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GLOBAL DYNAMICS OF TWO
PHYTOPLANKTON-ZOOPLANKTON
MODELS WITH TOXIC SUBSTANCES

EFFECT∗
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Abstract In this paper, we investigate phytoplankton-zooplankton models
with toxic substances effect and two different kinds of predator functional
responses. For Holling type II predator functional response, it is shown
that the local stability of the positive equilibrium implies global stability
if there exists a unique positive equilibrium. When there exist multiple
positive equilibria, the local stability of the positive equilibrium with small
phytoplankton population density implies that the model occurs bistable
phenomenon. These results also hold for Holling type III predator functional
response under certain conditions.
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1. Introduction

During the past half century, the interaction between the phytoplankton and
zooplankton has been investigated extensively, and it is also well established that a
great number of phytoplankton species produce toxin, which affects the growth
of the zooplankton species, see [7]. Then various models described by ODEs,
PDEs, and DDEs have been built and investigated to understand this interaction,
see [2, 3, 11, 12, 15, 16, 19, 21, 23, 24, 29–31] and references therein. For example,
Chattopadhyay et al. [3] proposed the following ODE model

dP

dt
= bP

(
1− P

k

)
− αf(P )Z,

dZ

dt
= βf(P )Z − rZ − θg(P )Z,

(1.1)

to show the effect of toxic substances. They analyzed the local stability of
model (1.1) with different kinds of f(u) and g(u), and showed theoretically and
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numerically that the release of toxic substances by TPP (toxin-producing plankton)
can terminate the planktonic blooms. Here P represents the density of the TPP
population; Z is the density of the zooplankton population; α > 0 and β > 0
represent the predation and conversion rates of the zooplankton on the TPP
population, respectively; b > 0 and k > 0 are the intrinsic growth rate and carry
capacity of the TPP, respectively; r > 0 is the death rate of the zooplankton
population; f(P ) represents the predator functional response. We should point out
that g(P ) represents the distribution of the toxin substances, and θ > 0 denotes the
rate of toxin liberation by the TPP population.

There are also some other models considering toxin effect, such as a
plant-herbivore model with toxin-determined functional response [6]. Liu et al. [14]
studied the Hopf and homoclinic bifurcations of the model, and then Castillo-Chavez
et al. [1] showed that the local stability of one positive equilibrium implies global
stability or bistable phenomenon under different conditions. Recently, Zhao et
al. [32] generalized the results in [14] and deduced that a limit cycle is generated in
a supercritical Hopf bifurcation and terminated in a homoclinic bifurcation, as the
parameters vary. Zhang and Yan [28] showed the occurrence of Hopf bifurcation of
spatially inhomogeneous periodic solutions for the corresponding diffusive model.

In this paper, we revisit model (1.1). Choosing f(u) =
uh

1 + cuh
(for h = 1, 2)

and g(u) = u for simplicity, we have the following system: (see also Cases 5 and 7
in [3]) 

dP

dt
= bP

(
1− P

k

)
− αPhZ

1 + cPh
, t > 0,

dZ

dt
=

βPhZ

1 + cPh
− rZ − θPZ, t > 0,

P (0) = P0 ≥ 0, Z(0) = Z0 ≥ 0.

(1.2)

Here, for h = 1, f(u) denotes the Holling type II predator functional response, and
for h = 2, f(u) denotes the Holling type III predator functional response. By using
the following rescaling,

t̃ = bt, ũ =
P

k
, ṽ =

αkh−1Z

b
, c̃ = ckh, β̃ =

βkh

b
, r̃ =

r

b
, θ̃ =

θk

b
,

and dropping the tilde sign, system (1.2) can be simplified as follows:
du

dt
= u (1− u)− uhv

(1 + cuh)
, t > 0,

dv

dt
=

βuhv

(1 + cuh)
− rv − θuv, t > 0,

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0.

