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Abstract In this paper, under certain nonlinear growth conditions, we inves-
tigate the existence and successive iterations for the unique positive solution of
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1. Introduction

Since the fractional q-calculus theory was founded by Al-Salam [6] and Agarwal
[2], its theory and application research has made great progress [1,4,7–9,12–15,17,
22, 23, 25, 26, 41]. Nonlinear equations, as a powerful tool for describing nonlinear
phenomena in nature, are used and studied by more and more people. At present,
with the development of fractional q-calculus, many researchers are concentrating
their attention on the study of nonlinear fractional q-difference equations, and some
excellent results have been obtained. Readers can find them in the literatures
[3, 5, 18–21,34,35] and references therein.

In 2011, by employing a fixed point theorem in cones, Ferreira [12] considered a
nonlinear q-fractional difference boundary value problem{

(Dα
q y)(x) = −f(x, y(x)), x ∈ (0, 1),

y(0) = (Dqy)(0) = 0, (Dqy)(1) = β ≥ 0,
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where Dα
q is the Riemann-Liouville q-derivative of order α. Under some sufficien-

t conditions, the author proved the existence of positive solutions for the above
problem.

In 2013, Graef and Kong [15] considered the singular boundary value problem
with fractional q-derivatives

(Dν
qu)(t) = f(t, u(t)), t ∈ (0, 1),

(Di
qu)(0) = 0, i = 0, · · · , n− 2,

(Dqu)(1) =

m∑
j=1

aj(Dqu)(tj) + λ,

where m,n ∈ N, m ≥ 1, n ≥ 2, n−1 < ν ≤ n, λ ≥ 0 is a parameter, q, ti ∈ (0, 1) for
i = 1, · · · ,m. f ∈ C((0, 1]×(0,∞), [0,∞)), aj ≥ 0 and Dν

q is the Riemann-Liouville
type q-derivative of order ν. By means of a nonlinear alternative of Leray-Schauder,
the authors gave some sufficient conditions for the existence of positive solutions.

In 2014, Yang [34] investigated the integral boundary value problem for systems
of nonlinear q-fractional difference equations as follows

(Dα
q u)(t) + λf(t, u(t), v(t)) = 0,

(Dβ
q v)(t) + λg(t, u(t), v(t)) = 0, t ∈ (0, 1), λ > 0,

(Dj
qu)(0) = (Dj

qv)(0) = 0, 0 ≤ j ≤ n− 2,

u(1) = µ

∫ 1

0

u(s)dqs, v(1) = ν

∫ 1

0

v(s)dqs,

where α, β ∈ (n − 1, n] are real numbers and n ≥ 3 is an integer, D
(.)
q denotes

the Riemann-Lioville type fractional q-derivative, λ, µ, ν are three parameters with
0 < µ < [β]q, 0 < ν < [α]q, and f, g : [0, 1]× [0,∞)× [0,∞)→ R are continuous.

In 2015, Li et al. [21] investigated a class of fractional q-difference Schrölnger
equations precisely the time-independent.

Dα
q u(x) +

m

~
(E − v(x))u(x) = 0,

where v(x) is the trapping potential, m is the mass of a particle, ~ is the Planck
constant, E is the energy of a particle. In order to study the fractional q-difference
Schrölnger equations, the authors considered a general fractional q-difference equa-
tion

(Dα
q u)(x) + λh(x)f(u(x)) = 0, 0 < x < 1,

subject to the boundary conditions

u(0) = Dqu(0) = Dqu(1) = 0,

where 0 < q < 1, 2 < α < 3, f ∈ C([0,∞), (0,∞)), h ∈ ((0, 1), (0,∞)). The
authors obtained some existence results for the above general fractional q-difference
equation with the assistance of a fixed point theorem in cones.

