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Abstract In this paper, we consider the multidimensional stability of planar
waves for a class of nonlocal dispersal equation in n–dimensional space with
time delay. We prove that all noncritical planar waves are exponentially stable
in L∞(Rn) in the form of e−µτ t for some constant µτ = µ(τ) > 0( τ > 0 is the
time delay) by using comparison principle and Fourier transform. It is also
realized that, the effect of time delay essentially causes the decay rate of the
solution slowly down. While, for the critical planar waves, we prove that they
are asymptotically stable by establishing some estimates in weighted L1(Rn)
space and Hk(Rn)(k ≥ [n+1

2
]) space.
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1. Introduction

The theory of traveling wave solutions of reaction-diffusion equations has attracted
much attention due to its significant nature in biology, chemistry, epidemiology and
physics (see, [3,7,11,21,23,26] ). Among the basic problems in the theory of traveling
wave solutions, the stability of traveling wave solutions is an extremely important
one. Recently, a great interest has been drawn to the study of the multidimensional
stability of traveling wave solutions. Levermore and Xin [11] first considered the
following bistable reaction-diffusion equation,

ut(x, t) = ∆u(x, t) + f(u(x, t)), x ∈ Rn, t > 0, (1.1)

where f(u) = u(1 − u)(u − θ) for some θ ∈ (0, 1/2). They proved that the planar
traveling wave solutions of (1.1) are stable in L2

loc(Rn) with the small initial pertur-
bation by using the maximum principle and energy methods. Xin [25] investigated
the multidimensional stability of planar traveling wave solutions of (1.1) via an ap-
plication of linear semigroup theory. He showed that if the perturbation of a planar
traveling wave solution is small enough in Hm(Rn) ∩ L1(Rn)(m ≥ n + 1, n ≥ 4),
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then the solution of the initial value problem converges to the planar wave solution

in Hm(Rn) as t goes to infinity with rate O(t−
n−1
4 ). Matano et al. [16] obtained

that planar waves of (1.1) are asymptotically stable under almost periodic per-
turbation or under any possibly large initial perturbations which decay at space
infinity. Furthermore, they also found a special solution that oscillates permanently
between two planar waves, which implies that planar waves are not asymptotically
stable under more general perturbations. We can study more works of the multi-
dimensional stability of traveling waves by referring to [1, 2, 9, 15, 16, 22, 24, 27] and
references therein for more details.

Mei and Wang [20] considered the following Fisher-KPP type reaction-diffusion
equation

∂u(x, t)

∂t
= D∆u(x, t)− d(u(x, t)) +

∫
Rn
fα(y)b(u(x− y, t− τ))dy, (1.2)

where D > 0 denotes the diffusion rate and d(u), b(u) are nonnegative nonlinear
functions. They obtained that all noncritical planar traveling waves are exponen-
tially stable and critical planar traveling waves are algebraically stable in the form
t−

n
2 by using weighted energy method and Fourier transform. Huang et al. [8]

extended the results in [20] to the nonlocal diffusion equations.
Very recently, Faye [6] studied the multidimensional stability of planar waves of

the following nonlocal Allen-Cahn equations by using semigroup estimates,

ut(x, t) =

∫
Rn
J(x− y)u(y, t)dy − u(x, t) + f(u(x, t)), x ∈ Rn, t > 0, (1.3)

where J(x) is the kernel function and f is a smooth function with bistable type.
They showed that if the traveling wave is spectrally stable in one-dimensional space,
then it is stable in n–dimensional space under some special perturbations of planar
waves.

Motivated above, in this paper, we consider the multidimensional stability of
planar waves for the following class of nonlocal diffusion equation with nonlocal
time-delayed response term

∂u(x, t)

∂t
= d

∫
Rn
J(y)(u(x−y, t)−u(x, t))dy+f(u(x, t), k∗u(x, t−τ)), x ∈ Rn, t ≥ 0,

(1.4)
with the initial data

u(x, s) = u0(x, s), x ∈ Rn, s ∈ [−τ, 0], (1.5)

where

k ∗ u(x, t− τ) =

∫
Rn
k(y)u(x− y, t− τ)dy.

Here, we give the following assumptions throughout this paper.

(H1) There exist u− = 0 and u+ > 0 such that f(0, 0) = f(u+, u+) = 0, f
∈ C2([0, u+]2,R), f(u, u) > 0 for all u ∈ (0, u+);

(H2) ∂1f(0, 0) ≤ 0 and ∂1f(u+, u+) + ∂2f(u+, u+) < 0;

(H3) ∂2f(u, v) ≥ 0, ∂11f(0, 0) < 0 and ∂ijf(u, v) ≤ 0(i, j = 1, 2) for all (u, v)
∈ [0, u+]2;
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(H4) J ≥ 0, J(x) = J(−x),
∫
Rn J(x)dx = 1, and

∫
Rn J(x)e−λxdx < +∞,∀λ ≥ 0;

(H5) k ≥ 0, k(x) = k(−x),
∫
Rn k(x)dx = 1, and

∫
Rn k(x)e−λxdx < +∞,∀λ ≥ 0.

From (H1), it can be verified that both u− = 0 and u+ > 0 are constant equilibria
of (1.4). In the biological environment, the kernel functions J(x) and k(x) can be

chosen in the form of J(x) = k(x) = 1√
4πα

e−‖x‖
2/4α. It is not difficult to see that

the functions J(x) and k(x) satisfy assumptions (H4) and (H5). Moreover, the
response term f(u, k ∗ u) can be chosen in the form of

f(u, k ∗ u) = −d(u(x, t)) +

∫
Rn
k(x)b(u(x− y, t− τ))dy,

where d(u) = −δu2 is the death rate, and b(u) can be chosen in the so-called
Nicholson’s birth rate function b(u) = pue−au

q

(p > 0, a > 0, q > 0). It is easy to see
that the function f satisfies assumptions (H1)–(H3). So, (1.4) with the assumptions
(H1)–(H5) includes many models.