(1.3)

Here parameters β, r, θ and c are positive, h = 1, 2, and θ denotes the effect of
the toxin substances, (more detailed biological meaning can be found in [3, 23]). If
θ = 0 and h = 1, then system (1.3) is reduced to the classical Rosenzweig-MacArthur
model, and has been extensively studied in the existing literature, see for example
[5,8,9]. The dynamics and bifurcations for the corresponding diffusive model could
be found in [13,18,27,33]. For θ = 0 and h = 2, the global dynamics of system (1.3)
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were investigated in [4, 10, 22]. See also [17, 20, 25, 26, 34] for predator-prey models
with nonmonotonic predator functional response.

In this paper, we mainly investigate the effect of the toxin substances and show
the occurrence of global stable and bistable phenomenons for model (1.3). The
rest of the paper is organized as follows. In Section 2, we investigate the global
dynamics of system (1.3). In Section 3, some numerical simulations are illustrated
to support the obtained results. We also remark that, by virtue of the obtained
results, the local Hopf bifurcation results in [23] can be improved and the global
Hopf bifurcation results can be obtained.

2. Global dynamics

Firstly, we show that system (1.3) is dissipative.

Lemma 2.1. For any initial value (u0, v0), where u0, v0 > 0, the corresponding
solution of system (1.3) is positive and bounded.

Proof. It follows from the comparison principle that u(t), v(t) > 0. Then u′(t) ≤
u (1− u), which yields u(t) ≤ max{u0, 1} for all t ≥ 0. Therefore, [βu(t) + v(t)]′ ≤
β(1 + r) max{u0, 1} − r(βu(t) + v(t)), which implies that

βu(t) + v(t) ≤ max

{
βu0 + v0,

β(1 + r)

r
max{u0, 1}

}
for all t ≥ 0. This completes the proof.

Clearly, system (1.3) always has two nonnegative equilibria (0, 0) and (1, 0). An
easy calculation implies that (u, v) is a positive equilibrium of system (1.3) if and
only if u ∈ (0, 1) is a solution of the following equation

β = Ψ(u) :=
(r + θu)(1 + cuh)

uh
for h = 1, 2. (2.1)

Clearly, it can be to see

1. there exists u > 0 such that Ψ′ (u) = 0, Ψ′(u) > 0 for u ∈ (u,∞), and
Ψ′(u) < 0 for u ∈ (0, u);

2. limu→0 Ψ(u) =∞, limu→1 Ψ(u) = (c+ 1)(r + θ).

For h = 1, one can easily check that u =
√

r
cθ , and for h = 2, u is the unique

positive root of the following equation

θcx3 − θx− 2r = 0. (2.2)

Then we have the following two results on the number of positive equilibria.

Lemma 2.2. Assume that u ≥ 1. Then system (1.3) has no positive equilibrium for
β ∈ (0, (c+ 1)(r + θ)), and a unique positive equilibrium for β ∈ ((c+ 1)(r + θ),∞).

Lemma 2.3. Assume that u < 1. Then system (1.3) has no positive equilibrium
for β ∈ (0,Ψ(u)), a unique positive equilibrium (u−, v−) for β ∈ ((c+ 1)(r+ θ),∞),
and two positive equilibria for β ∈ (Ψ(u), (c+ 1)(r + θ)).
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For the case of h = 1, one can easily check that Ψ(u) = β has two roots denoted
by

u± =
−(θ + cr − β)±

√
(θ + cr − β)2 − 4cθr

2θc
. (2.3)

Define

v± = (1− u±)(1 + cu±), (2.4)

and (u+, v+) (respectively, (u−, v−)) is a positive equilibrium of system (1.3) if and
only if u+ ∈ (0, 1) (respectively, u− ∈ (0, 1)). For simplicity of the notations, if
system (1.3) has a unique positive equilibrium, we denote it by (u−, v−), and if
there exist two positive equilibria, we denote them by (u−, v−) and (u+, v+), where
u− < u+.

Now, we consider the stability of the nonnegative equilibria of system (1.3).
Clearly, the stability of nonnegative equilibria (0, 0) and (1, 0) can be summarized
as follows.

1. At (0, 0), the eigenvalues of the Jacobian matrix are µ1 = 1 and µ2 = −r.
Therefore, (0, 0) ia always a saddle, the v-axis is the stable manifold of (0, 0),
and the unstable manifold of (0, 0) is along the u-axis.