It should be pointed out that in the study of nonlinear fractional q-difference
equations, much effort focused on the existence of solutions. “How to discover the
solution?” is a very challenging and meaningful subject. In our current work, we are
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going to challenge this topic by applying the hybrid monotone method. Precisely,
we will study the following nonlinear fractional q-difference equation with q-integral
boundary condition

Dα
q z(t) + f(z(t), (Iβq z)(t)) = 0, t ∈ (0, 1),

Dj
qz(0) = 0, 0 ≤ j ≤ n− 2, z(1) = µ

∫ 1

0

z(s)dqs,
(1.1)

where 0 < q < 1, α ∈ (n − 1, n], n ∈ N and n ≥ 3, µ is a parameter with

0 < µ < [α]q, (Iβq z)(t) =
1

Γq(β)

∫ t

0

(t − qs)(β−1)z(s)dqs is the Riemann-Liouville

type fractional q-integral of order β > 0, Dα
q denotes the Riemann-Lioville type

fractional q-derivative of order α, and f : R × R → [0,∞) is continuous with
f(t, 0) 6≡ 0 on [0, 1].

Different from the methods used in the existing literature [1, 3, 5, 12–15, 17–23,
34, 35, 41], in this article, we employ the hybrid monotone iterative method, which
is a novel approach to the nonlinear fractional q-difference equation with q-integral
boundary condition (1.1). We establish the existence and uniqueness of the positive
solution of the q-integral boundary problem. Meanwhile, two hybrid monotone
iterative algorithms for approximating the positive solution are also derived. For
the details and recent developments of monotone iterative methods, the readers can
refer to [10,11,24,27–33,36–40].

2. Preliminaries and Lemmas

For the readers’ convenience, we present some background materials of fractional
q-calculus theory and lemmas.

Definition 2.1 (Annaby et al. [8]). For α ≥ 0, the Riemann-Liouville fractional
q-integral of order α of a function f is I0q f(t) = f(t) and

(Iαq f)(t) =
1

Γq(α)

∫ t

0

(t− qs)(α−1)f(s)dqs, α > 0, t ∈ [0, 1],

where Γq(α) = (1−q)(α−1)

(1−q)α−1 and satisfies the relation Γq(α+ 1) = [α]qΓq(α),

here

[α]q =
1− qα

1− q
, (a− b)(0) = 1 and (a− b)(α) = aα

∞∏
n=0

1− (b/a)qn

1− (b/a)qn+α
, a, b, α ∈ R.

Note that if a = 1 and b = q, then (1 − q)(α) =
∞∏
n=0

1−qn+1

1−q1+α+n ; if b = 0, then

a(α) = aα.
The well-known q-derivative and q-integral of the function f(t) are defined by

Dqf(t) =
f(t)− f(qt)

(1− q)t
, Iqf(t) =

∫ t

0

f(s)dqs =

∞∑
n=0

t(1− q)qnf(tqn),

where (Dqf)(0) = lim
t→0

(Dqf)(t) and q-derivative and q-integral of higher order by

(D0
qf)(t) = f(t) and (Dn

q f)(t) = Dq(D
n−1
q f)(t), n ∈ N,
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(I0q f)(t) = f(t) and (Inq f)(t) = Iq(I
n−1
q f)(t), n ∈ N.

Definition 2.2 (Annaby et al. [8]). For α ≥ 0, the Riemann-Liouville fractional
q-derivative of order α of a function f is D0

qf(t) = f(t) and

(Dα
q f)(t) = (Dm

q I
m−α
q f)(t), α > 0,

where m is the smallest integer greater than or equal to α.

Lemma 2.1 (Rajkovic et al. [26]). Let α, β ≥ 0 and f be a function defined on
[0, 1]. Then the following relations hold:
(1) (Iβq I

α
q f)(t) = Iα+βq f(t), (2) (Dα

q I
α
q f)(t) = f(t).

Lemma 2.2 (Ferreira [12]). Assume that α > 0 and p is a positive integer. Then

(Iαq D
p
qf)(t) = (Dp

qI
α
q f)(t)−

p−1∑
k=0

tα−p+k

Γq(α+ k − p+ 1)
(Dk

q f)(0).

Remark 2.1 (Rajkovic et al. [26]). Let α ≥ 0 and λ > −1. Then we have

Iαq ((t− a)(λ)) =
Γq(λ+ 1)

Γq(α+ λ+ 1)
(t− a)(α+λ), 0 < a < t.

