x1, x2, · · · , xn) = Mf nni=1 xi,

where xi ∈ ∆k, i = 1, 2, · · · , n, Colj(Mf ) = f(δjkn), and j = 1, 2, · · · , kn.
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In the following, we recall some notations in game theory.
A normal finite game (N,S, P ), considered in this paper, consists of three factors

[12]:

(i) n players N = {1, 2, · · · , n};
(ii) Player i has strategy set Si, i = 1, 2, · · · , n, and S :=

∏n
i=1 Si is the set of

strategy profiles;

(iii) Player i has its payoff function pi : S → R, pi ∈ P , and i = 1, 2, · · · , n.

Definition 2.3 ( [12]). In the n-player normal form finite game

G = {S1, · · · , Sn; p1, · · · , pn},

the strategy profile (s∗1, s
∗
2, · · · , s∗n) is called a Nash Equilibrium (NE), if for each

player i, s∗i is (at least tied for) player i’s best response to the strategies specified
for the n− 1 other players, (s∗1, · · · , s∗i−1, s

∗
i+1, · · · , s∗n), that is,

pi
(
s∗1, · · · , s∗i−1, s

∗
i , s
∗
i+1, · · · , s∗n

)
≥ pi

(
s∗1, · · · , s∗i−1, si, s

∗
i+1, · · · , s∗n

)
,

for every feasible strategy si ∈ Si, where Si is the set of strategies of player i and
pi is the corresponding payoff function.

Definition 2.4 ( [6]). (1) A normal game with two players is called a fundamen-
tal network game (FNG), if S1 = S2 := S0 = {1, 2, · · · , k} and player i’s payoff
function is ci = ci(x, y), where x is player one’s strategy, y is player two’s s-
trategy, and i = 1, 2. Namely, N = {1, 2}, S = S0 × S0, and P = {c1, c2}.

(2) An FNG is symmetric, if c1(x, y) = c2(y, x), ∀ x, y ∈ S0.

3. General Networked Evolutionary Games

3.1. Description of Networked Evolutionary Games

Actually, the following definition of NEGs is very typical and representative [6,13].
In the rest of this paper, all kinds of NEGs are the variations of Definition 3.1.

Definition 3.1. A general NEG consists of the following three ingredients:

(1) A network: the network is a connected graph (N, E), where N := {1, 2, · · · , n}
is the set of all the players, E =

{
(i, j) | there exists edge between players i

and j in the network
}

is the set of edges;

(2) A FNG: if (i, j) ∈ E , then i and j play the FNG with strategies xi(t) and
xj(t) at time t, separately. Especially, if the FNG is not symmetric, then the
corresponding network must be directed to show that i is player one and j is
player two;

(3) Players’ strategy updating rules: for network z, the rule can be written as

xi(t) = fi (xi(0), xi(1), · · · , xi(t− 1), xj(0), xj(1), · · · , xj(t− 1) | j ∈ Ni) ,(3.1)

where xj(τ) ∈ S is the strategy of player j at time τ , τ = 0, 1, · · · , t − 1, Ni
is the neighborhood of player i in the network z, that is, j ∈ Ni if and only if
(i, j) ∈ E , i ∈ N . Obviously, i /∈ Ni and j ∈ Ni ⇔ i ∈ Nj ;
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In the following, there is an example to illustrate Definition 3.1.

1 2 3

456

(a)

1 2 3 4 5

(b)

Figure 1. Two typical network topological structures

Example 3.1. Firstly, in Figure 1, we illustrate some conceptions of the network
topological structures in the definition of NEGs.

(i) For network (a) in Figure 1, we have

• the network topological structure (Na, Ea), where N = {1, 2, 3, 4, 5, 6}
and

Ea = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6)};

• the neighbours of players: N1 = {2, 6}, N2 = {1, 3}, N3 = {2, 4}, N4 =
{3, 5}, N5 = {4, 6}, and N6 = {1, 5}.