2. At (1, 0), the eigenvalues of the Jacobian matrix are µ1 = −1 and µ2 =
β

1+c − r − θ. Therefore, if β > (1 + c)(r + θ), then (1, 0) is a saddle, and the
stable manifold of (1, 0) is the positive part of u-axis. If β < (1 + c)(r + θ),
then (1, 0) is a stable node.

Then, Lemmas 2.1-2.3 and the Poincaré-Bendixson theorem imply that (1, 0) is
globally attractive when system (1.3) has no positive equilibrium.

Theorem 2.1. Assume that one of the following assumptions is satisfied:

(1) u ≥ 1 and β ∈ (0, (c+ 1)(r + θ)),

(2) u < 1 and β ∈ (0,Ψ(u)).

Then system (1.3) has no positive equilibrium, and for any positive initial value
(u0, v0), the corresponding solution of system (1.3) converges to the equilibrium
(1, 0) as t→∞,

We remark that for h = 1, u =
√

r
cθ and B(u) = θ

(
1 +

√
cr
θ

)2
, and for h = 2, u

is the unique positive root of Eq. (2.2). In the following, we consider the dynamics
of system (1.3) when it has positive equilibrium. As illustrated in Lemmas 2.2 and
2.3, there are two possible cases:

(Ĩ1) system (1.3) has only one positive equilibrium (u−, v−). That is, β > (c +
1)(r + θ).

(Ĩ2) system (1.3) has two positive equilibria (u±, v±), where u− < u+. That is,
u < 1 and β ∈ (Ψ(u), (c+ 1)(r + θ)).

For the simplicity of notations, we denote

φ(u) =
uh

1 + cuh
, g(u) =

(1− u)(1 + cuh)

uh−1
for h = 1, 2. (2.5)
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A direct computation implies that the Jocobian matrix of system (1.3) at
equilibrium (u±, v±) is as follows:

J((u±, v±)) =

 φ(u±)g′(u±) −φ(u±)

(βφ′(u±)− θ)v± 0

 .
Therefore, positive equilibrium (u+, v+) is a saddle point if it exists, and positive
equilibrium (u−, v−) is not a saddle point. Moreover, (u−, v−) is stable if g′(u−) < 0,
and unstable if g′(u−) > 0.

Here we only consider the case that (u−, v−) is stable, that is, g′(u−) < 0. We
will analyze whether the local stability of equilibrium (u−, v−) implies the global
stable or bistable phenomenon. As in [1], we denote

M(u) = β −Ψ(u), (2.6)

where Ψ(u) is defined as in Eq. (2.1). Then system (1.3) with positive initial value
(u0, v0) can be rewritten as

du

dt
= φ(u)[g(u)− v], t > 0,

dv

dt
= φ(u)M(u)v, t > 0,

u(0) = u0 > 0, v(0) = v0 > 0,

(2.7)

and (Ĩ1) and (Ĩ2) are equivalent to the following (I1) and (I2), respectively,

(I1) M(u−) = 0, M(u) < 0 for u ∈ (0, u−), and M(u) > 0 for u ∈ (u−, 1];

(I2) M(u−) = M(u+) = 0, M(u) < 0 for u ∈ (0, u−) ∪ (u+, 1), and M(u) > 0 for
u ∈ (u−, u+).

We see that system (2.7) takes the same form as system (3.1) in [1], but φ(u),
g(u) and M(u) are different. Especially, g(u) changes its monotonicity at most
once for system (3.1) in [1], but here for h = 2, g′(u) can have two zeros, and the
monotonicity of g(u) is divided into two cases:

(a1) g(u) is strictly decreasing;

(a2) There exist

u1, u2 ∈ (0, 1) such that g′(u1) = g′(u2) = 0, (2.8)

and g′(u) < 0 for u ∈ (0, u1) ∪ (u2, 1), g′(u) > 0 for u ∈ (u1, u2).