A planar wave of (1.4) is a special solution in the form of u(x, t) = φ(ν · x+ ct)
(where ν ∈ Rn is a fixed unit vector) with φ(±∞) = u±, where c is the wave speed.
In one-dimensional space, the existence, uniqueness and stability of traveling waves
of (1.4) have been discussed in [12, 26]. To the best of our knowledge, there is no
any results for the multidimensional stability of planar waves of (1.4). The main
purpose of this paper is to investigate the multidimensional stability of the planar
wave φ(ν · x + ct) of (1.4), including the case of the critical planar wave φ(ν · x +
c∗t). In one-dimensional space, lots of investigations has been done concerning the
stability of traveling waves by using the spectral analysis method, the squeezing
technique, the weighted energy method. We can refer to [3, 4, 12, 17, 18, 21, 23] and
the references therein for more results on the study of the stability of traveling
waves for monostable equations in one-dimensional space.

In this paper, we will prove that all noncritical planar waves are exponentially
stability by using the comparison principle and Fourier transform. But for the
critical planar waves, the expecting optimal convergence rate O(t−

n
2 ) is unable to

estimate at this moment mainly because of the effect of the nonlocal diffusion, which
has the essential difference with the classical Laplacian operator (see [20] for more
details). Here, we not only obtain the Hk-estimate for v(ξ, t) through the L1-energy

estimate, but also obtain the estimate for ∂v(ξ,t)
∂t (see Lemmas 4.2 and 4.3 for more

details). Fortunately, we finally obtain the asymptotic stability of the critical planar
waves. But the optimal convergence rate result to the critical planar waves with
the effect of the nonlocal diffusion is still an open question.

The rest of this paper is organized as follows. In section 2, we introduce some
necessary notations and present main result. In section 3, we main prove the global
multidimensional stability of the noncritical planar waves. In section 4, asymp-
totic stability of the critical planar waves is obtained by some energy estimates in
weighted L1 space and Hk space.

2. Preliminaries and main results

First, we introduce some necessary notations throughout this paper. C > 0 denotes
a generic constant and Ci(i = 1, 2, · · · ) represents a specific constant. Let Ω be a
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domain, typically Ω = Rn and α = (α1, α2, · · · , αn) be a multi-index with nonneg-
ative integers αi ≥ 0(i = 1, 2, · · · , n). The derivatives for function f(x) are denoted
as ∂αf(x) = ∂α1

x1
· · · ∂αnxn f(x). W k,p(Ω)(k ≥ 0, p ≥ 1) is the Sobolev space in which

the function f(x) is defined on Ω and its weak derivatives ∂αf(x)(|α| ≤ k) also
belong to Lp(Ω), and in particular, we denote W k,2(Ω) as Hk(Ω). Further, Lpw(Ω)
denotes the weighted Lp(Ω) space for a weighted function w(x) > 0. Its norm is
defined by

‖f‖Lpw(Ω) =

(∫
Ω

w(x)|f(x)|pdx
)1/p

.

W k,p
w (Ω) is the weighted Sobolev space with the norm

‖f‖Wk,p
w (Ω) =

∑
|α|≤k

∫
Ω

w(x) |∂αf(x)|p dx

1/p

.

Fourier transform is defined as

F [f ](η) = f̂(η) :=

∫
Rn

e−ix·ηf(x)dx,

and the inverse Fourier transform is given by

F−1[f̂ ](x) :=
1

(2π)n

∫
Rn

eix·η f̂(η)dη.

If we look for a planar wave solution u(x, t) = φ(ζ) (where ζ = ν ·x+ct, ν ∈ Rn is
a fixed unit vector, here we set ν = e1 = (1, 0, · · · , 0) for simplicity) of the equation
(1.4), then φ has to satisfy the following nonlinear nonlocal equation on the line

cφ′(ζ) = d

∫ +∞

−∞
J̃(y)(φ(ζ − y)− φ(ζ))dy + f(φ(ζ), k̃ ∗ φ(ζ − cτ)), ζ ∈ R, (2.1)

where

J̃(y) =

∫
Rn−1

J(y, x2, · · · , xn)dx2 · · · dxn,

and

k̃(y) =

∫
Rn−1

k(y, x2, · · · , xn)dx2 · · · dxn.

To obtain the existence and stability of planar wave solutions, we consider the
following function

∆(λ, c) = d

∫
Rn
J(x)(e−λx1 −1)dx− cλ+∂1f(0, 0) +∂2f(0, 0)

∫
Rn
k(y)e−λ(y1+cτ)dy.

By the properties of function ∆(λ, c) (see [13, Lemma 2.2] for more details), we
have the following lemma.

Lemma 2.1. Under the conditions (H1)-(H5), there exist λ∗ > 0 and c∗ > 0 such
that

∆(λ∗, c∗) = 0,
∂∆(λ, c)

∂λ

∣∣∣
(λ∗,c∗)

= 0.

Furthermore,



966 Z. Ma, X. Wu, R. Yuan & Y. Wang

• if 0 < c < c∗, we have ∆(λ, c) > 0 for all λ > 0;

• if c > c∗, the equation ∆(λ, c) = 0 has two positive real roots λi = λi(c)(i =
1, 2) with 0 < λ1 < λ∗ < λ2 < +∞, and

∆(λ, c)

< 0, λ ∈ (λ1, λ2),

> 0, λ ∈ (0, λ1) ∪ (λ2,+∞).

The existence of planar waves of (1.4) is guaranteed by the following Theorem
2.1. In [26], Yu and Yuan proved the existence of solution of (2.1) by using the
upper-lower solutions and Schauder’s fixed point theorem.

Theorem 2.1 (Existence of Planar Waves). Assume that (H1)–(H5) hold and c ≥
c∗. Then (1.4) admits a nondecreasing positive planar wave u(x, t) = φ(x · e1 + ct)
satisfying (2.1) with φ(±∞) = u±.

By the properties of the monotone semiflow [5] or using the similar method
in [12, Lemma 2.3], we have the following comparison principle.

Lemma 2.2 (Comparison Principle). Assume that u1 and u2 are continuous func-
tions on Rn×[0,+∞), such that 0 ≤ ui ≤ u+(i = 1, 2) on Rn×[0,+∞) and u1 ≥ u2

on Rn × [−τ, 0]. Furthermore, u1 and u2 satisfy

∂u1(x, t)

∂t
− F [u1](x, t) ≥ ∂u2(x, t)

∂t
− F [u2](x, t), x ∈ Rn, t ≥ 0, (2.2)

where

F [u](x, t) = d

∫
Rn
J(y)[u(x− y, t)− u(x, t)]dy + f(u(x, t), k ∗ u(x, t− τ)).

