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LIMIT CYCLES FOR TWO CLASSES OF
PLANAR POLYNOMIAL DIFFERENTIAL

SYSTEMS WITH UNIFORM ISOCHRONOUS
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Abstract In this article, we study the maximum number of limit cycles for
two classes of planar polynomial differential systems with uniform isochronous
centers. Using the first-order averaging method, we analyze how many limit
cycles can bifurcate from the period solutions surrounding the centers of the
considered systems when they are perturbed inside the class of homogeneous
polynomial differential systems of the same degree. We show that the maxi-
mum number of limit cycles, m and m+ 1, that can bifurcate from the period
solutions surrounding the centers for the two classes of differential systems of
degree 2m and degree 2m+1, respectively. Both of the bounds can be reached
for all m.
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1. Introduction

Recall that the second part of the 16th Hilbert’s problem [11, 13] asks about the
maximal number and relative configurations of limit cycles for planar polynomial
differential systems of degree n:

ẋ = P (x, y), ẏ = Q(x, y). (1.1)

Many interesting and profound results have been obtained, see [7–9, 19, 20, 30, 31]
and the references therein. Nevertheless, Hilbert’s problem is still open even in the
case n = 2.

There are several methods for studying the bifurcation of limit cycles. One of
the methods is based on perturbation of system (1.1) with centers via Poincaré
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bifurcation, by means of which limit cycles can bifurcate from the period solutions
of the centers. In the last three decades extensive work about the bifurcation of
limit cycles for planar differential systems with uniform isochronous centers has
been reported in the literature, see [5,6,16–18] for instance. Isochronicity is closely
related to the uniqueness and existence of solutions for boundary value problems and
has important applications in physics. Moreover, the interest in this problem has
also been revived due to the proliferation of powerful computerized methods, where
special attention has been dedicated mainly to polynomial differential systems, see
[2, 3] for instance.

Let O be a center of system (1.1), without loss of generality we can assume
that O is the origin of the coordinates. We say that O is an isochronous center
if it is a center having a neighborhood such that all the periodic solutions in this
neighborhood have the same period. Moreover, we have the following definition.

Definition 1.1. We say that O is a uniform isochronous center of system (1.1), if
it is a center and, in polar coordinates x = r cos θ, y = r sin θ, (1.1) takes the form
ṙ = F (r, θ), θ̇ = k, k ∈ R \ {0}.

For more details on this definition see [3, 4]. The next result on the uniform
isochronous planar centers is well-known, a proof of it can be found in [14].

Proposition 1.1. Assume that system (1.1) has a center at the origin O. Then O
is a uniform isochronous center if and only if by doing a linear change of variables
and a rescaling of time the system can be written as

ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

where f(x, y) is a polynomial in x and y of degree n− 1, and f(0, 0) = 0.

In this paper we provide lower bounds for the maximum number of limit cycles
that can bifurcate from the periodic solutions of a polynomial differential uniform
isochronous center of degree 2n+2 or 2n+3 when it is perturbed inside the class of
homogeneous polynomial differential systems of the same degree. The main result
is based on the first-order averaging method. For more details about the averaging
method see the book of Sanders, Verhulst and Murdock [28] and Verhulst [29]. We
remark that the Melnikov method is a good tool for studying the number of limit
cycles which bifurcate from the periodic orbits surrounding a center, see [10] for a
relation of the averaging method and the Melnikov method.

More precisely, we consider the following two classes of planar polynomial dif-
ferential systems {

ẋ = −y + xy(x2 + y2)n,

ẏ = x+ y2(x2 + y2)n,
(1.2)

and {
ẋ = −y + x2y(x2 + y2)n,

ẏ = x+ xy2(x2 + y2)n,
(1.3)

of degree 2n+ 2 and degree 2n+ 3 with n ≥ 0, having uniform isochronous centers
at the origin of coordinates.

We recall that the perturbations of the periodic solutions of the uniform isochron-
ous centers (1.2) and (1.3) have been considered by several papers, see [12, 15–18,
23–26] for instance. However, all these results focused on differential systems of
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lower degree for the bifurcation of limit cycles with specific n. As far as we know,
for the integrable systems of higher degree, it seems to be very complicated to study
the bifurcation of limit cycles from these systems via the averaging approaches. The
main difficulty exists in the technical and cumbersome computations of the averaged
function, which in some cases are out of reach with the present state of knowledge.
Hence, it is necessary and also challenging to study the bifurcation of limit cycles
for some differential systems of higher degree under any small perturbation.

In the present paper, we focus our attention on the study of differential sys-
tems of (1.2) and (1.3) in the general cases. In other words, using the averaging
method we bound the maximum number of limit cycles that can bifurcate from the
periodic solutions surrounding the uniform isochronous centers at the origin of the
systems of (1.2) and (1.3) of respective degrees 2n+2 and 2n+3, when the systems
are perturbed inside the classes of homogeneous polynomial differential systems of
respective degrees 2n + 2 and 2n + 3. More concretely, our purpose is to provide
lower bounds for the maximum number of limit cycles of the following polynomial
differential systems:

ẋ = −y + xy(x2 + y2)n + ε
∑

i+j=2n+2

ai,jx
iyj ,

ẏ = x+ y2(x2 + y2)n + ε
∑

i+j=2n+2

bi,jx
iyj ,

(1.4)

and 
ẋ = −y + x2y(x2 + y2)n + ε

∑
i+j=2n+3

ci,jx
iyj ,

ẏ = x+ xy2(x2 + y2)n + ε
∑

i+j=2n+3

di,jx
iyj ,

(1.5)

where ε is a small parameter.

The main result of this paper is stated as follows.