(ii) For network (b) in Figure 1, we have

• the network topological structure (Nb, Eb), where N = {1, 2, 3, 4, 5} and

Eb = {(1, 2), (2, 3), (3, 4), (4, 5)};

• the neighbours of players: N1 = {2}, N2 = {1, 3}, N3 = {2, 4}, N4 =
{3, 5}, and N5 = {4}

Table 1. Payoff bi-matrix

Player 1\Player 2 M F

M (2, 2) (4, 0)

F (0, 4) (6, 6)

Secondly, we endow the Prisoner’s Dilemma Game, whose payoff bi-matrix is
shown in Table 1, to the networks (a) and (b) as the FNG, i.e., if (i, j) ∈ Ea/Eb,
then player i and player j play the FNG.

Finally, we endow strategy updating rule, myopic best response adjustmen-
t(MBRA) for example, to all the players in the networks.

Thus, we construct two NEGs defined on the networks (a) and (b) separately.

Actually, there are many classical strategy updating rules such as MBRA and
unconditional imitation. In this paper, we focus on the MBRA strategy updating
rule and describe it in the following subsection in details.
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3.2. Algebraic Formulation of Networked Evolutionary Games

This subsection presents the basic algebraic method to formulate the given NEGs,
which are defined as in Definition 3.1. To reach this target, the most important
thing is to convert the strategy updating rules into algebraic expressions. [13] gives
a concise method to achieve this target.

Firstly, we need to get the payoff functions for all the players in the given NEG.
Player i only plays with its neighbors, and its aggregate payoff pi : SNi+1 → R is
the sum of payoffs gained by playing with all its neighbors, that is,

pi

(
xi, xj | j ∈ Ni

)
=
∑
j∈Ni

pij(xi, xj), xi, xj ∈ S,

where pij : S × S → R denotes the payoff of player i playing with its neighbor j.
Secondly, under the MBRA strategy updating rule, every player holds the opin-

ion that its neighbours will make the same decisions as in their last step, and the
strategy at present time is the best response against its neighbors’ strategies in the
last step. Based on this assumption, we get

xi(t) ∈ Qi := argmax
xi∈S

pi

(
xi, xj(t− 1) | j ∈ Ni

)
. (3.2)

Additional, when player i may have more than one best responses, that is, |Qi| > 1.
We set a priority for the strategies as follows: for si, sj ∈ S, si > sj if and only if
i > j. Thus, it guarantees that we can obtain a pure strategy dynamics from this
method.

This following algorithm is one of the main results in the [13].

Algorithm 3.1 ( [13]). The algorithm contains three steps:

1). Calculate the structural matrix, Mpi , of the payoff function of each player
i ∈ N .

Mpi = V Tr (AT )(Dk,k
r )n−2 n

( ∑
j<i, j∈Ni

W[kj ,kn−j−1] +
∑

j>i, j∈Ni

W[kj−1,kn−j ]

)
,

where AT is the structural matrix of the payoff function in the FNG.

2). Divide the matrix Mpi as kn−1 equal blocks:

Mpi =
[
Blk1(Mpi), · · · , Blkkn−1(Mpi)

]
. (3.3)

For all l = 1, 2, · · · , kn−1, find the column index ξl, so that

ξl = max
{
ξl | Colξl(Blkl(Mpi)) = max

16ξ6k
Colξ(Blkl(Mpi))

}
holds.

3). Construct the algebraic expression of the game as

x(t+ 1) = Lx(t), (3.4)

where Coli(L) = Coli(L1) n · · ·n Coli(Ln), Li = L̃iD
k,k
r W[ki−1,k],

L̃i = δk[ξ1, · · · , ξkn−1 ], i ∈ N , and L ∈ Lkn×kn .
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Therefore, we can analyze the behaviors of all the players in the given NEG via
(3.4). Because the algebraic form (3.4) reveals all the characteristics of the game.
In other words, we can investigate the properties of L to analyze the the dynamical
process of the game. We can obtain the final states of the NEG via the logical
network theory easily. The following example illustrates Algorithm 3.1.

Example 3.2 ( [13]). Consider an NEG with the following items:

1 2

34

Figure 2. Network Topological Structure

• Four players: The player set is N = {1, 2, 3, 4}, and every player has the same
strategy set S = {s1, s2};
• a network shown in Figure 2;

• a payoff matrix A = [2 4 0 10] for any pair of players on the network;

• the strategy updating rule is the MBRA rule.