Lemma 2.3 (Yang [34]). For any y ∈ C[0, 1], the q-integral boundary value problemDα
q u(t) + y(t) = 0, t ∈ (0, 1),

Dj
qu(0) = 0, 0 ≤ j ≤ n− 2, u(1) = µ

∫ 1

0
u(s)dqs,

(2.1)

has a unique solution given by

u(t) =

∫ 1

0

G(t, qs)y(s)dqs, (2.2)

where

G(t, s) =
1

Γq(α)


(

1 +
µqα−1s

[α]q − µ

)
tα−1(1− s)(α−1) − (t− s)(α−1), 0 ≤ s ≤ t ≤ 1,(

1 +
µqα−1s

[α]q − µ

)
tα−1(1− s)(α−1), 0 ≤ t ≤ s ≤ 1.

(2.3)

Lemma 2.4 (Yang [34]). The function G(t, s) defined by (2.3) has the following
properties:

(a) : G(t, s) is continous and G(t, qs) ≥ 0, ∀t, s ∈ [0, 1]

(b) : ρ(s)tα−1 ≤ G(t, qs) ≤ ∆tα−1, ∀t, s ∈ [0, 1],
(2.4)

where

ρ(s) =
µqα(1− qs)(α−1)s
([α]q − µ)Γq(α)

, ∆ =
q[α− 1]q([α]q − µ) + µqα

([α]q − µ)Γq(α)
, t, s ∈ [0, 1].



1208 G. Wang, Z. Bai & L. Zhang

Let P̊={x ∈ P |x is an interior point of cone P}. A cone P is called to be a solid
cone if its interior P̊ is nonempty.

Lemma 2.5 (Guo [16]). Let P be a normal, solid cone of Banach space E, and
T : P̊ → P̊ be a mixed monotone operator. Suppose that there exists 0 < σ < 1 such
that

T (cx,
1

c
y) ≥ cσT (x, y), x, y ∈ P̊ , 0 < c < 1. (2.5)

Then the operator T has a unique fixed point x∗ ∈ P̊ . Moreover, for any initial
x0, y0 ∈ P̊ , by constructing successively the sequences xn = T (xn−1, yn−1), yn =
T (yn−1, xn−1), n = 1, 2, ...,we have ‖xn−x∗‖ → 0, and ‖yn−x∗‖ → 0 as n→ +∞.

3. Main Results

In this section, we formulate our main results on the uniqueness of positive
solution for nonlinear fractional q-difference equation with q-integral boundary con-
dition (1.1).

Let E = C[0, 1], then E is a Banach space endowed with the norm ‖z‖ =
maxt∈[0,1] |z(t)|.

Define a cone P in E by P = {z | z ∈ E : z(t) ≥ 0, t ∈ [0, 1]} and a cone

Qω = {z ∈ P :
1

M
ω(t) ≤ z(t) ≤Mω(t), t ∈ [0, 1]} (3.1)

where

M >max
{
a−1, 2b,

(
2σaσ∆φ(1, 1) +

1− q
1− q1−σ(α+β−1)

b−σ∆ψ(1, 1)
) 1

1−σ
, 1,( [α]q − µ

µqα

) 1
1−σ
(2−σa−σψ(1, 1)

Γq(α+ 2)
+
bσΓq(2 + σ(α+ β − 1))φ(1, 1)

Γq(α+ 2 + σ(α+ β − 1))

)− 1
1−σ
}
,

(3.2)

a = max
{ Γq(α)

Γq(α+ β)
, 1
}
, b = min

{ Γq(α)

Γq(α+ β)
, 1
}
, ω(t) = tα−1. (3.3)

Then the cone Qω is solid.
Now, we present some assumptions to be used throughout the rest of the paper.

(H1) f(u, v) = φ(u, v) + ψ(u, v), where φ, ψ ∈ C([0,+∞)2 → [0,+∞)), and φ(u, v)
is non-decreasing and ψ(u, v) is non-increasing for u, v > 0, respectively.
(H2) There exists 0 < σ < 1

α+β−1 , for u, v > 0 and any c ∈ (0, 1), such that

φ(cu, cv) ≥ cσφ(u, v), ψ(c−1u, c−1v) ≥ cσψ(u, v). (3.4)

Remark 3.1. By the condition (H2), for u, v > 0 and any c ≥ 1, the following
inequalities hold

φ(cu, cv) ≤ cσφ(u, v), ψ(c−1u, c−1v) ≤ cσψ(u, v). (3.5)