Theorem 1.1. For |ε| 6= 0 sufficiently small using the first-order averaging method
we obtain that

(a) system (1.4) has up to n+ 1 limit cycles bifurcating from periodic solutions
of the unperturbed system, and this number can be reached for all n;

(b) system (1.5) has up to n+ 2 limit cycles bifurcating from periodic solutions
of the unperturbed system, and this number can be reached for all n.

Remark 1.1. The results of Theorem 1.1 for systems (1.4) and (1.5) with n = 0, 1
have been already contained in the papers [23–26]. In this work we extend these
previous results to the general cases. More importantly, Theorem 1.1 gives the exact
lower bounds for the maximum number of limit cycles bifurcated from the period
solutions of the unperturbed systems, which is far from being trivial.

The organization of this paper is as follows. In Section 2, we introduce the basic
results on the averaging method. Sections 3 and 4 are dedicated to the proof of
Theorem 1.1 by exploring the maximum number of simple zeros of the obtained
averaged functions associated to systems (1.4) and (1.5).
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2. Preliminary Results

In this section we present some basic results which are the basis of the averaging
method and which will be used for proofs in later sections.

We consider the system

x′(t) = F0(t, x), (2.1)

with F0 : R × Ω → Rn a C2 function, T -periodic in the first variable, and Ω is
an open subset of Rn. We assume that system (2.1) has a submanifold of periodic
solutions.

Let ε be sufficiently small and we consider a perturbation of system (2.1) of the
form

x′(t) = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (2.2)

with F1 : R×Ω→ Rn and F2 : R×Ω× (−ε0, ε0)→ Rn are C2 functions, T -periodic
in the first variable, and Ω is an open subset of Rn. A solution of this problem is
given using the averaging method.

Let x(t, z) be the periodic solution of the unperturbed system (2.1) satisfying
the initial condition x(0, z) = z. Now we consider the linearization of the system
(2.1) along the solution x(t, z), namely

y′ = DxF0(t, x(t, z))y, (2.3)

and let Mz(t, z) be a fundamental matrix of this linear system satisfying that
Mz(0, z) is the identity matrix.

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for each z ∈
Cl(V ), x(t, z) is T -periodic, where x(t, z) denotes the solution of the unperturbed
system (2.1) with x(0, z) = z. The set Cl(V ) is isochronous for the system (2.1);
i.e. it is a set formed only by periodic orbits, all of them having the same period.
Then, an answer to the problem of the bifurcation of T -periodic solutions from the
periodic solutions x(t, z) contained in Cl(V ) is given in the following result.

Theorem 2.1 (Perturbations of an isochronous set). Assume that there exists an
open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), the solution
x(t, z) is T -periodic, then we consider the function F : Cl(V )→ Rn

F(z) =

∫ T

0

M−1z (t, z)F1(t, x(t, z))dt. (2.4)

If there exists a ∈ V with F(a) = 0 and det((dF/dz)(a)) 6= 0, then there exists a
T -periodic solution ϕ(t, ε) of system (2.2) such that ϕ(0, ε)→ a as ε→ 0.

Theorem 2.1 goes back to [22] and [27], for a shorter proof see [1].

In order to study the number of zeros of the averaged function (2.4) we will use
the following result proved in [21].

Let ∆ ⊂ R be an interval and let f1, f2, . . . , fn : ∆→ R. We say that f1, . . . , fn
are linearly independent functions if and only if we have that

n∑
i=1

αifi(δ) = 0 for all δ ∈ ∆ =⇒ α1 = α2 = · · · = αn = 0.
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Proposition 2.1. (See [21].) If f1, f2, . . . , fn : ∆ → R are linearly indepen-
dent then there exist δ1, . . . , δn−1 ∈ ∆ and α1, . . . , αn ∈ R such that for every
i ∈ {1, . . . , n− 1}

n∑
k=1

αkfk(δi) = 0.

3. Proof of Theorem 1.1 (a)

This section is devoted to the proof of statement (a) of Theorem 1.1 by using
Theorem 2.1.

First, in polar coordinates (θ, r) defined by x = r cos θ, y = r sin θ, system (1.4)
can be written as

dr

dθ
= r · xẋ+ yẏ

ẏx− yẋ
= F0(θ, r) + εF1(θ, r) +O(ε2),

(3.1)

where F0(θ, r) = r2n+2 sin θ and

F1(θ, r) = r2n+2
∑

i+j=2n+2

(
ai,j cosi+1 θ sinj θ + bi,j cosi θ sinj+1 θ

)
+ r4n+3

∑
i+j=2n+2

(
ai,j cosi θ sinj+2 θ − bi,j cosi+1 θ sinj+1 θ

)
.

A direct computation shows that equation (3.1)ε=0 has the periodic solutions

r(θ, z) =

(
(2n+ 1)(cos θ − 1) +

1

z2n+1

)− 1
2n+1

,

satisfying r(0, z) = z for 0 < z < (2(2n+ 1))
− 1

2n+1 . According to the averaging
method described in Sec. 2, we solve the variational differential equation

dM

dθ
=

∂

∂r
F0(θ, r(θ, z))M,

with Mz(0, z) = 1 and get the fundamental solution

Mz(θ, z) =
[
(2n+ 1)z2n+1(cos θ − 1) + 1

]− 2n+2
2n+1 .