Then u1 ≥ u2 on Rn × [0,+∞).

Now let us introduce the solution formula for linear delayed ODEs which will
be used in Section 3.

Lemma 2.3 ( [10,20]). Let z(t) be the solution to the following linear time-delayed
ODE with time delay τ > 0,


d

dt
z(t) + k1z(t) = k2z(t− τ),

z(s) = z0(s), s ∈ [−τ, 0].

Then

z(t) = e−k1(t+τ)ek̄2tτ z0(−τ) +

∫ 0

−τ
e−k1(t−s)ek̄2(t−s−τ)

τ [z′0(s) + k1z0(s)]ds,
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where k̄2 = k2ek1τ and ek̄2tτ is the so-called delayed exponential function in the form

ek̄2tτ =



0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 + k̄2t, 0 ≤ t < τ,

1 + k̄2t+
k̄2

2

2!
(t− τ)2, τ ≤ t < 2τ,

...
...

1 + k̄2t+
k̄2

2

2!
(t− τ)2 + · · ·+ k̄m2

m!
[t− (m− 1)τ ]m, (m− 1)τ ≤ t < mτ,

...
...

Furthermore, if k1 ≥ k2 ≥ 0, there exists a constant ε = ε(τ) with ε ∈ (0, 1) for
τ > 0, and limτ→0 ε(τ) = 1, limτ→+∞ ε(τ) = 0 such that

e−k1tek̄2tτ ≤ Ce−ε(k1−k2)t, t > 0.

By the standard energy method and continuity extension method (see [19]) or
the theory of abstract functional differential equations in [14], we can obtain the
global existence and uniqueness of the solution for (1.4) and (1.5).

Proposition 2.1 (Global Existence and Uniqueness). Assume that (H1)-(H5) hold.
For any given planar wave φ(x · e1 + ct) of (2.1) with c ≥ c∗ and φ(±∞) = u±, if
the initial data satisfies

0 = u− ≤ u0(x, s) ≤ u+, (x, s) ∈ Rn × [−τ, 0],

and the initial perturbation u0(·, s) − φ(· + cs) ∈ C1([−τ, 0], H1
w(Rn) ∩ H1(Rn)),

where the weighted function w(ζ) is defined as

w(ζ) =

 e−λ
∗(ζ−ζ0), ζ ≤ ζ0,

1, ζ > ζ0,

where ζ0 is a very large constant and λ∗ is given in Lemma 2.1, then the solution
u(x, t) of (1.4) and (1.5) satisfies

0 = u− ≤ u(x, t) ≤ u+, ∀(x, t) ∈ Rn+ × R,

u(·, t)− φ(·+ ct) ∈ C1([0,+∞), H1
w(Rn) ∩H1(Rn)).

Now, we present the main results of this paper.

Theorem 2.2 (Exponential Stability of Noncritical Planar waves). If the condi-
tions in Proposition 2.1 are satisfied and F(u0 − φ) ∈ C1([−τ, 0];W 1,1(Rn)), then
for any c > c∗, there exists a positive number µ = µ(τ) such that the solution u(x, t)
converges to the noncritical planar wave φ(x · e1 + ct) exponentially

sup
x∈Rn

|u(x, t)− φ(x · e1 + ct)| ≤ Ce−µt, t > 0.
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Remark 2.1. Theorem 2.2 not only shows the convergence rate µ to the noncritical
planar waves, but also tell us how the time delay τ effects the convergence rate µ
from the proof of the Theorem 2.2. In fact, from the proof of the Lemmas 3.1 and
3.2, we have

0 < µ < min{−ε(τ)∆(λ∗, c), δ},

where δ = −(∂1f(u+, u+) + ∂2f(u+, u+)) > 0, ε(τ)→ 0 as τ → +∞ and ε(τ)→ 1
as τ → 0. The effect of the time delay τ will make the decay rate µ of the solution
slow down. That is, µ becomes the smallest 0 as τ → +∞ and µ tends to biggest
as τ → 0.

Remark 2.2. To overcome the effect of the nonlocal diffusion, we make the con-
dition F(u0 − φ) ∈ C1([−τ, 0];W 1,1(Rn)). However, this condition holds easily. In
fact, we can choose u0 in the form u0(x, s) = φ(x·e1+cs)+ε(x), where ε(x) = e−‖x‖

or e−‖x‖
2

.

Theorem 2.3 (Asymptotic Stability of Critical Planar Waves). Let f ∈ Ck,k

([0, u+]2,R)(k ≥ [n+1
2 ]) and the conditions in Proposition 2.1 be satisfied. Then, the

solution u(x, t) converges to the critical planar wave φ(x · e1 + c∗t) time–asymptot-
ically,

lim
t→+∞

sup
x∈Rn

|u(x, t)− φ(x · e1 + c∗t)| = 0.

Remark 2.3. From the proof the Theorem 2.2, we can obtain that the decay
rate µ → 0 as c ↘ c∗, which implies that the method of proving the stability of
noncritical planar waves is invalid for the critical ones. Thus, we first establish some
energy estimates in weighted L1 space, then build up the energy estimates in Hk,
and further obtain the time-asymptotically stability for critical planar waves.

3. Nonlinear stability of noncritical planar waves

In this section, we mainly concentrate on proving the stability for all noncritical
planar waves to (1.4) with an exponential convergence rate. Assume that the con-
ditions in Theorem 2.2 hold throughout this section.

Let c ≥ c∗ and define Ũ+
0 (x, s) = max{u0(x, s), φ(x · e1 + cs)},

Ũ−0 (x, s) = min{u0(x, s), φ(x · e1 + cs)},
(x, s) ∈ Rn × [−τ, 0],

which implies

0 = u− ≤ Ũ−0 (x, s) ≤ u0(x, s) ≤ Ũ+
0 (x, s) ≤ u+,

0 = u− ≤ Ũ−0 (x, s) ≤ φ(x · e1 + cs) ≤ Ũ+
0 (x, s) ≤ u+,

(x, s) ∈ Rn × [−τ, 0].