We denote

u1 = {λ ∈ (0, u1) : g(λ) = g(u2)} (2.9)

if g(u) satisfies (a2).
In the following, we will show that the method in [1] can also be applied to

system (1.3) to prove the nonexistence of periodic orbit and homoclinic orbit. Define
a function

ξ = G(u) =

∫ u

u−

|M(s)|ds for u ∈ (0, u∗], (2.10)
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where u∗ = 1 for case (I1) and u∗ = u+ for case (I2). Noticing that
limu→0+ |M(u)|uh = r, we have limu→0+ G(u) = −∞. It follows that G(u) is
strictly increasing and has a inverse function

θ(ξ) = G−1(ξ) with domain (−∞, ξ∗], (2.11)

where
ξ∗ = G(u∗). (2.12)

The following result is from [1], (see Proposition 3.2 in [1]), but we include here for
the sake of completeness:

Theorem 2.2. Assume that M(u) satisfies (I1) or (I2), limu→0+ G(u) = −∞, and
g(θ(−ξ)) > g(θ(ξ)) for ξ ∈ (0, ξ∗), where G(u), θ(ξ) and ξ∗ are defined as in Eqs.
(2.10), (2.11) and (2.12) respectively. Then system (2.7) has no closed orbit and
homoclinic orbit in the region R2

+ = {(u, v) : u ≥ 0, v ≥ 0}.

Therefore, the properties of function g(θ(ξ)) are crucial for the global dynamics
of system (1.3). Note that the monotonicity of g(u) for h = 1 and h = 2 is different.
We first consider the case that h = 1.

Theorem 2.3. Assume that β, r, θ, c > 0 and h = 1, one of assumptions (I1) and
(I2) is satisfied, and g′(u−) < 0. Then g(θ(−ξ)) > g(θ(ξ)) for ξ ∈ (0, ξ∗), where ξ∗

is defined as in Eq. (2.12).

Proof. Obviously, for ξ ∈ (0, ξ∗), 0 < θ(−ξ) < u− < θ(ξ) < u∗. If g′(0) ≤ 0, then
g(u) is strictly decreasing, and consequently, g(θ(−ξ)) > g(θ(ξ)) for ξ ∈ (0, ξ∗).

Now, we consider the case that g′(0) > 0. Then c > 1, and there exists uc := c−1
2c

such that

g′(u) > 0 for u ∈ (0, uc), g′(u) < 0 for u ∈ (uc,∞), and g′(uc) = 0. (2.13)

Since g′(u−) < 0, it follows that uc ∈ (0, u−). Let β0 = Ψ(uc), denote

H0(u) = β0 −Ψ(u),

where Ψ is defined as in Eq. (2.1), and define an auxiliary function ξ = G0(u) =∫ u
uc
|H0(u)|ds for u ∈ (0, u∗]. Clearly, G0 also has an inverse function defined by

θ0(ξ) = G−10 (ξ) with domain (−∞, G0(u∗)]. Then the proof for the case of g′(0) > 0
is divided into three steps.

Step 1. We first show that
|g′(uc + x)|
|H0(uc + x)|

is strictly decreasing for x ∈ (−uc, u∗)

and x 6= 0. Since Ψ(u) is strictly decreasing for u ∈ (0, u−), we have

β0 = Ψ(uc) > β = Ψ(u−), (2.14)

which implies that H0(uc + x) < 0 for x ∈ (−uc, 0) and H0(uc + x) > 0 for
x ∈ (0, u∗ − uc). Clearly,

H0(uc + x) = xh0(x),

where h0(x) :=

[
r

uc(uc + x)
− cθ

]
. It follows that

h0(x) > 0 for x ∈ (−uc, u∗ − uc),
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and h0(x) is strictly decreasing. Then, for x ∈ (−uc, u∗ − uc) and x 6= 0,

|g′(uc + x)|
|H0(uc + x)|

=
2c

h0(x)
,

which is strictly increasing.
Step 2. We show that, for any ξ ∈ (0, G0(u∗)), g(θ0(−ξ)) > g(θ0(ξ)).

Noticing that θ0(G0(u)) = u, we have θ′0(ξ) =
1

|H0(θ0(ξ))|
for ξ ∈ (0, G0(u∗)),

and consequently,

g(θ0(ξ)) =g(θ0(0)) +

∫ ξ

0

g′(θ0(s))

|H0(θ0(s))|
ds,

g(θ0(−ξ)) =g(θ0(0)) +

∫ −ξ
0

g′(θ0(s))

|H0(θ0(s))|
ds.