Since all the assumptions of Theorem 2.1 are satisfied, we must study the max-
imum number of zeros of the function F(z). More precisely, we have

F(z) =

∫ 2π

0

M−1z (θ, z) · F1(θ, r)dθ

=

∫ 2π

0

z2n+2
[
(2n+ 1)(cos θ + η)

] 2n+2
2n+1

{
r2n+2

∑
i+j=2n+2

(
ai,j cosi+1 θ sinj θ

+ bi,j cosi θ sinj+1 θ
)

+ r4n+3
∑

i+j=2n+2

(
ai,j cosi θ sinj+2 θ



948 B. Huang & W. Niu

− bi,j cosi+1 θ sinj+1 θ
)}∣∣∣∣∣

r=
[
(2n+1)(cos θ+η)

]− 1
2n+1

dθ

= z2n+2

{∫ 2π

0

∑
i+j=2n+2

(
ai,j cosi+1 θ sinj θ + bi,j cosi θ sinj+1 θ

)
dθ

+

∫ 2π

0

∑
i+j=2n+2

ai,j cosi θ sinj+2 θ − bi,j cosi+1 θ sinj+1 θ

(2n+ 1)(cos θ + η)
dθ

}

=
z2n+2

2n+ 1

[
n+1∑
k=1

(
a2k,2n−2k+2 − b2k−1,2n−2k+3

)∫ 2π

0

cos2k θ sin2n−2k+4 θ

cos θ + η
dθ

+ a0,2n+2

∫ 2π

0

sin2n+4 θ

cos θ + η
dθ

]
, (3.2)

where η = −1 +
[
(2n+ 1)z2n+1

]−1 ∈ (1,+∞), in the last equality we have used the
equalities ∫ 2π

0

cosq+1 θ sin2n−q+2 θdθ = 0,

∫ 2π

0

cosq θ sin2n−q+3 θdθ = 0

and ∫ 2π

0

cos2q+1 θ sin2n−2q+3 θ

cos θ + η
dθ = 0,

for any nonnegative integer number q. Then we reduce the problem of analyzing
the number of zeros of F(z) to the problem of studying the number of zeros of

G(η) =

n+1∑
k=1

(a2k,2n−2k+2 − b2k−1,2n−2k+3) · L2k,2n−2k+4 + a0,2n+2 · L0,2n+4, (3.3)

where

L2m,2s =

∫ 2π

0

cos2m θ sin2s θ

cos θ + η
dθ, (3.4)

for η ∈ (1,+∞) and m, s ∈ N . First, we state and prove some lemmas.

Lemma 3.1. For m, s ≥ 0

L2m,2s =

s∑
r=0

(
s

r

)
(−1)rL2m+2r,0. (3.5)

Proof. It is direct that for m, s ≥ 0,

L2m,2s =

∫ 2π

0

cos2m θ(1− cos2 θ)s

cos θ + η
dθ

=

s∑
r=0

(
s

r

)
(−1)r

∫ 2π

0

cos2m+2r θ

cos θ + η
dθ

=

s∑
r=0

(
s

r

)
(−1)rL2m+2r,0.
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Lemma 3.2. For m ≥ 0, the following statement holds

L2m,0 = 2π

(
η2m√
η2 − 1

− η2m−1 +

m−2∑
r=0

A
(m)
2r+1η

2r+1

)
, (3.6)

where A
(m)
2r+1 = − (2m−2r−3)!!

(2m−2r−2)!! .

Proof. Note that

L2m,0 =

∫ 2π

0

cos2m θ

cos θ + η
dθ =

∫ 2π

0

(cos θ + η − η)2m

cos θ + η
dθ

=

2m∑
k=0

(
2m

k

)
(−η)k

∫ 2π

0

(cos θ + η)2m−k−1dθ

=
2πη2m√
η2 − 1

− 4πmη2m−1 +

2m−2∑
k=0

(
2m

k

)
(−1)k

·

(
2m−k−1∑
t=0

(
2m− k − 1

t

)
η2m−t−1

∫ 2π

0

cost θdθ

)

=
2πη2m√
η2 − 1

− 2πη2m−1 +

2m−2∑
k=0

(
2m

k

)
(−1)k

·

( b 2m−k−1
2 c∑
t̃=1

(
2m− k − 1

2t̃

)
η2m−2t̃−1

∫ 2π

0

cos2t̃ θdθ

)
.

Hence, by using the well-known formula∫ 2π

0

cos2t̃ θdθ = 2π
(2t̃− 1)!!

(2t̃)!!
, (3.7)

we perform the computation and obtain

L2m,0 = 2π

(
η2m√
η2 − 1

− η2m−1 +

m−2∑
r=0

A
(m)
2r+1η

2r+1

)
,

where A
(m)
2r+1 =

∑2r+1
k=0

(
2m
k

)
(−1)k

(
2m−k−1
2m−2r−2

) (2m−2r−3)!!
(2m−2r−2)!! = − (2m−2r−3)!!

(2m−2r−2)!! . Hence the

desired result follows.

Remark 3.1. Some explicit expressions of L2m,0 are:

L0,0 =
2π√
η2 − 1

,

L2,0 =
2πη2√
η2 − 1

− 2πη,

L4,0 =
2πη4√
η2 − 1

− 2πη3 − πη,

L6,0 =
2πη6√
η2 − 1

− 2πη5 − πη3 − 3

4
πη,

L8,0 =
2πη8√
η2 − 1

− 2πη7 − πη5 − 3

4
πη3 − 5

8
πη.
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By using the above lemmas and (3.3), we have

G(η) =

n+1∑
k=1

(a2k,2n−2k+2 − b2k−1,2n−2k+3) · L2k,2n−2k+4 + a0,2n+2 · L0,2n+4

=

n+1∑
k=1

(a2k,2n−2k+2 − b2k−1,2n−2k+3) ·

(
n−k+2∑
r=0

(
n− k + 2

r

)
(−1)rL2k+2r,0

)