Clearly, the initial data Ũ±0 (x, s) are piecewise continuous and have a poor regular-
ity, which may also cause the absence of regularity for the corresponding solutions.
In order to overcome such a shortcoming, instead of these initial data, we choose
smooth functions U±0 (x, s) as the new initial data and U±0 (x, s) satisfy

0 = u− ≤ U−0 (x, s) ≤ Ũ−0 (x, s) ≤ u0(x, s) ≤ Ũ+
0 (x, s) ≤ U+

0 (x, s) ≤ u+, (3.1)
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for (x, s) ∈ Rn × [−τ, 0].
Let U±(x, t) be the corresponding solution of (1.4) with the initial data U±0 (x, s),

that is
∂U±

∂t
= D[J ∗ U± − U±] + f(U±, k ∗ U±(x, t− τ)), (x, t) ∈ Rn × R+,

U±(x, s) = U±0 (x, s), (x, s) ∈ Rn × [−τ, 0].
(3.2)

By the comparison principle in Lemma 2.2, we have

u− ≤ U−(x, t) ≤ u(x, t) ≤ U+(x, t) ≤ u+, (3.3)

and

u− ≤ U−(x, t) ≤ φ(x · e1 + ct) ≤ U+(x, t) ≤ u+, (3.4)

for (x, t) ∈ Rn × R+.
In order to prove the stability of the noncritical planar waves, we only need to

prove that U±(x, t) converge to φ(x · e1 + ct), respectively. Since the two proofs are
similar in each case, here, we only prove the convergence of U+(x, t) to φ(x ·e1 +ct).

For any given c ≥ c∗, let ξ = x+ ct · e1 = (x1 + ct, x2, · · · , xn) and

v(ξ, t) := U+(x, t)− φ(e1 · x+ ct), v0(ξ, s) := U+
0 (x, s)− φ(e1 · x+ cs). (3.5)

It follows from (3.3) and (3.4) that v(ξ, t) ≥ 0 and v0(ξ, s) ≥ 0. Then,

vt + cvξ1 = d[J ∗ v − v] + f (v + φ, k ∗ (vτ + φτ ))− f(φ, k ∗ φτ ), (3.6)

where vτ = v(ξ − cτ · e1, t − τ) and φτ = φ(ξ1 − cτ). Furthermore, (3.6) can be
rewritten as

vt + cvξ1 = d[J ∗ v − v] + ∂1f(0, 0)v + ∂2f(0, 0)k ∗ vτ +Q, (3.7)

where

Q = Q(ξ, t) = f(v + φ, k ∗ (vτ + φτ ))− f(φ, k ∗ φτ )− ∂1f(0, 0)v − ∂2f(0, 0)k ∗ vτ .

By the assumptions (H1)-(H3), we can obtain Q(ξ, t) ≤ ∂11f(0, 0)v2 ≤ 0 for the
nonnegativity of k, φ and v.

Let v+(ξ, t) be the solution of the following Cauchy problem vt + cvξ1 = d[J ∗ v − v] + ∂1f(0, 0)v + ∂2f(0, 0)k ∗ vτ , (ξ, t) ∈ Rn × R+,

v(ξ, s) = v0(ξ, s), (ξ, s) ∈ Rn × [−τ, 0].

(3.8)
It follows from Lemma 2.2 that

0 ≤ v(ξ, t) ≤ v+(ξ, t), (ξ, t) ∈ Rn × R+. (3.9)

Set V (ξ, t) = e−λ
∗(ξ1−ζ0)v+(ξ, t), where ζ0 is a very large positive constant. By

(3.8), we can obtain that V (ξ, t) satisfy

Vt(ξ, t) + cVξ1(ξ, t) = d[Jλ∗ ∗ V − V ](ξ, t) + rV (ξ, t) + qkλ∗,τ ∗ V (ξ, t− τ), (3.10)
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where (ξ, t) ∈ Rn×R+, r = ∂1f(0, 0)−cλ∗, q = ∂2f(0, 0), Jλ∗(y) = J(y)e−λ
∗y1 , kλ∗,τ

= k(y)e−λ
∗(y1+cτ) and

Jλ∗ ∗ V (ξ, t) =

∫
Rn
J(y)e−λ

∗y1V (ξ − y, t)dy,

kλ∗,τ ∗ V (ξ − cτ · e1, t− τ) =

∫
Rn
k(y)e−λ

∗(y1+cτ)V (ξ − y − cτ · e1, t− τ)dy.

Lemma 3.1. If the initial data V̂0 ∈ C1([−τ, 0];W 1,1(Rn)), then there exists ε =
ε(τ) ∈ (0, 1) such that

‖V (·, t)‖L∞(Rn) ≤ C max
s∈[−τ,0]

‖V̂0(s)‖W 1,1(Rn)e
−µ1(c,τ)t, t > 0,

where µ1(c, τ) = −ε(τ)∆(λ∗, c) > 0 for c > c∗.

Proof. By taking Fourier transform to (3.10), we have

d

dt
V̂ (η, t) +A(η)V̂ (η, t) = B(η)V̂ (η, t− τ), (3.11)

where

A(η) = cη1i− r − d
(∫

Rn
J(y)e−λ

∗y1e−iy·ηdy − 1

)
,

B(η) = q

∫
Rn
k(y)e−λ

∗(y1+cτ)e−i(y+cτe1)·ηdy

and

V̂ (η, t) = F [V ](η, t) =

∫
Rn

e−iξ·ηV (ξ, t)dξ.

By Lemma 2.3, the solution to (3.11) can be shown as

V̂ (η, t) =e−A(η)(t+τ)eB1(η)t
τ V̂0(η,−τ) +

∫ 0

−τ
e−A(η)(t−s)eB1(η)(t−s−τ)

τ [V̂ ′0(η, s)

+A(η)V̂0(η, s)]ds,

:=I1(η, t) +

∫ 0

−τ
I2(η, t− s)ds, (3.12)

where B1(η) = B(η)eA(η)τ . Thus, by taking the inverse Fourier transform to (3.12),
we have

V (ξ, t) =F−1[I1](ξ, t) +

∫ 0

−τ
F−1[I2](ξ, t− s)ds

=
1

(2π)n

∫
Rn

eiξ·ηe−A(η)(t+τ)eB1(η)t
τ V̂0(η,−τ)dη

+

∫ 0

−τ

1

(2π)n

∫
Rn

eiξ·ηe−A(η)(t−s)eB1(η)(t−s−τ)
τ [V̂ ′0(η, s) +A(η)V̂0(η, s)]dηds.