With Algorithm 3.1 in hands, we convert the given NEG into the following ex-
pression: x(t+1) = Lx(t), where L = δ16[1 7 10 16 10 16 10 16 7 7 16 16 16 16 16 16].

Then, we can analyze the behaviors of all the players in the given NEG via
structural matrix L.

4. Networked Evolutionary Games with Finite Mem-
ories

Note that if we adopt MBRA strategy updating rules, the corresponding NEGs
are with one memory, that is, in the NEGs, each individual determines their own
strategy choices of the next move only based on their neighbors’ strategies at the last
step. However, many practical economic activities imply an obvious fact that every
individual can remember more than one strategies of their neighbors. Thus, all the
players make their strategy choices in the next move according to their neighbors’
strategies in the last τ steps with 1 ≤ τ < ∞. Then, the assumption that all the
players in the NEGs can remember their neighbors’ strategies in the past τ steps
is very reasonable. For this situation, [122] presents a new definition of NEGs with
finite memories.

Definition 4.1. An NEG with τ memories consisting of the following three ingre-
dients:

(1) A network: it is a connected undirected graph (N, E), whereN := {1, 2, · · · , n}
is the set of all players, and E =

{
(i, j) | there exists interaction between play-

ers i and j
}

is the set of edges;
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(2) A FNG: if (i, j) ∈ E , then i and j play the FNG in the network with strategies
xi(t) and xj(t) at time t, separately.

(3) Players’ strategy updating rules: these rules can be expressed as

xi(t+ 1) = fi
(
xi(t− τ + 1), · · · , xi(t),
xj(t− τ + 1), · · · , xj(t) | j ∈ Ni

)
,

where xj(l) ∈ S0 is the strategy of player j at time l, l = t−τ+1, t−τ+2, · · · , t,
Ni is the neighborhood of player i, that is, j ∈ Ni if and only if (i, j) ∈ E ,
i ∈ N . Obviously, i /∈ Ni and j ∈ Ni ⇔ i ∈ Nj .

We rewrite the item (3) in Definition 3.1 as the item (3) in Definition 4.1. In
addition to that, we adopt the τ -memory version of Fictitious Play process [122] as
the strategy updating rules in this section.

For player i ∈ N , define empirical frequency qji (t), which is the percentage of
stages at which player i has chosen the strategy j ∈ S0 at time t = t− τ + 1, · · · , t,
that is,

qji (t) :=
1

τ

t∑
l=t−τ+1

I {xi(l) = j} , (4.1)

where xi(l) ∈ S0 is player i’s strategy chosen at time l = t− τ + 1, t− τ + 2, · · · , t,
and I{·} is indicator function. Then, we can define empirical frequency vector for
player i at time t as

qi(t) =
(
q1
i (t), q2

i (t), · · · , qki (t)
)T
. (4.2)

For player i, the chosen strategy at time t+ 1 is based on the assumption that
the other players are playing randomly and independently according to qj(t), where
j = 1, · · · , i− 1, i+ 1, · · · , n. Under this presumption, the expected payoff function
for the strategy xi ∈ S0 of player i can be written as

Ui (xi, q−i(t)) :=
∑

x−i∈Sn−1

(
pi(xi, x−i)

∏
xj∈x−i

q
xj
j (t)

)
, (4.3)

where q−i(t) := (q1(t), · · · , qi−1(t), qi+1(t), · · · , qn(t)) and
x−i = (x1, · · · , xi−1, xi+1, · · · , xn). In the τ -memory version of Fictitious Play
process, player i used the expected payoff (4.3) to select the strategy at time t+ 1
from

EPi(q−i(t)) :=

{
x̃ ∈ S0

∣∣ Ui(x̃, q−i(t)) = max
x∈S

Ui(x, q−i(t))

}
,

which is called player i’s best response to q−i(t), i.e.,

xi(t+ 1) ∈ EPi(q−i(t)).

Similarly, we also set a priority to all the strategies to obtain a pure strategy dy-
namics. Furthermore, the following algorithm is one of the main results in the [122].