+ a0,2n+2 ·

(
n+2∑
r=0

(
n+ 2

r

)
(−1)rL2r,0

)
= A0,0 · L0,0 +A2,0 · L2,0 +A4,0 · L4,0 + . . .+A2n+4,0 · L2n+4,0

= 2π

(
A0,0 +A2,0η

2 +A4,0η
4 + . . .+A2n+4,0η

2n+4√
η2 − 1

+

n+1∑
i=1

B2i−1 · η2i−1

−A2n+4,0 · η2n+3

)
, (3.8)

where the coefficients A2m,0 are the followings:

A0,0 = a0,2n+2, m = 0,

A2m,0 =

m∑
k=1

(a2k,2n−2k+2 − b2k−1,2n−2k+3)

(
n− k + 2

m− k

)
(−1)m−k

+ a0,2n+2

(
n+ 2

m

)
(−1)m, 1 ≤ m ≤ n+ 1,

A2n+4,0 =

n+1∑
k=1

(a2k,2n−2k+2 − b2k−1,2n−2k+3)(−1)n−k+2

+ a0,2n+2(−1)n+2, m = n+ 2

and B2i−1 =
∑n+2
m=i+1A

(m)
2i−1 ·A2m,0−A2i,0 (1 ≤ i ≤ n+ 1), in which the coefficients

A
(m)
2i−1 appearing in the equality (3.6). In order to simplify the expression (3.8), we

give the following lemmas.

Lemma 3.3. The coefficients of the polynomial
∑n+2
i=0 A2i,0η

2i satisfy the following
equality

n+2∑
i=0

A2i,0 = 0. (3.9)

Proof. According to (3.3) and the penultimate equality in (3.8), we have

n+1∑
k=1

(a2k,2n−2k+2 − b2k−1,2n−2k+3) · cos2k θ sin2n−2k+4 θ

cos θ + η
+ a0,2n+2 ·

sin2n+4 θ

cos θ + η

=
A0,0 +A2,0 cos2 θ +A4,0 cos4 θ + . . .+A2n+4,0 cos2n+4 θ

cos θ + η
, (3.10)

let cos θ = 1 in the above expression, we can obtain
∑n+2
i=0 A2i,0 = 0.
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We first estimate the lower bound of the number of zeros of the function G(η).
Using (3.8) and Lemma 3.3, we have

G(η) = A0,0 · L0,0 +A2,0 · L2,0 +A4,0 · L4,0 + . . .+A2n+4,0 · L2n+4,0

= −[A0,0(L2n+4,0 − L0,0) +A2,0(L2n+4,0 − L2,0) + . . .

+A2n+2,0(L2n+4,0 − L2n+2,0)].

(3.11)

It is worth to notice that the determinant of the Jacobian matrix

∣∣∣∣∣ ∂(A0,0, A2,0, . . . , A2n+2,0)

∂(a0,2n+2, a2,2n, . . . , a2n+2,0)

∣∣∣∣∣ = 1 6= 0.

This implies that the coefficients A0,0, A2,0, . . . , A2n+2,0 are independent. In order
to identify that L2n+4,0 − L0,0, L2n+4,0 − L2,0, . . . , L2n+4,0 − L2n+2,0 are linearly
independent functions, we carry out Taylor expansions in the variable η around
η = +∞ for the functions L2n+4,0 − L2m,0(m = 0, 1, . . . , n+ 1):

L2n+4,0 − L0,0 = 2π

[(
(2n+ 3)!!

(2n+ 4)!!
− 1

)
1

η
+

(
(2n+ 5)!!

(2n+ 6)!!
− 1!!

2!!

)
1

η3

+ . . .+

(
(4n+ 5)!!

(4n+ 6)!!
− (2n+ 1)!!

(2n+ 2)!!

)
1

η2n+3

]
+O

(
1

η2n+5

)
,

L2n+4,0 − L2m,0 = 2π

[(
(2n+3)!!

(2n+4)!!
− (2m−1)!!

(2m)!!

)
1

η
+

(
(2n+5)!!

(2n+6)!!
− (2m+1)!!

(2m+2)!!

)
1

η3

+ . . .+

(
(4n+ 5)!!

(4n+ 6)!!
− (2n+ 2m+ 1)!!

(2n+ 2m+ 2)!!

)
1

η2n+3

]

+O
(

1

η2n+5

)
, 1 ≤ m ≤ n+ 1. (3.12)

Now computing the determinant of the coefficient matrix of the variables 1
η , 1

η3 , . . .,
1

η2n+3 , we obtain

D̄ = (2π)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2n+3)!!
(2n+4)!! − 1 (2n+5)!!

(2n+6)!! −
1!!
2!! · · · (4n+5)!!

(4n+6)!! −
(2n+1)!!
(2n+2)!!

(2n+3)!!
(2n+4)!! −

1!!
2!!

(2n+5)!!
(2n+6)!! −

3!!
4!! · · · (4n+5)!!

(4n+6)!! −
(2n+3)!!
(2n+4)!!

(2n+3)!!
(2n+4)!! −

3!!
4!!

(2n+5)!!
(2n+6)!! −

5!!
6!! · · · (4n+5)!!

(4n+6)!! −
(2n+5)!!
(2n+6)!!

(2n+3)!!
(2n+4)!! −

5!!
6!!

(2n+5)!!
(2n+6)!! −

7!!
8!! · · · (4n+5)!!

(4n+6)!! −
(2n+7)!!
(2n+8)!!

...
...

...

(2n+3)!!
(2n+4)!! −

(2n+1)!!
(2n+2)!!

(2n+5)!!
(2n+6)!! −

(2n+3)!!
(2n+4)!! · · · (4n+5)!!