(3.13)

Let

α1 = ReA(η) = −d
(∫

Rn
J(y)e−λ

∗y1 cos(y · η)dy − 1

)
− r,
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and

α2 = q

∫
Rn
k(y)e−λ

∗(y1+cτ)dy.

Then, we have
|B1(η)| = |B(η)eA(η)τ | ≤ α2eα1τ := ᾱ2,

and

α2 − α1 =d

[∫
Rn
J(y)e−λ

∗y1 cos(y · η)dy − 1

]
+ r + q

∫
R
k(y)e−λ

∗(y1+cτ)dy

=∆(λ∗, c) + ν(η;λ∗) ≤ ∆(λ∗, c) < 0, c > c∗,

where

ν(η;λ∗) = d

∫
Rn
J(y)e−λ

∗y1 [cos(y · η)− 1]dy.

Thus, by Lemma 2.3, there exists some constant ε = ε(τ) ∈ (0, 1) such that

lim
τ→0

ε(τ) = 1, lim
τ→+∞

ε(τ) = 0,

and
e−α1teᾱ2t

τ ≤ Ce−ε(α1−α2)t, t > 0.

Then,

‖F−1[I1](·, t)‖L∞(Rn) = sup
ξ∈Rn

∣∣∣∣ 1

(2π)n

∫
Rn

eiξ·ηe−A(η)(t+τ)eB1(η)t
τ V̂0(η,−τ)dη

∣∣∣∣
≤C

∫
Rn

∣∣∣e−α1(t+τ)eᾱ2t
τ V̂0(η,−τ)

∣∣∣dη
≤C

∫
Rn

∣∣∣e−ε(α1−α2)tV̂0(η,−τ)
∣∣∣dη

≤Ceε∆(λ∗,c)t‖V̂0(·,−τ)‖L1(Rn), (3.14)

and

‖F−1[I2](·, t− s)‖L∞(Rn)

= sup
ξ∈Rn

∣∣∣∣ 1

(2π)n

∫
Rn

eiξ·ηe−A(η)(t−s)eB1(η)(t−s−τ)
τ

[
V̂ ′0(η, s) +A(η)V̂0(η, s)

]
dη

∣∣∣∣
≤ 1

(2π)n

∫
Rn

e−α1(t−s)eᾱ2(t−s−τ)
τ

∣∣∣V̂ ′0(η, s) +A(η)V̂0(η, s)
∣∣∣dη

≤Ceε∆(λ∗,c)(t−s)‖V̂0(·, s)‖W 1,1(Rn). (3.15)

Substituting (3.14) and (3.15) to (3.13), we have

‖V (·, t)‖L∞(Rn)

≤ Ceε∆(λ∗,c)t‖V̂0(·,−τ)‖L1(Rn) +

∫ 0

−τ
Ceε∆(λ∗,c)(t−s)‖V̂0(·, s)‖W 1,1(Rn)ds

≤ C max
s∈[−τ,0]

‖V̂0(·, s)‖W 1,1(Rn)e
−µ1(c,τ)t, (3.16)
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where µ1(c, τ) = −ε(τ)∆(λ∗, c) > 0 for c > c∗.

From (3.9) and eλ
∗(ξ1−ζ0) ≤ 1, ξ1 ∈ (−∞, ζ0], we have

0 ≤ v(ξ, t) ≤ v+(ξ, t) = eλ
∗(ξ1−ζ0)V (ξ, t) ≤ V (ξ, t),

for ξ ∈ Ω− := (−∞, ζ0]× Rn−1, t > 0. Thus,

‖v(·, t)‖L∞(Ω−) ≤ Ce−µ1(c,τ)t, (3.17)

for t > 0 and c > c∗.

Next, we prove the decay rate for v(ξ, t) in Ω+ := [ζ0,+∞)× Rn−1.

Lemma 3.2. For any c > c∗, it holds that

‖v(·, t)‖L∞(Ω+) ≤ Ce−µt, t > 0,

where µ > 0 is a very small constant.

Proof. (3.6) can be rewritten as

vt + cvξ1 = d[J ∗ v − v] + ∂1f(φ, k ∗ φτ )v + ∂2f(φ, k ∗ φτ )k ∗ vτ +Q1, (3.18)

where vτ = v(ξ − cτ · e1, t− τ), φτ = φ(ξ1 − cτ) and

Q1(ξ, t) = f(v+φ, k∗(vτ +φτ ))−f(φ, k∗φτ )v−∂1f(φ, k∗φτ )v−∂2f(φ, k∗φτ )k∗vτ .

By using the mean value theorem and (H3), we can obtain Q1(ξ, t) ≤ 0 for the
nonnegativity of k and φ, v. Thus,

vt + cvξ1 ≤ d[J ∗ v − v] + ∂1f(φ, k ∗ φτ )v + ∂2f(φ, k ∗ φτ )k ∗ vτ , t > 0, ξ ∈ Ω+,

v(ξ, s) = v0(ξ, s), s ∈ [−τ, 0], ξ ∈ Ω+,

v|ξ1=ζ0 ≤ Ce−µ1(c,τ)t, t > 0, (ξ2, · · · , ξn) ∈ Rn−1,

where µ(c) = −ε∆(λ∗, c).

Let δ = −(∂1f(u+, u+)+∂2f(u+, u+)). Thus, we can choose µ ∈ (0,min{µ1(c, τ),
δ}) small enough to guarantee that

∂1f(u+, u+) + ∂2f(u+, u+)eµτ + µ < 0.

Due to lim
ξ→+∞

φ(ξ) = u+, we can choose ζ0 large enough to ensure that

∂1f(φ(ξ1), k ∗ φ(ξ1 − cτ)) + ∂2f(φ(ξ1), k ∗ φ(ξ1 − cτ))eµτ + µ < 0, (3.19)

for ξ1 > ζ0.