(2.15)

It follows from Eq. (2.13) that g′(θ0(s)) < 0, and g′(θ0(−s)) > 0 for s > 0. Then,
by virtue of Eq. (2.15), we have

g(θ0(−ξ))− g(θ0(ξ)) =

∫ −ξ
0

g′(θ0(s))

|H0(θ0(s))|
ds−

∫ ξ

0

g′(θ0(s))

|H0(θ0(s))|
ds

=−
∫ ξ

0

g′(θ0(−s))
|H0(θ0(−s))|

ds−
∫ ξ

0

g′(θ0(s))

|H0(θ0(s))|
ds

=−
∫ ξ

0

|g′(θ0(−s))|
|H0(θ0(−s))|

ds+

∫ ξ

0

|g′(θ0(s))|
|H0(θ0(s))|

ds

=−
∫ ξ

0

|g′(uc + (θ0(−s)− uc))|
|H0(uc + (θ0(−s)− uc))|

ds+

∫ ξ

0

|g′(uc + (θ0(s)− uc))|
|H0(uc + (θ0(s)− uc))|

ds.

(2.16)

It follows from the results in Step 1 that g(θ0(−ξ)) > g(θ0(ξ)) for any ξ ∈
(0, G0(u∗)).

Step 3. Finally, we show that g(θ(−ξ)) > g(θ(ξ)) for ξ ∈ (0, ξ∗). Noticing that
θ(−ξ) < u− < θ(ξ), g(u) is strictly decreasing for u ≥ uc and u− > uc, we have
g(θ(−ξ)) > g(θ(ξ)) if θ(−ξ) ≥ uc. Then we consider the case that θ(−ξ) < uc, and
consequently, there exists ξ1 > 0 such that

− ξ1 =

∫ θ(−ξ)

uc

|H0(s)|ds =

∫ θ(−ξ)

uc

|β0 −Ψ(s)|ds, (2.17)

which yields
θ0(−ξ1) = θ(−ξ). (2.18)

Since β0 > β from Eq. (2.14) and β0 < Ψ(s) for s ∈ (0, uc), we have

−ξ1 =

∫ uc

θ(−ξ)
[β0 −Ψ(s)]ds ≥

∫ uc

θ(−ξ)
[β −Ψ(s)]ds

=

∫ u−

θ(−ξ)
[β −Ψ(s)]ds+

∫ uc

u−

[β −Ψ(s)]ds.

(2.19)

Noticing that Ψ(u) > β for u ∈ (0, u−) and uc < u−, we have
∫ uc

u−
[β −Ψ(s)]ds > 0.

This, combined with Eq. (2.19), yields

−ξ1 > −
∫ θ(−ξ)

u−

[β −Ψ(s)]ds =

∫ θ(−ξ)

u−

|β −Ψ(s)|ds = −ξ,
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and consequently ξ1 < ξ < ξ∗. Noting that

G0(u∗) =

∫ u∗

uc

|β0 −Ψ(s)|ds ≥
∫ u∗

u−

|β −Ψ(s)|ds = G(u∗) = ξ∗,

we deduce that ξ1 is in the domain of θ0(ξ). Therefore,∫ θ0(ξ1)

uc

|β0 −Ψ(s)|ds = ξ1 < ξ =

∫ θ(ξ)

u−

|β −Ψ(s)|ds ≤
∫ θ(ξ)

uc

|β −Ψ(s)|ds,

which implies that uc < θ0(ξ1) ≤ θ(ξ). It follows that

g(θ(−ξ)) = g(θ0(−ξ1)) > g(θ0(ξ1)) ≥ g(θ(ξ)).

This completes the proof.
Then, by virtue of Theorems 2.2, 2.3 and the Poincaré-Bendixson theorem, we

have the following results on the global dynamics of model (1.3) for h = 1.

Theorem 2.4. Assume that β, r, θ, c > 0 and h = 1. Then

1. if (u−, v−) is the unique positive equilibrium of system (1.3) and g′(u−) < 0,
then for any positive initial value (u0, v0), the corresponding solution of system
(1.3) converges to (u−, v−).