(4n+6)!! −
(4n+3)!!
(4n+4)!!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (2π)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1!!
2!! · · · (2n+1)!!

(2n+2)!!

1 1!!
2!!

3!!
4!! · · · (2n+3)!!

(2n+4)!!

1 3!!
4!!

5!!
6!! · · · (2n+5)!!

(2n+6)!!

1 5!!
6!!

7!!
8!! · · · (2n+7)!!

(2n+8)!!

...
...

...
...

1 (2n+1)!!
(2n+2)!!

(2n+3)!!
(2n+4)!! · · · (4n+3)!!

(4n+4)!!

1 (2n+3)!!
(2n+4)!!

(2n+5)!!
(2n+6)!! · · · (4n+5)!!

(4n+6)!!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (2π)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1!!
2!! · · · (2n+1)!!

(2n+2)!!

0 − 1!!
2!! − 1!!

4!! · · · − (2n+1)!!
(2n+4)!!

0 − 1!!
4!! − 3!!

6!! · · · − (2n+3)!!
(2n+6)!!

0 − 3!!
6!! − 5!!

8!! · · · − (2n+5)!!
(2n+8)!!

...
...

...
...

0 − (2n−1)!!
(2n+2)!! − (2n+1)!!

(2n+4)!! · · · − (4n+1)!!
(4n+4)!!

0 − (2n+1)!!
(2n+4)!! − (2n+3)!!

(2n+6)!! · · · − (4n+3)!!
(4n+6)!!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−2π)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1!!
2!!

1!!
4!! · · · (2n+1)!!

(2n+4)!!

1!!
4!!

3!!
6!! · · · (2n+3)!!

(2n+6)!!

3!!
6!!

5!!
8!! · · · (2n+5)!!

(2n+8)!!

...
...

...

(2n−1)!!
(2n+2)!!

(2n+1)!!
(2n+4)!! · · · (4n+1)!!

(4n+4)!!

(2n+1)!!
(2n+4)!!

(2n+3)!!
(2n+6)!! · · · (4n+3)!!

(4n+6)!!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= K0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

1
4

3
6 · · · 2n+3

2n+6

3·1
6·4

5·3·1
8·6 · · · (2n+5)(2n+3)

(2n+8)(2n+6)

...
...

...

(2n−1)!!
(2n+2)···6·4

(2n+1)!!
(2n+4)···8·6 · · · (4n+1)···(2n+3)

(4n+4)···(2n+6)

(2n+1)!!
(2n+4)···6·4

(2n+3)!!
(2n+6)···8·6 · · · (4n+3)···(2n+3)

(4n+6)···(2n+6)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

1
4

1
6 · · · 1

2n+6

1
6

1
8 · · · 1

2n+8

...
...

...

1
2n+2

1
2n+4 · · · 1

4n+4

1
2n+4

1
2n+6 · · · 1

4n+6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
1

2

)n+1

K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

1
2

1
3 · · · 1

n+3

1
3

1
4 · · · 1

n+4

...
...

...

1
n+1

1
n+2 · · · 1

2n+2

1
n+2

1
n+3 · · · 1

2n+3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where

K0 = (−2π)n+2 · 1

2
· 1

4!!
· 3!!

6!!
· · · (2n− 1)!!

(2n+ 2)!!
· (2n+ 1)!!

(2n+ 4)!!
,

K = K0(−3)n+1
n+2∏
k=3

(
2k − 1

2k − 4

)n−k+3

.

It is clear that K 6= 0. Hence, D̄ 6= 0. So we have that the set of n + 2
functions given by {L2n+4,0−L0,0, L2n+4,0−L2,0, . . . , L2n+4,0−L2n+2,0} is linearly
independent. By Proposition 2.1, it is easy to know that G(η) has at least n + 1
zeros in (1,+∞), which means that system (1.4) has at least n + 1 limit cycles
bifurcating from the period solutions of the unperturbed one.

In what follows, we estimate the sharp upper bound of the number of zeros of
G(η). We first recall some definitions and properties of symmetric polynomial.

Given a real polynomial

S(x) = snx
n + sn−1x

n−1 + . . .+ s0 = sn

n∏
i=1

(x− xi),

let us denote by S∗(x) the reciprocated polynomial of S(x), namely,

S∗(x) = xnS(x−1) = sn + sn−1x+ . . .+ s0x
n.

Obviously, the zeros of S∗(x) are the inverses x−1i of the zeros of S(x).
A polynomial Sk(x) of degree k is called a symmetric (or mirror) polynomial if

S∗k(x) = Sk(x). Therefore, Sk(x) is symmetric if and only if

Sk(x) =
k∑
i=0

six
i, si = sk−i, i = 0, 1, . . . , k.

The following result, which will be used later, is based on Lemma 3.3.

Lemma 3.4. Let

h(ω2) =

n+2∑
i=0

A2i,0(1 + ω2)2i(1− ω2)2n−2i+4,

then the leading coefficient and the constant term of h(ω2) are both zeros, i.e.
h(ω2) = ω2R∗2n+2(ω2), where R∗2n+2(ω2) denotes a symmetric polynomial of de-
gree 2n+ 2 with respect to ω2.
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Proof. Note that h(ω2) is a symmetric polynomial with respect to ω2, whose

constant term is
∑n+2
i=0 A2i,0. It follows directly from Lemma 3.3 that h(ω2) =

ω2R∗2n+2(ω2), the symmetry of coefficients of R∗2n+2(ω2) follows directly from h(ω2).
This completes the proof.