Let

V̄ (ξ, t) = Ce−µt,

where C > v0(ξ, s) large enough to ensure that

v0(ξ, s) ≤ V̄ (ξ, s), ξ ∈ Rn, s ∈ [−τ, 0]. (3.20)
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By direct computation and (3.19), we can verify that V̄ (ξ, t) is an upper solution
in the form
V̄t + cV̄ξ1 ≥ d[J ∗ V̄ − V̄ ] + ∂1f(φ, k ∗ φτ )V̄ + ∂2f(φ, k ∗ φτ )k ∗ V̄τ , t > 0, ξ ∈ Ω+,

V̄ (ξ, s) ≥ v0(ξ, s), s ∈ [−τ, 0], ξ ∈ Ω+,

V̄ |ξ1=ζ0 ≥ Ce−µ1(c,τ)t, t > 0, (ξ2, · · · , ξn) ∈ Rn−1.

Thus, we can get
0 ≤ v(ξ, t) ≤ V̄ (ξ, t) = Ce−µt, (3.21)

for ξ ∈ Ω+, t > 0. Thus,

‖v(·, t)‖L∞(Ω+) ≤ Ce−µt, c > c∗,

for t > 0.
Based on (3.17) and Lemma 3.2, we immediately obtain the following lemma.

Lemma 3.3. For any c > c∗, it holds that

sup
x∈R
|U+(x, t)− φ(x · e1 + ct)| ≤ Ce−µt, t > 0.

Similarly, we can obtain the convergence of U−(x, t) to φ(x · e1 + ct).

Lemma 3.4. For any c > c∗, there exists a positive number µ = µ(τ) such that

sup
x∈Rn

|U−(x, t)− φ(x+ ct)| ≤ Ce−µt, t > 0.

Theorem 2.2 can be accomplished by Lemmas 3.3–3.4 and inequalities (3.3)–
(3.4).

4. Nonlinear stability of the critical planar waves

In this section, we mainly present the proof of multidimensional asymptotic sta-
bility for the critical planar waves (c = c∗). Due to the difficulty caused by the
unstable equilibrium, we first establish a weighted L1-estimate by selecting a suit-
able weight function. Then using the weighted L1-estimate, we further obtain the
desired Hk(k ≥ [n+1

2 ]) estimate. Finally, we get the L∞-estimate with the help of
the Sobolev embedding theorem. Let v(ξ, t) be defined in (3.5) with c = c∗ and
conditions in Theorem 2.3 be satisfied throughout this section.

Lemma 4.1. It holds that

‖v(·, t)‖L1
ŵ(Rn) +

∫ t

0

‖v(·, s)‖2L2
ŵ(Rn)ds ≤ C, (4.1)

where ŵ(ξ1) = e−λ
∗(ξ1−ζ0) (ζ0 is a large constant).

Proof. If f ∈ Ck([0, u+]2,Rn), by the standard energy method and continuity
extension method (see [19]) or the theory of abstract functional differential equations
in [14], we have

v(·, t) ∈ C1([0,+∞), H1
ŵ(Rn) ∩Hk(Rn) ∩ L1

ŵ(Rn)). (4.2)
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Multiplying (3.7) by ŵ(ξ1), we obtain

∂

∂t
(ŵv) +

∂

∂ξ1
(c∗ŵv) =ŵ[d(J ∗ v − v) + c∗

ŵ′

ŵ
v + ∂1f(0, 0)v + ∂2f(0, 0)vτ +Q].

Integrating the above equation over Rn × [0, t] with respect to ξ and t, we have∫
Rn
ŵ(ξ1)v(ξ, t)dξ =‖v0(·, 0)‖L1

ŵ(Rn) +

∫ t

0

∫
Rn
ŵ
[
d(J ∗ v − v) + c∗

ŵ′

ŵ
v

+∂1f(0, 0)v + ∂2f(0, 0)k ∗ vτ
]
dξds+

∫ t

0

∫
Rn
ŵ(ξ1)Q(ξ, s)dξds.

(4.3)

Here, we use (4.2) to ensure that∫ t

0

∫
Rn

∂

∂ξ1
[c∗ŵ(ξ1)v(ξ, s)] dξds = 0.

Because of Q(ξ, s) ≤ ∂11f(0, 0)v2 and ŵ(ξ1) ≥ 0, we have∫ t

0

∫
Rn
ŵ(ξ1)Q(ξ, s)dξds ≤ ∂11f(0, 0)

∫ t

0

‖v(s)‖2L2
ŵ(Rn)ds. (4.4)

By changing variable y → y, ξ − y − c∗τ · e1 → ξ, s− τ → s and using the fact∫
Rn
k(y)

ŵ(ξ1 + y1 + c∗τ)

ŵ(ξ1)
dy =

∫
Rn
k(y)e−λ

∗(y1+c∗τ)dy := k0,

we obtain ∫ t

0

∫
Rn
ŵ(ξ1)

∫
Rn
k(y)v(ξ − y − c∗τ · e1, s− τ)dydξds

=

∫ t−τ

−τ

∫
Rn

∫
Rn
ŵ(ξ1 + y1 + c∗τ)k(y)v(ξ, s)dydξds

=

∫ t−τ

−τ

∫
Rn
ŵ(ξ1)v(ξ, s)

[∫
Rn
k(y)

ŵ(ξ1 + y1 + c∗τ)

ŵ(ξ1)
dy

]
dξds

=

∫ t−τ

−τ

∫
Rn
ŵ(ξ1)v(ξ, s)dξds

∫
Rn
k(y)e−λ

∗(y1+c∗τ)dy

≤k0

[∫ t

0

‖v(·, s)‖L1
ŵ(Rn)ds+

∫ 0

−τ
‖v0(·, s)‖L1

ŵ(Rn)ds

]
.

By similar method above, we obtain

d

∫ t

0

∫
Rn
ŵ(ξ1)

∫
Rn
J(x)v(ξ − x, s)dxdξds =d

∫
Rn
J(x)e−λ

∗x1dx

∫ t

0

‖v(·, s)‖L1
ŵ
(Rn)ds.