2. if system (1.3) has two positive equilibria (u−, v−) and (u+, v+), (u− < u+)
and g′(u−) < 0, then (u+, v+) is a saddle point, and the stable manifold of
(u+, v+) divides the first quadrant of u− v plane into two subregions Ω1 and
Ω2. The solutions with initial value in Ω1 converge to (u−, v−), and that with
initial value in Ω2 converge to (1, 0) as t→∞.

From Theorem 2.4, we see that for h = 1, the local stability of (u−, v−) implies
global stability if there exists a unique positive equilibrium (u−, v−). If there exist
multiple positive equilibria, the local stability of (u−, v−) implies that the model
occurs bistable phenomenon. For Holling type II predator functional response, toxin
effect can induce bistable phenomenon.

Now we consider the case of h = 2. Since the monotonicity of g(u) is different,
the above mentioned results hold for Holling type III predator functional response
under certain conditions.

Theorem 2.5. Assume that β, r, θ, c > 0, h = 2, one of assumptions (I1) and (I2)
holds, and g(u) satisfies (a1) or satisfies (a2) but u− ∈ (0, u1) ∪ (u2, 1), where u2
and u1 are defined as in Eqs. (2.8) and (2.9) respectively. Then g(θ(−ξ)) > g(θ(ξ))
for ξ ∈ (0, ξ∗), where ξ∗ is defined as in Eq. (2.12).

Proof. Obviously, for ξ ∈ (0, ξ∗), 0 < θ(−ξ) < u− < θ(ξ) < u∗. If g(u) satisfies
(a1), then g(θ(−ξ)) > g(θ(ξ)) for ξ ∈ (0, ξ∗).

Now, we consider the case that g(u) satisfies (a2). That is, there exist u1, u2 ∈
(0, 1) such that g′(u1) = g′(u2) = 0, g′(u) < 0 for u ∈ (0, u1)∪(u2,∞), and g′(u) > 0
for u ∈ (u1, u2). Clearly, if u− ∈ (0, u1), then g(θ(−ξ)) > g(θ(ξ)). Then we consider
the case that u− ∈ ∪(u2, 1). Let β2 = Ψ(u2), denote

H2(u) = β2 −Ψ(u),
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where Ψ is defined as in Eq. (2.1), and define a auxiliary function ξ = G2(u) =∫ u
u2
|H2(u)|ds for u ∈ (0, u∗]. Clearly, G2 also has a inverse function defined by

θ2(ξ) = G−12 (ξ) with domain (−∞, G2(u∗)].

Step 1. We first show that
|g′(u2 + x)|
|H2(u2 + x)|

is strictly decreasing for x ∈ (u1 −

u2, u
∗) and x 6= 0. This is different from the case of h = 1, and we have no needs to

show the monotonicity of the function for u ∈ (−u2, u1 − u2). Since u− > u2 and
Ψ(u) is strictly decreasing for u ∈ (0, u−), we have

β2 = Ψ(u2) > β = Ψ(u−), (2.20)

which implies that H2(u2 + x) < 0 for x ∈ (−u2, 0), and H2(u2 + x) > 0 for
x ∈ (0, u∗ − u2). Clearly, for x ∈ (0, u∗ − u2) and x 6= 0,

H2(u2 + x) = xh2(x),

where h2(x) :=
Ψ(u2)−Ψ(u2 + x)

x
, and

h2(x) > 0 for x ∈ (−u2, u∗ − u2) and x 6= 0.

A direct computation yields

Ψ′′(u) =
6r

u4
+

2θ

u3
> 0 for u > 0. (2.21)

Then it follows from the Taylor formula that there exists x̂ > 0 such that

h′2(x) =
−Ψ′(u2 + x)x−Ψ(u2) + Ψ(u2 + x)

x2
= −Ψ′′(x̂)

2
< 0, (2.22)

which implies that h2(x) is strictly decreasing. Denote

g2(x) = −g
′(u2 + x)

x
for x ∈ (0, u∗ − u2) and x 6= 0.