Using the above results and making the transformation η = 1+ω2

1−ω2 for 0 < ω < 1,
(3.8) can be changed to

G(η) = 2π

(
A0,0 +A2,0η

2 +A4,0η
4 + . . .+A2n+4,0η

2n+4√
η2 − 1

+

n+1∑
i=1

B2i−1 · η2i−1

−A2n+4,0 · η2n+3

)

= 2π

{
1− ω2

2ω

[
A0,0 +A2,0

(
1 + ω2

1− ω2

)2

+A4,0

(
1 + ω2

1− ω2

)4

+ . . .

+A2n+4,0

(
1 + ω2

1− ω2

)2n+4
]

+

n+1∑
i=1

B2i−1

(
1 + ω2

1− ω2

)2i−1

−A2n+4,0

(
1 + ω2

1− ω2

)2n+3
}

= 2π

[
h(ω2)

2ω(1−ω2)2n+3
+

1

(1−ω2)2n+3
·

(
n+1∑
i=1

B2i−1(1+ω2)2i−1(1−ω2)2n−2i+4

−A2n+4,0(1 + ω2)2n+3

)]
=

π

(1− ω2)2n+3

[
ω ·R∗2n+2(ω2) +R2n+3(ω2)

]
= G̃(ω),

(3.13)

where

R2n+3(ω2) = 2

(
n+1∑
i=1

B2i−1(1 + ω2)2i−1(1− ω2)2n−2i+4 −A2n+4,0(1 + ω2)2n+3

)
denotes a symmetric polynomial of degree 2n+ 3 with respect to ω2. Moreover, we
have the following result for G̃(ω).

Lemma 3.5. The function G̃(ω) can be expressed as

G̃(ω) =
π(1− ω)

(1 + ω)2n+3
· g(ω),

where g(ω) is a symmetric polynomial of degree 2n + 2. Then, g(ω) has at most
n + 1 simple zeros in ω ∈ (0, 1), which means that system (1.4) has at most n + 1
limit cycles bifurcating from the period solutions of the unperturbed one.

Proof. Note the fact that

lim
z→0

∫ 2π

0

A0,0 +A2,0 cos2 θ +A4,0 cos4 θ + . . .+A2n+4,0 cos2n+4 θ

cos θ − 1 + 1
(2n+1)z2n+1

dθ
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= lim
z→0

∫ 2π

0

(2n+ 1)z2n+1
(
A0,0 +A2,0 cos2 θ + . . .+A2n+4,0 cos2n+4 θ

)
(2n+ 1)z2n+1(cos θ − 1) + 1

dθ

=0,

which implies G̃(ω = 1) = 0. Hence

G̃(ω) =
π

(1− ω2)2n+3

[
ω ·R∗2n+2(ω2) +R2n+3(ω2)

]
=

π(1− ω)

(1 + ω)2n+3
· g(ω).

Recalling the properties that R∗2n+2(ω2) and R2n+3(ω2) are both symmetric poly-
nomials with respect to ω2, we conclude that g(ω) is a symmetric polynomial of
degree 2n+2 with respect to ω, then we know that if ω0 6= 0 is one root of g(ω) = 0,
so is 1/ω0. Hence, the function G̃(ω) has at most n+ 1 roots in (0, 1), which means
that system (1.4) has at most n+1 limit cycles bifurcating from the period solutions
of the unperturbed one.

Up to now, we see that system (1.4) has at most n + 1 limit cycles, and the
upper bound can be reached for all n. The proof of statement (a) of Theorem 1.1
is finished.

4. Proof of Theorem 1.1 (b)

The goal of this section is to investigate the number of limit cycles of system (1.5)
which bifurcate from the period solutions of the unperturbed system.

Under the polar coordinate transformation, system (1.5) can be changed to

dr

dθ
= F0(θ, r) + εF1(θ, r) +O(ε2), (4.1)

where F0(θ, r) = r2n+3 cos θ sin θ and

F1(θ, r) = r2n+3
∑

i+j=2n+3

(
ci,j cosi+1 θ sinj θ + di,j cosi θ sinj+1 θ

)
+ r4n+5

∑
i+j=2n+3

(
ci,j cosi+1 θ sinj+2 θ − di,j cosi+2 θ sinj+1 θ

)
.

Equation (4.1)ε=0 has the periodic solutions r(θ, z)=
(
(n+1)(cos2 θ−1)+ 1

z2n+2

)− 1
2n+2

satisfying r(0, z) = z for 0 < z < (n+ 1)−
1

2n+2 . The corresponding variational dif-
ferential equation

dM

dθ
=

∂

∂r
F0(θ, r(θ, z))M,

with Mz(0, z) = 1 and has the fundamental solution

Mz(θ, z) =
[
(n+ 1)z2n+2(cos2 θ − 1) + 1

]− 2n+3
2n+2 .

Next, a straightforward calculation leads to

F(z) =

∫ 2π

0

M−1z (θ, z) · F1(θ, r)dθ (4.2)
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= z2n+3

{∫ 2π

0

∑
i+j=2n+3

(
ci,j cosi+1 θ sinj θ + di,j cosi θ sinj+1 θ

)
dθ

+

∫ 2π

0

∑
i+j=2n+3

ci,j cosi+1 θ sinj+2 θ − di,j cosi+2 θ sinj+1 θ

(n+ 1)(cos2 θ + λ)
dθ

}

= z2n+3

(
A1 +

A2

n+ 1

)
, (4.3)

where λ = −1 +
[
(n+ 1)z2n+2

]−1 ∈ (0,+∞), and

A1 = c2n+3,0I2n+4,0+d0,2n+3I0,2n+4+

n+1∑
k=1

(c2k−1,2n−2k+4+d2k,2n−2k+3)I2k,2n−2k+4,

A2 =

n+2∑
k=1

(c2k−1,2n−2k+4 − d2k−2,2n−2k+5)J2k,2n−2k+6 (4.4)

with

I2i,2j =

∫ 2π

0

cos2i θ sin2j θdθ

for i = 0, 1, . . . , n+ 2; j = n− i+ 2, and

J2i,2j =

∫ 2π

0

cos2i θ sin2j θ

cos2 θ + λ
dθ

for i = 1, 2, . . . , n+ 2; j = n− i+ 3.