In order to investigate the uniqueness of positive solution for nonlinear frac-
tional q-difference equation (1.1), we first study an auxiliary problem for q-integral
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boundary value problems (1.1):
Dα
q z(t) + f(z(t) +

1

n
, (Iβq z)(t) +

1

n
) = 0, t ∈ (0, 1),

Dj
qz(0) = 0, 0 ≤ j ≤ n− 2, z(1) = µ

∫ 1

0

z(s)dqs,

(3.6)

where n ∈ 2, 3, .... Assume that f : (R\{0})2 → R is continuous. It is obvious z
is a solution of q-integral boundary value problems (3.6) if z ∈ C[0, 1] fulfills the
following nonlinear q-integral equation:

z(t) =

∫ 1

0

G(t, qs)f(z(s) +
1

n
, (Iβq z)(s) +

1

n
)dqs. (3.7)

Theorem 3.1. Assume the conditions (H1) and (H2) are fulfilled. Then the q-
integral boundary value problems (1.1) has a unique positive solution z∗, and there
exist two positive constants λ, ρ(λ < ρ) such that

λtα−1 ≤ z∗ ≤ ρtα−1. (3.8)

Moreover, for any initial values u0, v0 ∈ Qω, one can construct successively two
explicit mixed iterative sequences

um(t) =

∫ 1

0

G(t, qs)[φ(um−1(s), (Iβq um−1)(s)) + ψ(vm−1(s), (Iβq vm−1)(s))]dqs,

vm(t) =

∫ 1

0

G(t, qs)[φ(vm−1(s), (Iβq vm−1)(s)) + ψ(um−1(s), (Iβq um−1)(s))]dqs,

(3.9)

such that um, vm converge uniformly to z∗ as m→∞ on [0, 1] , i.e., ‖um − z∗‖ →
0, ‖vm − z∗‖ → 0 as m→∞.

Proof. First, in order to prove the uniqueness of positive solution of the auxiliary
q-integral boundary value problems (3.6), we define an operator H : P ×P → P by

H(u, v)(t) =

∫ 1

0

G(t, qs)
[
φ
(
u(s) +

1

n
, (Iβq u)(s) +

1

n

)
+ ψ

(
v(s) +

1

n
, (Iβq v)(s) +

1

n

)]
dqs.

(3.10)

Now, we show that the operator H maps Qω ×Qω into Qω. From the definition of
Riemann-Liouville fractional q-integral, we know that

(Iβq ω)(t) =
1

Γq(α)

∫ t

0

(t− qs)β−1ω(s)dqs

=
1

Γq(α)

∫ t

0

(t− qs)β−1sα−1dqs

=
Γq(α)

Γq(α+ β)
tα+β−1.

(3.11)
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On one hand, for any u, v ∈ Qω, we have

φ
(
u(t) +

1

n
, (Iβq u)(t) +

1

n

)
≤φ
(
Mtα−1 + 1,

MΓq(α)

Γq(α+ β)
tα+β−1 + 1

)
≤φ(Ma+ 1,Ma+ 1) ≤ (Ma+ 1)σφ(1, 1)

≤2σaσMσφ(1, 1),

(3.12)

and

ψ
(
v(t) +

1

n
, (Iβq v)(t) +

1

n

)
≤ψ
( 1

M
tα−1 +

1

n
,

Γq(α)

MΓq(α+ β)
tα+β−1 +

1

n

)
≤ψ
( b

M
tα−1 +

1

n
,
b

M
tα+β−1 +

1

n

)
≤
( b

M
tα+β−1 +

1

n

)−σ
ψ(1, 1)

≤b−σMσt−σ(α+β−1)ψ(1, 1), (3.13)

in which, a, b are defined in (3.3).