Since g′(u2 + x) < 0 for x > 0, and g′(u2 + x) > 0 for x ∈ (u1 − u2, 0), we obtain
that g2(x) > 0 for x ∈ (u1−u2, u∗−u2) and x 6= 0. Similarly, an easy computation
implies that

g′′′(u) = − 6

u4
< 0.

and, by virtue of the Taylor formula, we see that there exists x̃ > 0 such that

g′2(x) =
−g′′(u2 + x)x+ g′(u2 + x)

x2
=
−g′′′(x̃)

2
> 0, (2.23)

which implies that g2(x) is strictly increasing. Then, for x ∈ (u1−u2, u∗) and x 6= 0,

|g′(u2 + x)|
|H2(u2 + x)|

=
g2(x)

h2(x)
,

which is strictly increasing.
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Step 2. We show that, for any ξ ∈ (0, G2(u∗)), g(θ2(−ξ)) > g(θ2(ξ)).

Noticing that θ2(G2(u)) = u, we have θ′2(ξ) =
1

|H2(θ2(ξ))|
for ξ ∈ (0, G2(u∗)),

and consequently,

g(θ2(ξ)) =g(θ2(0)) +

∫ ξ

0

g′(θ2(s))

|H2(θ2(s))|
ds,

g(θ2(−ξ)) =g(θ2(0)) +

∫ −ξ
0

g′(θ2(s))

|H2(θ2(s))|
ds.

(2.24)

It follows from Eq. (2.8) that g′(θ2(s)) < 0, and g′(θ2(−s)) > 0 for θ2(−s) ∈
(u1, u2), and g′(θ2(−s)) < 0 for θ2(−s) ∈ (0, u1). Then, by virtue of Eq. (2.24), we
have

g(θ2(−ξ))− g(θ2(ξ)) =

∫ −ξ
0

g′(θ2(s))

|H2(θ2(s))|
ds−

∫ ξ

0

g′(θ2(s))

|H2(θ2(s))|
ds

=−
∫ ξ

0

g′(θ2(−s))
|H2(θ2(−s))|

ds+

∫ ξ

0

|g′(θ2(s))|
|H2(θ2(s))|

ds

=−
∫ ξ

0

g′(u2 + (θ2(−s)− u2))

|H2(u2 + (θ2(−s)− u2))|
ds+

∫ ξ

0

|g′(u2 + (θ2(s)− u2))|
|H2(u2 + (θ2(s)− u2))|

ds.

(2.25)

It follows from the results in Step 1 that, for θ2(−s) ∈ (u1, u2),

g′(u2 + (θ2(−s)− u2))

|H2(u2 + (θ2(−s)− u2))|
=
|g′(u2 + (θ2(−s)− u2))|
|H2(u2 + (θ2(−s)− u2))|

<
|g′(u2 + (θ2(s)− u2))|
|H2(u2 + (θ2(s)− u2))|

.

Noticing that g′(θ0(−s)) < 0 for θ2(−s) ∈ (0, u1), we have

g′(u2 + (θ2(−s)− u2))

|H2(u2 + (θ2(−s)− u2))|
<
|g′(u2 + (θ2(s)− u2))|
|H2(u2 + (θ2(s)− u2))|

for θ2(−s) ∈ (0, u1). Therefore, g(θ2(−ξ)) > g(θ2(ξ)) for any ξ ∈ (0, G2(u∗)).
Step 3. Finally, we show that g(θ(−ξ)) > g(θ(ξ)) for ξ ∈ (0, ξ∗). By the

arguments similar to Step 3 of Theorem 2.3, and replacing uc, H0, β0 with u2, H2,
β2, we can easily obtain this result, and here we omit the proof.

Then, by virtue of Theorems 2.2, 2.5 and the Poincaré-Bendixson theorem, we
have the following results on the global dynamics of model (1.3) for h = 2.

Theorem 2.6. Assume that β, r, c, θ > 0, and h = 2. Then

1. if (u−, v−) is the unique positive equilibrium of system (1.3), and g(u) satisfies
(a1) or satisfies (a2) but u− > u2, then for any positive initial value (u0, v0),
the corresponding solution of system (1.3) converges to (u−, v−).