Algorithm 4.1. This algorithm contains three steps:
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Table 2. Payoff bi-matrix

Player 1\Player 2 M F

M (2, 2) (1, 0)

F (0, 1) (3, 3)

(1) Calculate the structural matrix, Mi, of the payoff function of i ∈ N by

Mi = McW[k]

( ∑
j<i,j∈Ni

Dk,kn−2

f W[kj−1,k] +
∑

j>i,j∈Ni

Dk,kn−2

f W[kj−2,k]

)
;

(2) Construct the structural matrix of expected payoff function of i ∈ N , M c
i =

MiC, where C is defined as in Proposition 3.1 in [122]. Then, divide the
matrix M c

i into k(n−1) equal blocks into

M c
i = [Blk1 (M c

i ) , Blk2 (M c
i ) , · · · , Blkk(n−1)τ (M c

i )] ,

and for all l = 1, 2, · · · , k(n−1)τ , find the column index ξi,l such that

ξi,l = max{ξl
∣∣Colξl (Blkl (M

c
i )) = max

1≤ξ≤k
Colξ (Blkl (M

c
i ))};

(3) Construct the algebraic form of NEGs with τ memories as

z(t+ 1) = Lz(t), (4.4)

where L = L1∗L2∗· · ·∗Ln, Li=Dk,k
r Dkτ ,k(n−1)τ

f W[k(i−1)τ ,kτ ] (Iknτ ⊗ Lxi ) Ψn,kτ ,

Lxi = L̃iD
kτ ,k(n−1)τ

r W[k(i−1)τ ,kτ ], L̃i = δk[ξi,1, ξi,2, · · · , ξi,k(n−1)τ ], and i ∈ N .

Therefore, we can analyze the behaviors of all the players in the given NEG
via the (4.4). Because the algebraic form (4.4) reveals all the characteristics of the
NEG with finite memories. In other words, we can investigate the properties of L to
analyze the the dynamical process of the NEG with finite memories. We can obtain
the final states of the NEG via the logical network theory easily. The following
example prove that Algorithm 4.1 is very effective.

Example 4.1. Consider an NEG with the following basic factors:

• A network is (N, E), where N = {1, 2, 3}, and E = {(1, 2), (1, 3), (2, 3)};
• The FNG’s payoff bi-matrix shown in Table 2;

• The adjusting rule is τ-version of FP, where τ = 2.

With the help of Algorithm 4.1, we convert the above NEG with finite memories
into z(t+ 1) = Lz(t), where

L = δ64[1 3 1 23 9 27 25 31 1 19 17 23 26 28 26 32

33 39 37 55 42 64 62 64 34 56 54 56 58 64 62 64 1

7 5 23 10 32 30 32 2 24 22 24 26 32 30 32 38 40 38

56 46 64 62 64 38 56 54 56 62 64 62 64]. (4.5)
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Then, from (4.5), by the theory of logical network, one can get that (i) the fixed
points are δ1

64 and δ64
64 , that is, all players adopt the same strategy M or F ; (ii) two

cycles with length 3 are {δ7
64, δ

25
64 , δ

34
64} and {δ10

64 , δ
19
64 , δ

37
64}, namely, the strategy

profile sequences ({M,F,M}, {M,M,F}, {F,M,M}) and ({M,M,F}, {F,M,M},
{M,F,M}) are two cycles adopted by the three players; (iii) Ns = 0, s = 2 and
4 ≤ s ≤ 64.

This section considers the NEGs with finite memories as a dynamic system with
time delay. Actually, time delay is a very common situation. Many great works
in the community of control and engineering, have reached towards this kind of
systems. See in [1,15,48,49,52–54,57,61–71,90,91,94,97–99,103,113,124,127,130,
131] for details.

5. Networked Evolutionary Games Defined on Fi-
nite Networks

It is noticed that the network involved in the above mentioned NEGs is one. Ac-
tually, many economic activities imply an obvious fact that each participator, who
participates in an evolutionary game, will adjust their opponents or neighbours to
obtain more as the evolutionary game processes. The structure of network will be
changing with the NEG processing. Thus, NEGs defined on finite networks are very
meaningful.