Then the problem of the number of zeros of F(z) is equivalent to the number of

zeros of A1 + A2

n+1 . In the following, we list an important lemma which will be used

in the derivation of the formulas A1 and A2.

Lemma 4.1. For the above integrals I2i,2j (i = 0, 1, . . . , n + 2; j = n − i + 2) and
J2i,2j (i = 1, 2, . . . , n+ 2; j = n− i+ 3), we have

I2i,2j =

j∑
r=0

(
j

r

)
(−1)rI2i+2r,0, J2i,2j =

j∑
r=0

(
j

r

)
(−1)rJ2i+2r,0. (4.5)

Moreover,

J2m,0 = 2π

(
(−λ)m√
λ2 + λ

+ (−λ)m−1 +

m−2∑
r=0

D(m)
r λr

)
, m ≥ 1, (4.6)

where D
(m)
r = (−1)r (2m−2r−3)!!(2m−2r−2)!! .

Proof. Here we only prove the formula (4.6), the discussions for I2i,2j and J2i,2j
are closely similar to Lemma 3.1, so we omit them.
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Note that

J2m,0 =

∫ 2π

0

(cos2 θ + λ− λ)m

cos2 θ + λ
dθ

=

m∑
k=0

(
m

k

)
(−λ)k

∫ 2π

0

(cos2 θ + λ)m−k−1dθ

=
2π(−λ)m√
λ2+λ

+2πm(−λ)m−1+

m−2∑
k=0

(
m

k

)
(−1)k ·

(
m−k−1∑
t=0

(
m−k−1

t

)
λm−t−1I2t,0

)

=
2π(−λ)m√
λ2+λ

+2π(−λ)m−1+

m−2∑
k=0

(
m

k

)
(−1)k ·

(
m−k−1∑
t=1

(
m−k−1

t

)
λm−t−1I2t,0

)
.

By using the well-known formula I2t,0 = 2π (2t−1)!!
(2t)!! , we perform the computation

and obtain

J2m,0 = 2π

(
(−λ)m√
λ2 + λ

+ (−λ)m−1 +
m−2∑
r=0

D(m)
r λr

)
,

where D
(m)
r =

∑r
k=0(−1)k

(
m
k

)(
m−k−1
m−r−1

) (2m−2r−3)!!
(2m−2r−2)!! = (−1)r (2m−2r−3)!!(2m−2r−2)!! . Hence the

proof of the formula (4.6) is finished.

Remark 4.1. Some explicit expressions of J2m,0 are:

J2,0 = − 2πλ√
λ2 + λ

+ 2π,

J4,0 =
2πλ2√
λ2 + λ

− 2πλ+ π,

J6,0 = − 2πλ3√
λ2 + λ

+ 2πλ2 − πλ+
3

4
π,

J8,0 =
2πλ4√
λ2 + λ

− 2πλ3 + πλ2 − 3

4
πλ+

5

8
π.

It follows from Lemma 4.1 and (4.4) that

A1 = c2n+3,0I2n+4,0+d0,2n+3I0,2n+4+

n+1∑
k=1

(c2k−1,2n−2k+4+d2k,2n−2k+3)I2k,2n−2k+4

= c2n+3,0I2n+4,0 + d0,2n+3 ·

(
n+2∑
r=0

(−1)r
(
n+ 2

r

)
I2r,0

)

+

n+1∑
k=1

(c2k−1,2n−2k+4 + d2k,2n−2k+3) ·

(
n−k+2∑
r=0

(−1)r
(
n− k + 2

r

)
I2k+2r,0

)
= H0,0 · I0,0 +H2,0 · I2,0 +H4,0 · I4,0 + . . .+H2n+4,0 · I2n+4,0

= 2π

(
H0,0 +

n+2∑
k=1

H2k,0 ·
(2k − 1)!!

(2k)!!

)
, (4.7)

where the coefficients H2m,0 are the followings:

H0,0 = d0,2n+3, m = 0,
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H2m,0 =

m∑
k=1

(c2k−1,2n−2k+4 + d2k,2n−2k+3)

(
n− k + 2

m− k

)
(−1)m−k

+ d0,2n+3

(
n+ 2

m

)
(−1)m, 1 ≤ m ≤ n+ 1,

H2n+4,0 =

n+1∑
k=1

(c2k−1,2n−2k+4 + d2k,2n−2k+3)(−1)n−k+2

+ d0,2n+3(−1)n+2 + c2n+3,0, m = n+ 2.