So we obtain∫ t

0

∫
Rn
ŵ(ξ1)

[
d(J ∗ v − v) + c

ŵ′

ŵ
v + ∂1f(0, 0)v + ∂2f(0, 0)k ∗ vτ

]
dξds

≤
∫ t

0

∫
Rn
ŵ(ξ1)v(ξ, s)

[
d

∫
Rn
J(x)(e−λ

∗x1 − 1)dx− cλ∗ + ∂1f(0, 0)
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+ ∂2f(0, 0)k0

]
dξds+ ∂2f(0, 0)k0

∫ 0

−τ
‖v0(·, s)‖L1

ŵ(Rn)ds

=∆(λ∗, c∗)

∫ t

0

‖v(·, s)‖L1
ŵ(Rn)ds+ ∂2f(0, 0)k0

∫ 0

−τ
‖v0(·, s)‖L1

ŵ(Rn)ds. (4.5)

Substituting (4.4) and (4.5) to (4.3) and noting ∆(λ∗, c∗) = 0, we have

‖v(·, t)‖L1
ŵ(Rn) − ∂11f(0, 0)

∫ t

0

‖v(·, s)‖2L2
ŵ(Rn)ds ≤E0, (4.6)

where E0 = ‖v0(·, 0)‖L1
ŵ(Rn)+∂2f(0, 0)k0

∫ 0

−τ ‖v0(·, s)‖L1
ŵ(Rn)ds. Due to ∂11f(0, 0) <

0, we obtain

‖v(·, t)‖L1
ŵ(Rn) +

∫ t

0

‖v(·, s)‖2L2
ŵ(Rn)ds ≤ C.

This completes the proof.

Lemma 4.2. It holds that

‖v(·, t)‖2Hk(Rn) +

∫ t

0

‖v(·, s)‖2Hk(Rn)ds ≤ C. (4.7)

Proof. Since ŵ(ξ1) = e−λ
∗(ξ1−ζ0) ≥ 1 for ξ1 ≤ ζ0 and from the Lemma 4.1, we

obtain ∫
Ω−

v(ξ, t)dξ +

∫ t−τ

0

∫
Ω−

v2(ξ, s)dξds ≤ C, ∀t ≥ 0,

where Ω− = (−∞, ζ0)× Rn, and in particular by taking t = +∞, we obtain∫ +∞

0

∫
Ω−

v2(ξ, s)dξds ≤ C. (4.8)

Multiplying (3.18) by v(ξ, t) and integrating it over Rn × [0, t] with respect to ξ
and t, then we have

‖v(·, t)‖2L2(Rn) ≤‖v0(·, 0)‖2L2(Rn) + 2

∫ t

0

∫
Rn
d(J ∗ v − v)vdξds+ 2

∫ t

0

∫
Rn
∂1

f(φ, k ∗ φτ )v2dξds+ 2

∫ t

0

∫
Rn
∂2f(φ, k ∗ φτ )k ∗ vτvdξds. (4.9)

Using the Cauchy inequality |ab| ≤ η

2
a2 +

1

2η
b2 for η > 0, which will be specified

later, we obtain

2

∫ t

0

∫
Rn
∂2f(φ, k ∗ φτ )

∫
Rn
k(y)v(ξ − y − c∗τ · e1, s− τ)v(ξ, s)dydξds

≤1

η

∫ t

0

∫
Rn

∫
Rn
k(y)∂2

2f(φ, k ∗ φτ )v2(ξ − y − c∗τ · e1, s− τ)dydξds

+ η

∫ t

0

∫
Rn
v2(ξ, s)dξds. (4.10)



976 Z. Ma, X. Wu, R. Yuan & Y. Wang

By changing variables y → y, ξ − y − c∗τ · e1 → ξ, s− τ → s, we have

1

η

∫ t

0

∫
Rn

∫
Rn
k(y)∂2

2f(φ, k ∗ φτ )v2(ξ − y − c∗τ · e1, s− τ)dydξds

=
1

η

∫ t−τ

−τ

∫
Rn

∫
Rn
k(y)∂2

2f

(
φ((ξ + y) · e1 + c∗τ),

∫
Rn
k(z)φ((ξ + y − z) · e1)dz

)
· v2(ξ, s)dydξds

=
1

η

∫ 0

−τ

∫
Rn

∫
Rn
k(y)∂2

2f

(
φ((ξ + y) · e1 + c∗τ),

∫
Rn
k(z)φ((ξ + y − z) · e1)dz

)
· v2(ξ, s)dydξds+

1

η

∫ t−τ

0

(∫
Ω−

+

∫
Ω+

)
k(y)∂2

2f
(
φ((ξ + y) · e1 + c∗τ),∫

Rn
k(z)φ((ξ + y − z) · e1)dz

)
v2(ξ, s)dydξds

≤1

η
∂2

2f(0, 0)‖v0(·, 0)‖2L2(Rn) +
1

η
∂2

2f(0, 0)

∫ +∞

0

∫
Ω−

v2(ξ, s)dξds

+
1

η

∫ t

0

∫
Ω+

[∫
Rn
k(y)∂2

2f

(
φ((ξ + y) · e1 + c∗τ),

∫
Rn
k(z)φ((ξ + y − z) · e1)dz

)

dy

]
v2(ξ, s)dξds

≤C +
1

η

∫ t

0

∫
Ω+

[∫
Rn
k(y)∂2

2f
(
φ((ξ + y) · e1 + c∗τ),

∫
Rn
k(z)φ((ξ + y − z) · e1)

dz
)

dy

]
v2(ξ, s)dξds, (4.11)

where we have used ∂2f(u, v) ≥ 0 and ∂ijf(u, v) ≤ 0 for all (u, v) ∈ [0, u+]2 and
(4.8). Similarly, we obtain

2

∫ t

0

∫
Rn
∂1f(φ, k ∗ φτ )v2(ξ, s)dξds

=2

∫ t

0

∫
Ω−

∂1f(φ, k ∗ φτ )v2(ξ, s)dξds+ 2

∫ t

0

∫
Ω+

∂1f(φ, k ∗ φτ )v2(ξ, s)dξds

≤2

∫ t

0

∫
Ω+

∂1f(φ, k ∗ φτ )v2(ξ, s)dξds, (4.12)

and

η

∫ t

0

∫
Rn
v2(ξ, s)dξds ≤ C + η

∫ t

0

∫
Ω+

v2(ξ, s)dξds, (4.13)

where we use the fact that ∂1f(u, v) ≤ 0 and (4.8). Substituting (4.11)-(4.13) to
(4.9), we obtain