Definition 5.1. A NEG defined on finite networks consisting of the following four
ingredients:

(1) A set of finite networks M := {1, 2, · · · ,m}: each network is a connected
graph (N, Ez), where N := {1, 2, · · · , n} is the set of players, Ez =

{
(i, j) |

there exists interaction between players i and j in network z
}

is the set of
edges, and z ∈M;

(2) A FNG: if (i, j) ∈ Ez, then i and j play the FNG in network z with strate-
gies xi(t) and xj(t) at time t, respectively. Particularly, if the FNG is not
symmetric, then the corresponding network must be directed to show that i
is player one and j is player two;

(3) Players’ strategy updating rules: for network z, the rule can be expressed as

xi(t) = fi,z (xi(0), xi(1), · · · , xi(t− 1), xj(0), xj(1), · · · , xj(t− 1) | j ∈ Ni,z) ,
(5.1)

where xj(τ) ∈ S is the strategy of player j at time τ , τ = 0, 1, · · · , t− 1, Ni,z
is the neighborhood of player i in the network z, that is, j ∈ Ni,z if and only
if (i, j) ∈ Ez, i ∈ N , and z ∈M. Obviously, i /∈ Ni,z and j ∈ Ni,z ⇔ i ∈ Nj,z;

(4) Network updating rule: a network selector z(t) and its updating rule is

z(t) = g (x(0), x(1) · · · , x(t)) , (5.2)

where x(τ) = (x1(τ), x2(τ), · · · , xn(τ)) ∈ Sn is the strategy profile of all
players at time τ = 0, · · · , t.

Because of more than one networks, we assign the selector z(t) to choose the
network in the next step. It is the main difference from [13] and [6]. We consider a
NEG defined on finite networks as finite NEGs defined on a fixed network.
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In this section, we still consider the myopic best response adjustment rule [9].
Then, we get

xi(t) ∈ Qi,z := argmax
xi∈S

pi,z (xi, xj(t− 1) | j ∈ Ni,z) , i ∈ N, z ∈M. (5.3)

Note that, via (5.3), players get their expected revenue at time t relying on
the last strategy profile x(t − 1). Therefore, player i obtains the expected revenue
ERi,z(x(t − 1)) = pi,z(x(t − 1), x(t)), where i = 1, · · · , n, and x(t) ∈ Qi,z. Thus,
one gets a set of networks Wi (x(t− 1)), where player i want to attend at time t to
maximize its earning, in the form of

Wi (x(t− 1)) := argmax
z∈M

ERi,z (x(t− 1)) . (5.4)

Thus, by (5.4) and enumerating all the players, we get the number of players who
want to participate in network z at time t

δz(x(t− 1)) = |{ Wi(x(t− 1)) | i ∈ N and z ∈Wi(x(t− 1))}| ,

where z ∈M. Therefore, under strategy profile x(t− 1) = δlkn , the selector chooses
the network

z(t) ∈ Pl := argmax
z∈M

δz(x(t− 1)),

in which the most players want to participate at time t, to make the evolutionary
process of the game proceed. Similarly, when |Pl| > 1, we use the aforementioned
idea of priority.

Furthermore, the following algorithm is one of the main results in the [118].

Algorithm 5.1. [118]

(1) Calculate the structural matrix, Mpi,z , of the payoff function of player i ∈ N
in network z ∈ M as Mpi,z = McD

kn−2,k2

r n
(∑

j<i, j∈Ni,z W[kj ,kn−j−1] +∑
j>i, j∈Ni,z W[kj−1,kn−j ]

)
;

(2) Divide the matrix Mpi,z into kn−1 equal blocks into

Mpi,z =
[
Blk1(Mpi,z ), Blk2(Mpi,z ), · · · , Blkkn−1(Mpi,z )

]
,

and for all l = 1, 2, · · · , kn−1, find the column index set Ξi,l,z, such that

Ξi,l,z = max
{
ξl | Colξl(Blkl(Mpi,z )) = max

16ξ6k
Colξ(Blkl(Mpi,z ))

}
;

(3) Define ri,l,z = |Ξi,l,z| ≥ 1, and construct the algebraic expression of the game
in network z as

xi(t+ 1) = Lpi z(t)x(t),

x(t+ 1) = Lpxz(t)x(t), (5.5)

where Lpx = Lp1∗L
p
2∗· · ·∗Lpn, Lpi = [Lpi,1, L

p
i,2, · · · , L

p
i,m], Lpi,z = L̃pi,zD

k,k
r W[ki−1,k],

Rowq(Coll(L̃
p
i,z)) = 1

ri,l,z
, Rowp(Coll(L̃

p
i,z)) = 0, q ∈ Ξi,l,z, p /∈ Ξi,l,z, l =

1, 2 · · · , kn−1, i ∈ N , and z ∈M;
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Table 3. Payoff Matrix