Based on Lemma 4.1 and (4.4), we can further obtain that

A2 =

n+2∑
k=1

(c2k−1,2n−2k+4 − d2k−2,2n−2k+5)J2k,2n−2k+6

=

n+2∑
k=1

(c2k−1,2n−2k+4 − d2k−2,2n−2k+5)

(
n−k+3∑
r=0

(−1)r
(
n− k + 3

r

)
J2k+2r,0

)
= K2,0 · J2,0 +K4,0 · J4,0 + . . .+K2n+6,0 · J2n+6,0

= 2π

(
K1λ+K2λ

2 + . . .+Kn+3λ
n+3

√
λ2 + λ

+

n+1∑
i=0

Eiλ
i + Fλn+2

)
, (4.8)

where the coefficients K2m,0 are the followings:

K2m,0 =

m∑
k=1

(c2k−1,2n−2k+4−d2k−2,2n−2k+5)

(
n−k+3

m−k

)
(−1)m−k, 1 ≤ m ≤ n+ 2,

K2n+6,0 =

n+2∑
k=1

(c2k−1,2n−2k+4 − d2k−2,2n−2k+5)(−1)n−k+3, m = n+ 3

andKi = K2i,0(−1)i (i = 1, . . . , n+3), and Ei = K2i+2,0(−1)i+
∑n+3
m=i+2K2m,0D

(m)
i

(i = 0, 1, . . . , n+ 1), and F = K2n+6,0(−1)n+2.
In order to simplify the expression (4.8), we give the following lemmas.

Lemma 4.2. The coefficients of the polynomial
∑n+3
i=1 Kiλ

i satisfy the following
equality

n+3∑
i=1

(−1)n−i+3Ki = 0. (4.9)

Proof. According to the last equality in (4.4) and the penultimate equality in
(4.8), we have

n+2∑
k=1

(c2k−1,2n−2k+4 − b2k−2,2n−2k+5) · cos2k θ sin2n−2k+6 θ

cos2 θ + λ

=
K2,0 cos2 θ +K4,0 cos4 θ + . . .+K2n+6,0 cos2n+6 θ

cos2 θ + λ
,

(4.10)

let cos θ = 1 in the above expression, one can obtain
∑n+3
i=1 K2i,0 = 0. Hence,∑n+3

i=1 (−1)n−i+3Ki = (−1)n+3
∑n+3
i=1 K2i,0 = 0.
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Lemma 4.3. Let

ψ(ω2) =

n+3∑
i=1

Ki · (ω2)i−1(1− ω2)n−i+3,

then the leading coefficient of ψ(ω2) is zero, i.e. ψ(ω2) = R∗n+1(ω2), where R∗n+1(ω2)
denotes a polynomial of degree n+ 1 with respect to ω2.

Proof. The conclusion follows directly from Lemma 4.2.
Next, we first study the number of zeros of A2. In order to make the computation

easier we need to make the transformation λ = ω2

1−ω2 for 0 < ω < 1. Using (4.8)
and Lemma 4.3, we have

A2 = 2π

(
K1λ+K2λ

2 + . . .+Kn+3λ
n+3

√
λ2 + λ

+

n+1∑
i=0

Eiλ
i + Fλn+2

)

= 2π

{
1− ω2

ω

[
K1

(
ω2

1− ω2

)
+K2

(
ω2

1− ω2

)2

+ . . .+Kn+3

(
ω2

1− ω2

)n+3
]

+ E0 + E1

(
ω2

1− ω2

)
+ . . .+ En+1

(
ω2

1− ω2

)n+1

+ F

(
ω2

1− ω2

)n+2
}

=
2π

(1− ω2)n+2

(
ω · ψ(ω2) +

n+1∑
i=0

Ei · (ω2)i(1− ω2)n−i+2 + F · (ω2)n+2

)

=
2π

(1− ω2)n+2

(
ω ·R∗n+1(ω2) +Rn+2(ω2)

)
, (4.11)

where Rn+2(ω2) denotes a polynomial of degree n+2 with respect to ω2. Moreover,
we can obtain the following result.

Lemma 4.4. The formula A2 can be expressed as

A2 =
2π(1− ω)

(1 + ω)n+2
· Ã(ω), (4.12)

where Ã(ω) denotes a polynomial of degree n+ 1 with respect to ω.

Proof. Refer to (4.8) and note that

lim
z→0

∫ 2π

0

K2,0 cos2 θ +K4,0 cos4 θ + . . .+K2n+6,0 cos2n+6 θ

cos2 θ − 1 + 1
(n+1)z2n+2

dθ

= lim
z→0

∫ 2π

0

(n+ 1)z2n+2
(
K2,0 cos2 θ +K4,0 cos4 θ + . . .+K2n+6,0 cos2n+6 θ

)
(n+ 1)z2n+2(cos2 θ − 1) + 1

dθ

=0.

This implies that A2(ω = 1) = 0. Hence

A2 =
2π

(1− ω2)n+2

(
ω ·R∗n+1(ω2) +Rn+2(ω2)

)
=

2π(1− ω)

(1 + ω)n+2
· Ã(ω),

where Ã(ω) denotes a polynomial of degree n+ 1 with respect to ω.
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Proof of Theorem 1.1 (b). It follows from (4.7) and Lemma 4.4 that

A1 +
A2

n+ 1
= 2π

(
H0,0 +

n+2∑
k=1

H2k,0 ·
(2k − 1)!!

(2k)!!

)
+

2π(1− ω)

(n+ 1)(1 + ω)n+2
· Ã(ω)

=
2π

(n+1)(1+ω)n+2

[
(n+ 1)

(
H0,0+

n+2∑
k=1

H2k,0 ·
(2k−1)!!

(2k)!!

)
(1+ω)n+2+(1−ω)Ã(ω)

]

=
2π

(n+ 1)(1 + ω)n+2
·A∗(ω), (4.13)

where A∗(ω) denotes a polynomial of degree n+2 with respect to ω. Hence, A1+ A2

n+1
has at most n+ 2 zeros in ω ∈ (0, 1).

On the other hand, it is obvious that the set of monomials {1, ω, ω2, . . . , ωn+2}
is linearly independent. By Proposition 2.1, we know that A∗(ω) has at least n+ 2
zeros in (0, 1). Hence, statement (b) of Theorem 1.1 is proved.

Herewith, we complete the proof of Theorem 1.1.
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