It follows from 0 < σ < 1
α+β−1 that

H(u, v)(t) =

∫ 1

0

G(t, qs)
[
φ
(
u(s)+

1

n
, (Iβq u)(s)+

1

n

)
+ψ
(
v(s)+

1

n
, (Iβq v)(s)+

1

n

)]
dqs

≤ ∆

∫ 1

0

tα−1(2σaσMσφ(1, 1) + b−σMσs−σ(α+β−1)ψ(1, 1))dqs

≤ 2σaσMσφ(1, 1)∆tα−1 +
1− q

1− q1−σ(α+β−1)
b−σMσψ(1, 1)∆tα−1

≤Mtα−1. (3.14)

On the other hand, in view of the conditions (H1) and (H2), we get

ψ
(
v(t) +

1

n
, (Iβq v)(t) +

1

n

)
≥ψ
(
Mtα−1 +

1

n
,
MΓq(α)

Γq(α+ β)
tα+β−1 +

1

n

)
≥ψ
(
Ma+

1

n
,Ma+

1

n

)
≥ ψ(Ma+ 1,Ma+ 1)

≥(Ma+ 1)−σψ(1, 1) ≥ 2−σa−σM−σψ(1, 1),

(3.15)

and

φ
(
u(t) +

1

n
, (Iβq u)(t) +

1

n

)
≥φ
( 1

M
tα−1 +

1

n
,

Γq(α)

MΓq(α+ β)
tα+β−1 +

1

n

)
≥φ
( b

M
tα−1 +

1

n
,
b

M
tα+β−1 +

1

n

)
≥
( b

M
tα+β−1 +

1

n

)σ
φ(1, 1)

≥bσM−σtσ(α+β−1)φ(1, 1),

(3.16)
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In view of (3.15), (3.16) and Lemma 2.4, we can obtain that

H(u, v)(t) =

∫ 1

0

G(t, qs)
[
φ
(
u(s) +

1

n
, (Iβq u)(s) +

1

n

)
+ ψ

(
v(s) +

1

n
, (Iβq v)(s) +

1

n

)]
dqs

≥ µqαtα−1

([α]q − µ)

∫ 1

0

(1− qs)(α−1)s
Γq(α)

(2−σa−σM−σψ(1, 1)

+ bσM−σsσ(α+β−1)φ(1, 1))dqs

=
µqαtα−1

([α]q − µ)

(
2−σa−σM−σψ(1, 1)

Γq(2)

Γq(α+ 2)

+
bσM−σφ(1, 1)Γq[2 + σ(α+ β − 1)]

Γq[α+ 2 + σ(α+ β − 1)]

)
=

µqαtα−1

([α]q − µ)Mσ

(2−σa−σψ(1, 1)

Γq(α+ 2)
+
bσΓq[2 + σ(α+ β − 1)]φ(1, 1)

Γq[α+ 2 + σ(α+ β − 1)]

)
≥ 1

M
tα−1.

(3.17)

Therefore, T : Qω ×Qω → Qω
Next, we prove that the operator H is mixed monotone. In fact, for any u1, u2 ∈

Qω and u1 ≤ u2, we have

H(u1, v)(t) =

∫ 1

0

G(t, qs)
[
φ
(
u1(s) +

1

n
, (Iβq u1)(s) +

1

n

)
+ ψ

(
v(s) +

1

n
, (Iβq v)(s) +

1

n

)]
dqs

≤
∫ 1

0

G(t, qs)
[
φ
(
u2(s) +

1

n
, (Iβq u2)(s) +

1

n

)
+ ψ

(
v(s) +

1

n
, (Iβq v)(s) +

1

n

)]
dqs

=H(u2, v)(t),

(3.18)

which means
H(u1, v)(t) ≤ H(u2, v)(t), v ∈ Qω (3.19)

i.e., for any v ∈ Qω, H(u, v) is non-decreasing in u. Similarly, if v1 ≥ v2, v1, v2, u ∈
Qω, it is easy to prove that H(u, v1)(t) ≤ H(u, v2)(t). Therefore, we can obtain
that H : Qω ×Qω → Qω is a mixed monotone operator.

Finally, we prove that the condition (2.5) holds for the mixed monotone operator
H. In fact, combining with (H2), for any u, v ∈ Qω and 0 < c < 1, we have

H(cu,
1

c
v)(t) =

∫ 1

0

G(t, qs)
[
φ
(
cu(s) +

1

n
, c(Iβq u)(s) +

1

n

)
+ ψ

(
c−1v(s) +

1

n
, c−1(Iβq v)(s) +

1

n

)]
dqs

≥
∫ 1

0

G(t, qs)cσ
[
φ
(
u(s) +

1

n
, (Iβq u)(s) +

1

n

)
+ ψ

(
v(s) +

1

n
, (Iβq v)(s) +

1

n

)]
dqs
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=cσH(u, v)(t), ∀t ∈ [0, 1]. (3.20)

Since α ∈ (n− 1, n], (n ≥ 3), and β > 0, it means 0 < σ < 1
α+β−1 < 1. It follows

from Lemma 2.5 that there exists a unique positive solution z∗n ∈ Qω such that
H(z∗n, z

∗
n) = z∗n. Thus, for each n(n ≥ 2), the auxiliary problem (3.6) has a unique

positive solution.