Player 1\Player 2 Mum Fink

Mum (2, 2) (1, 0)

Fink (0, 1) (3, 3)

(4) Use

x−i(t) = Dk,kn−1

r W[ki−1,k]x(t) := δ
lj
k(n−1) ,

and

wi,j := argmax
z∈M

{
Colξi,lj ,z (Blklj (Mpi,z ))|z ∈M

}
,

to construct

Wl =
∑
i∈N

∑
η∈wi,j

δηm,

and for all l = 1, 2, · · · , kn, find the row index set Θl, such that

Θl = max

{
j | Rowj(Wl) = max

16l6m
Rowl(Wl)

}
;

(5) Define µl = |Θl| ≥ 1 and construct the algebraic expression of the network
adjusting rule as

z(t+ 1) = Lpzz(t)x(t), (5.6)

where Lpz = L̂pzL
p
x, Lpx = [L̂p1, L̂

p
2, · · · , L̂pm], Rowq(Coll(L̂

p
z)) = 1

µl
,

Rowp(Coll(L̂
p
z)) = 0, q ∈ Θl, p /∈ Θl, and l = 1, 2, · · · , kn. Then, by (5.5) and

(5.6), one has

X(t+ 1) = LpX(t), (5.7)

where X(t) = z(t) n x(t) and Lp = Lpz ∗ Lpx is called the transition matrix of
the given NEG.

The following example illustrates Algorithm 5.1.

Example 5.1 ( [118]). The given NEG defined on finite networks consisting the
following basic ingredients:

• Three network, denote by (N, Ez), where z ∈M = {1, 2, 3}, N = {1, 2, 3, 4},
E1 = {(1, 2), (3, 4)}; E2 = {(1, 2), (2, 3), (3, 4)}, and
E3 = {(1, 2), (1, 4), (2, 3), (3, 4)};

• The FNG is Prisoner’s Dilemma Game with the payoff bi-matrix shown in
Table 3;

• The evolutionary rule is the myopic best response adjustment rule;

• The network selector’s updating rule is the majority voting system.
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According to Algorithm 5.1, it is easy to obtain the following algebraic expres-
sion:
X(t+ 1) = LX(t), where X(t) = z(t) n x(t), x(t) = nni=1xi(t), and

L = δ48[33 35 34 36 41 43 42 44 37 39 38 40 45 47 46 48 33 35 38 40 43 43 48 48

37 39 38 40 47 45 48 48 33 43 34 44 43 43 44 44 38 48 38 48 48 48 48 48].

Thus, by the theory of logical network, one can get two final states: (i) the
fixed points are δ33

48 and δ48
48 , namely, all players adopt the same strategy Mum or

Fink in network 3; (ii) the unique cycle with length 2 is {δ38
48 , δ

43
48}, which means

that the profiles {Mum,Fink,Mum,F ink} and {Fink,Mum,F ink,Mum} are
adopted alternately by the four players; (iii) Ns = 0, 3 ≤ s ≤ 3.

6. Control of Networked Evolutionary Games

When we are investigating the control and optimization of NEGs, without loss of
generality, we usually set player 1 as a pseudo-player to the game, which can be
regarded as an external control input. Using Algorithm 3.1, Algorithm 4.1, or
Algorithm 5.1, we can get the desired expression for the given NEGs in the control
form as

y(t+ 1) = Luu(t)y(t), (6.1)

where u(t) = x1(t) and y(t) = x2(t)x3(t) · · ·xn(t).
For system ẋ(t) = f(x(t)), we hope that x(t) would convergence the equilibrium

point x = 0. For the NEG (6.1), we hope that y(t) would convergence the Nash
equilibrium ye under the input sequence {u(t)}0<t<∞.