‖v(·, t)‖2L2(Rn) −
∫ t

0

∫
Ω+

G(ξ)v2(ξ, s)dξds ≤ C, (4.14)
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where

G(ξ) =η +
1

η

∫
Rn
k(y)∂2

2f

(
φ(ξ1 + y1 + c∗τ),

∫
Rn
k(z)φ((ξ + y − z) · e1)dz

)
dy

+ 2∂1f(φ, k ∗ φτ ) (4.15)

for ξ ∈ Ω+. Thus,

lim
ξ1→+∞

G(ξ) =η +
1

η

∫
Rn
k(y)∂2

2f(u+, u+)dy + 2∂1f(u+, u+)

=η +
1

η
∂2

2f(u+, u+) + 2∂1f(u+, u+)

=
1

η

[
η2 + 2η∂1f(u+, u+) + ∂2

2f(u+, u+)
]
. (4.16)

Noting ∂1f(u+, u+) < 0 and ∂1f(u+, u+) + ∂2f(u+, u+) < 0, and using the proper-
ties of quadratic function, we can choose a suitable η > 0 such that lim

ξ1→+∞
G(ξ) =

G∞ < 0. Furthermore, we can choose ζ0 large enough to ensure that

G(ξ) <
1

2
G∞ < 0, ξ ∈ Ω+.

Thus, we have

‖v(·, t)‖2L2(Rn) −
1

2
G∞

∫ t

0

∫
Ω+

v2(ξ, s)dξds ≤ C. (4.17)

In particular, we have ∫ t

0

∫
Ω+

v2(ξ, s)dξds ≤ C. (4.18)

Combining (4.8) and (4.18), we have

∫ t

0

‖v(·, s)‖2L2(Rn)ds ≤ C. Thus, we can im-

mediately obtain

‖v(·, t)‖2L2(Rn) +

∫ t

0

‖v(·, s)‖2L2(Rn)ds ≤ C. (4.19)

To obtain the derivatives of v(ξ, t), let us differentiate (3.6) with respect to ξ and
multiply the resulting equation by ∂αv(ξ, t)(|α| = 1, 2, · · · , k) and then integrate it
over Rn × [0, t] with respect to ξ and t. By the similar method above, we have

‖∂αv(·, t)‖2L2(Rn) +

∫ t

0

‖∂αv(·, s)‖2L2(Rn)ds ≤ C, (4.20)

for |α| = 1, 2, · · · , k. This together with (4.19) completes the proof.

Lemma 4.3. It holds that∫ t

0

∣∣∣∣ d

ds
‖v(·, s)‖2Hk(Rn)

∣∣∣∣ds ≤ C. (4.21)
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Proof. Multiplying (3.7) by v(ξ, t) and integrating it over Rn with respect to ξ,
then we obtain

d

dt
‖v(·, t)‖2L2(Rn) =2d

∫
Rn

(J ∗ v − v)dξ + 2

∫
Rn
∂1f(0, 0)v2(ξ, t)dξ

+ 2

∫
Rn
∂2f(0, 0)k ∗ vτv(ξ, t)dξ + 2

∫
Rn
Q(ξ, t)v(ξ, t)dξ. (4.22)

Noticing the fact that Q(ξ, t) ≤ 0 and v(ξ, t) ≥ 0, we obtain∣∣∣ d

dt
‖v(·, t)‖2L2(Rn)

∣∣∣ ≤∣∣∣2d∫
Rn

(J ∗ v − v)dξ
∣∣∣+
∣∣∣2 ∫

Rn
∂1f(0, 0)v2(ξ, t)dξ

∣∣∣
+
∣∣∣2 ∫

Rn
∂2f(0, 0)k ∗ vτv(ξ, t)dξ

∣∣∣
≤C‖v(·, t)‖2L2(Rn). (4.23)

Integrating the above inequality over [0, t], we obtain∫ t

0

∣∣∣∣ d

ds
‖v(·, s)‖2L2(Rn)

∣∣∣∣ds ≤ ∫ t

0

C‖v(·, s)‖2L2(Rn)ds.

Noting the result of Lemma 4.2, we have∫ t

0

∣∣∣∣ d

ds
‖v(·, s)‖2L2(Rn)

∣∣∣∣ ds ≤ C. (4.24)

Let us differentiate (3.7) with respect to ξ and multiply the resulting equation by
∂αv(ξ, t), and then by the similar method above, we can obtain∫ t

0

∣∣∣∣ d

ds
‖∂αv(·, s)‖2L2(Rn)

∣∣∣∣ ds ≤ C (4.25)

for |α| ≤ k. Combining (4.24) and (4.25), we can immediately get (4.21) and we
complete the proof.

Lemma 4.4. It holds that

lim
t→+∞

sup
x∈Rn

|U+(x, t)− φ(x · e1 + c∗t)| = 0. (4.26)

Proof. Let g(t) = ‖v(·, t)‖2Hk(Rn). It follows from Lemmas 4.2 and 4.3 that

0 ≤ g(t) ≤ C,
∫ +∞

0

g(t)dt ≤ C,
∫ +∞

0

∣∣∣g′(t)∣∣∣dt ≤ C,
which implies

lim
t→+∞

‖v(·, t)‖2Hk(Rn) = lim
t→+∞

g(t) = 0. (4.27)

According to the standard Sobolev embedding inequality Hk(Rn) ↪→ L∞(Rn)(k ≥
[n+1

2 ]), we can obtain

‖v(·, t)‖L∞(Rn) ≤ C‖v(·, t)‖Hk(Rn). (4.28)
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By (4.27) and (4.28), we immediately obtain

lim
t→+∞

sup
x∈Rn

|U+(x, t)− φ(x · e1 + c∗t)| = lim
t→+∞

‖v(·, t)‖L∞(Rn) = 0.

Similarly, we have the following lemma.

Lemma 4.5. It holds that

lim
t→+∞

sup
x∈Rn

|U−(x, t)− φ(x · e1 + c∗t)| = 0.

Then, by Lemmas 4.4 and 4.5, we can obtain that the solution u(x, t) converges
to the critical planar wave φ(x · e1 + c∗t) time-asymptotically

lim
t→+∞

sup
x∈Rn

|u(x, t)− φ(x · e1 + c∗t)| = 0.

This complete the proof of Theorem 2.3.
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