Since z∗n ∈ Qω, z∗n has uniform lower and upper bounds, it follows from the
Arzela-Ascoli Theorem and the Lebesgue dominated convergence theorem that
{z∗n}n≥2 being an equicontinuous family on [0, 1]. Let z∗n → z∗ as n → ∞, by
Lemma 2.5, we know that the mixed monotone operator H has a unique fixed
point z∗ ∈ Qω, which implies that the nonlinear fractional q-difference equation
with q-integral boundary condition (1.1) has a unique solution z∗ and z∗ satisfies

λtα−1 = tα−1

M ≤ z∗ ≤Mtα−1 = ρtα−1. Moreover, for any initial values u0, v0 ∈ Qω,
we can construct successfully the following two explicit mixed iterative sequences:

um(t) =

∫ 1

0

G(t, qs)[φ(um−1(s), (Iαq um−1)(s)) + ψ(vm−1(s), (Iαq vm−1)(s))]dqs,

vm(t) =

∫ 1

0

G(t, qs)[φ(vm−1(s), (Iαq vm−1)(s)) + ψ(um−1(s), (Iαq um−1)(s))]dqs,

(3.21)

and um(t), vm(t) converge uniformly to the unique solution z∗(t) on [0, 1] as m→∞,
i.e., ‖um − z∗‖ → 0, ‖vm − z∗‖ → 0 as m→∞.

4. Example

Example 4.1. Consider the following nonlinear fractional q-difference equation
with q-integral boundary condition:D

9
2
1
2

z(t) + z
1
7 (t) + [(I

1
3
1
2

z)(t)]
1
6 + z−

1
3 (t) + [(I

1
3
1
2

z)(t)]−
1
5 = 0, t ∈ (0, 1),

Dj
1
2

z(0) = 0, j = 0, 1, 2, 3, z(1) = 3
∫ 1

0
z(s)dqs,

(4.1)

where α = 9
2 , β = 1

3 , q = 1
2 , µ = 3, and

φ(u, v) = u
1
7 + v

1
6 , ψ(u, v) = u−

1
3 + v−

1
5 . (4.2)

Thus, we can choose σ = 1
5 <

1
α+β−1 , then φ(cu, cv) = c

1
7u

1
7 + c

1
6 v

1
6 ≥ c

1
5φ(u, v),

ψ(c−1u, c−1v) = (c−1u)−
1
3 + (c−1v)−

1
5 ≥ c 1

5ψ(u, v), for any u, v > 0 and 0 < c < 1.
Clearly, φ, ψ : (0,+∞)2 → [0,+∞) are continuous, and φ(u, v) is non-decreasing
and ψ(u, v) is non-increasing in u, v > 0 respectively. Thus by Theorem 3.1, the
nonlinear fractional q-difference equation with q-integral boundary condition (4.1)
has a unique positive solution z∗, and there exist two constants λ, ρ such that

λt
7
2 ≤ z∗(t) ≤ ρt 7

2 . (4.3)

Moreover, for any initial u0, v0 ∈ Qω, we can construct successively two sequences
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{um} and {vm} by

um(t) =

∫ 1

0

G(t,
1

2
s)[φ(um−1(s), (I

1
3
1
2

um−1)(s)) + ψ(vm−1(s), (I
1
3
1
2

vm−1)(s))]dqs,

vm(t) =

∫ 1

0

G(t,
1

2
s)[φ(vm−1(s), (I

1
3
1
2

vm−1)(s)) + ψ(um−1(s), (I
1
3
1
2

um−1)(s))]dqs,

(4.4)

and the iterative sequences um(t), vm(t) converge uniformly to z∗(t) on [0, 1] as
m→∞, i.e., ‖um − z∗‖ → 0, ‖vm − z∗‖ → 0 as m→∞.
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