[13], [118] and [122] adopted the same method to solve this problem.
Firstly, we should determine the Nash equilibrium ye for the given NEG.
Then, we rewrite (6.1) as

y(τ) = Luu(τ − 1)y(τ − 1) = Luu(τ − 1)Luu(τ − 2)y(τ − 2)

= Lu(Ik ⊗ Lu)u(τ − 1)u(τ − 2)y(τ − 2)

= Lu(Ik ⊗ Lu) · · · (Ikτ−1 ⊗ Lu)u(τ − 1) · · ·u(0)y(0)

:= L̄u(τ − 1)u(τ − 2) · · ·u(0)y(0) = ye. (6.2)

From (6.2), we design a proper input sequence {u(t)}0<t<∞ to reach the target.
Actually, when we use STP method to investigate the NEGs, we convert the

given NEGs to the logical networks and apply the theory of logical networks to them.
Therefore, readers can see details in [10,11,22–31,33,34,39,81–85,119–121,133] for
more theory of logical control networks.

7. Random Networked Evolutionary Games

In addition to the pure strategy evolutionary game, the investigation of mixed
strategy evolutionary games is also a heated topic. This section introduces one kind
of mixed strategy evolutionary games, i.e., n-person random evolutionary Boolean
games (REBG) [8].
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An n-person REBG which has the fixed strategy updating rule can be repre-
sented as follows: 

x1(t+ 1) = f1(X(t), ω1(t, p1), y(t)),

x2(t+ 1) = f2(X(t), ω2(t, p2), y(t)),

...

xn(t+ 1) = fn(X(t), ωn(t, pn), y(t));

y(t) = h(X(t)),

(7.1)

where X(t) = (x1(t), x2(t), · · · , xn(t)) ∈ Dn is the strategy of every player at time
t, ωi(t, pi) ∈ D with P{ωi(t, pi) = 1} = pi (0 ≤ pi ≤ 1) denotes a random variable
which is the possibility of making right choice for each player, y(t) ∈ D is the game
result, and fi : Dn+2 → D i = 1, · · · , n and h : Dn → D are Boolean functions
which are determined by the strategy updating rule.

In the following, there is the definition of stability with probability one for the
n-person REBG (7.1).

Definition 7.1 ( [8]). The n-person REBG (7.1) is said to be globally stable at
X∗ ∈ Dn with probability one, if there exists a positive integer τ such that

P{X(t) = X∗|X(0) = X0} = 1

holds for any initial strategy X0 ∈ Dn and any integer t ≥ τ .

Our target is to analyze stability of the REBG. Therefore, [8] converted system
(7.1) into the algebraic form of the n-person REBG (7.1) as follows:x(t+ 1) = Lω(t)x(t),

y(t) = Hx(t).
(7.2)

Then, one can analyze the above equation (7.2) by the following result.

Theorem 7.1 ( [8]). The n-person REBG (7.1) is globally stable at xe = δα2n with
probability one, if and only if there exists an integer 1 ≤ τ ≤ 2n such that

Mτ = δ2n [α · · · α], (7.3)

where xe = δα2n is the canonical vector form of X∗.

8. Conclusion

In this survey, we have reviewed a number of applications of STP method in the
investigation of some kinds of NEGs, including general NEGs, NEGs with finite
memories, NEGs defined on finite networks, control of NEGs, and random NEGs.
By adopting STP method, constructive and precise analysis from the perspective of
mathematics has been reflected in these applications. With the rapid development
of science, we have faith in that STP method will have more wider applications in
the theory of NEGs in the future.
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Based on the literature review, some related topics for potential applications in
NEGs are given as follows: (1) Many classical strategy updating rules, uncondi-
tional imitation updating rules for example, need to be algebraically formulated to
complete the theory of NEGs; (2) Although we can analyze the given NEGs theoret-
ically via STP method, how to reduce the computational complexity of calculations
for STP method is still a problem in the future work; (3) The mix-valued strategy
dynamics of the NEGs should be considered in the future work. We need to find
more mathematical tools to deal with mix-valued dynamics; (4) Finally, when the
evolutionary games are defined on the complex networks, how can we analyze the
NEGs in the view of graph theory? (5) Many related results in control theory, such
as [7, 16, 19, 20, 43, 44, 50, 51, 55, 56, 58–60, 72–74, 95, 100, 101, 104, 108, 109, 114, 115,
117,132], could be extended to the theory of NEGs.
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