2. if system (1.3) has two positive equilibria (u−, v−) and (u+, v+), (u− < u+),
and g(u) satisfies (a1) or satisfies (a2) but u− ∈ (0, u1)∪(u2, 1), then (u+, v+)
is a saddle point, and the stable manifold of (u+, v+) divides the first quadrant
of u− v plane into two subregions Ω1 and Ω2. The solutions with initial value
in Ω1 converge to (u−, v−), and that with initial value in Ω2 converge to (1, 0)
as t→∞.

We remark here for the case that h = 2 and g(u) satisfies (a2), (u−, v−) is locally
stable when u− ∈ (0, u1) ∪ (u2, 1) and unstable when u ∈ (u1, u2). Theorem 2.4
shows that local stability of (u−, v−) implies global or bistable phenomenons for
u− ∈ (0, u1) ∪ (u2, 1).
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3. Numerical simulations and applications

In this subsection, we give some remarks on model (1.3). Firstly, we point out that
if θ = 0, then model has only one positive equilibrium. However, if θ 6= 0, there
may exist two positive equilibria, and bistable phenomenon can occur. Therefore,
toxin effect can induce bistable phenomenon. Then, we remark that the dynamics
of system (1.3) is complex if g′(u−) > 0. We remark that the dynamics of system
(1.3) is complex if g′(u−) > 0. In this case, the ω limit set of a positive solution
of system (1.3) can be equilibrium (1, 0), a period orbit, or a homoclinic orbit, and
there may exist periodic orbits or homoclinic orbits for system (1.3). For example,
by virtue of Poincaré-Bendixson theorem, we have the following result when there
exists a unique positive equilibrium.

Proposition 3.1. Assume that (u−, v−) is the unique positive equilibrium of system
(1.3) and g′(u−) > 0. Then (u−, v−) is unstable, and system (1.3) has at least one
periodic orbit.

Bifurcations such as Hopf bifurcation and homoclinic bifurcation all await future
investigation. Finally, we give some numerical simulations to show the stable and
bistable phenomenons for model (1.3). Let

h = 1, r = 2, θ = 2, c = 2,

and β be the variable parameter. By virtue of Theorems 2.1, 2.4 and Proposition
3.1, we have the following results, (see also Fig. 1).

(a) If β ∈ (0, 11.6569), then for any positive initial value (u0, v0), the
corresponding solution of system (1.3) converges to (1, 0).

(b) If β ∈ (11.6569, 12), then there exists bistable phenomenon. The stable
manifold of (u+, v+) divides the first quadrant of u − v plane into two
subregions Ω1 and Ω2. The solutions with initial value in Ω1 converge to
(u−, v−), and that with initial value in Ω2 converge to (1, 0) as t→∞.

(c) If β ∈ (12, 15), then for any positive initial value (u0, v0), the corresponding
solution of system (1.3) converges to (u−, v−).

(d) If β ∈ (15,∞), then (u−, v−) is unstable, and system (1.3) has at least one
periodic orbit.

Finally, we show some applications of the obtained results. We revisit the
following toxic phytoplankton-zooplankton model with delay:

dP

dt
= bP

(
1− P

k

)
− αPZ

1 + cP
, t > 0,

dZ

dt
=

βPZ

1 + cP
− rZ − θP (t− τ)Z, t > 0,

P (0) = P0 ≥ 0, Z(0) = Z0 ≥ 0.

(3.1)

In [23], Wang et al. showed that under certain conditions, there exist two sequences
{τ+j }∞j=0 and {τ−j }∞j=0 such that model (3.1) occurs Hopf bifurcation when τ = τ+j
or τ = τ−j . Our results in this paper imply that there exist no periodic solutions
for system (1.3) when (u−, v−) is locally asymptotically stable, which implies that
system (3.1) has no periodic solutions with period τ under the above condition.



Dynamics of two phytoplankton-zooplankton models 807

Then we can improve the local Hopf bifurcation results in [23] and obtain the
global bifurcation results for Hopf bifurcation points {τ+j }∞j=1 and {τ−j }∞j=1. Here
we omit the details.
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Figure 1. Phase portraits for system (1.3). (Upper left) Here β = 9, and (1, 0) is globally attractive;
(Upper right) Here β = 11.7, and bistable phenomenon occurs; (Lower left) Here β = 13, and (u−, v−)
is globally attractive; (Lower right) Here β = 17, and there exists a periodic orbit.
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