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INPUT-TO-STATE STABILITY OF IMPULSIVE
SYSTEMS WITH HYBRID DELAYED

IMPULSE EFFECTS∗
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Abstract The goal of this paper is to study properties of input-to-state sta-
bility (ISS) and integral input-to-state stability (iISS) of impulsive systems
with hybrid delayed impulses, and a set of Lyapunov-based sufficient condi-
tions ensuring ISS/iISS properties are obtained. Those conditions reveal the
effects of hybrid delayed impulses on ISS/iISS and establish the relationship
between impulsive frequency and the time delay existing in hybrid impulses.
When the continuous dynamics of the system are stabilizing, the ISS proper-
ty can be retained under the impulse scheme even if there exist destabilizing
impulses. Conversely, when the impulse dynamics are stabilizing, but the con-
tinuous dynamics are not, the ISS property can be obtained if the interval
between impulses are not overly long. Two illustrative examples are presented,
with their numerical simulations, to demonstrate the effectiveness of the main
results.

Keywords Impulsive systems, hybrid delayed impulses, input-to-state sta-
bility (ISS), integral input-to-state stability (iISS), Lyapunov method.
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1. Introduction

The concept of ISS introduced by Sontag in [36] has been proved useful in char-
acterizing the effects of external inputs. Originally introduced for continuous-time
systems, they were also studied for a variety of systems such as discrete-time sys-
tems, hybrid systems and switched systems; see [1,15–17,22,27]. Roughly speaking,
the ISS property means that no matter what the size of the initial state is, the state
will eventually approach a neighborhood of the origin whose size is proportional to
the magnitude of the input. Some interesting results explored ISS/iISS properties
have been introduced in recent years. For example, in [32], the authors presented
a new Lyapunov method for ISS/iISS of impulsive systems and the approach was
proposed on the basis of an indefinite Lyapunov function rather than a negative
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definite one; In [4], sufficient conditions which ensuring ISS and iISS properties
for non-autonomous time-delay systems were derived by using locally Lipschitz con-
tinuous exponential ISS Lyapunov(-Razumikhin) functions; In [33], the problem of
the input to state stability (ISS) for nonlinear systems with time-delay was in-
vestigated, and a continuously differentiable Lyapunov-Krasovskii functional with
indefinite derivative was introduced to derive the ISS of the systems, which gener-
alizes the classic Lyapunov-Krasovskii functional with positive definite derivative;
The ISS properties were studied in [16] for impulsive switched systems, where both
types of impulses, stabilizing impulses and destabilizing impulses are considered.

Impulsive systems describe processes that combine continuous and discontin-
uous behavior [9, 32, 37]. The continuous behavior is typically described by dif-
ferential equations, and the discontinuous behavior is instantaneous state jumps
that occur at given time instants, also referred to as impulses. In recent years,
impulsive control has received much attention because it is discontinuous and has
a simple structure, and only discrete control is needed to obtain the desired per-
formance; see [6, 18, 19, 38, 41]. Impulsive systems are closely related to hybrid
systems [5, 23, 24, 27] and switched systems [11, 20, 25, 26, 34, 43], and a variety of
applications can be found in logistics, robotics, population dynamics, etc. Espe-
cially, due to the facts that impulsive systems with external inputs arise naturally
from a number of applications such as in control systems with communication con-
straints, control algorithms of uncertain systems and network control systems with
scheduling protocol, it is important to guarantee the impulsive system to be ISS
and iISS when it is affected by some external inputs. Hence, it is of great practi-
cal significance to investigate the ISS/iISS properties of impulsive systems and it
has become one of the hot issues in control theory; see [2, 3, 6, 28, 35]. It is worth
mentioning that the concepts of ISS/iISS of impulsive systems were proposed
in [7,8,12,13,40]. They developed the Lyapunov method to impulsive systems and
established some conditions for ISS/iISS properties by controlling the frequency
of impulse occurrence. Two constants that are called rate coefficients were used to
characterize the behaviours of ISS-Lyapunov function along the trajectories of im-
pulsive system during continuous flows (constant c) and impulsive jumps (constant
d). The positive values of rate coefficients correspond to the case of positive impact
of flows/jumps onto ISS property, and vice versa, if c (or d) is negative, then it
means that the corresponding flows (or jumps) play against stability.

With the development of impulsive control theory, increasing attention has been
paid to the study of dynamics and controller design of impulsive systems in which
the impulses involve time delays which are sometimes called delayed impulses,
see [21, 30, 39, 42, 44]. Such kind of impulses describe a phenomenon where im-
pulsive transients depend on not only their current but also historical states of the
system. For example, [44] studied the input-to-state stability (ISS) and integral
input-to-state stability (iISS) of nonlinear systems with delayed impulses and ob-
tained some sufficient conditions ensuring ISS/iISS of the addressed systems by
using Lyapunov method and the technique proposed in [12]; [19] considered non-
linear differential systems with state-dependent delayed impulses, and established
general and applicable results for uniform stability, uniform asymptotic stability,
and exponential stability of the systems by using the impulsive control theory and
some comparison arguments; [10] concerned with the problem of exponential sta-
bility for a class of impulsive switched nonlinear time-delay systems with delayed
impulse effects. The derived results not only characterise the effects of delayed
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impulse, time delay and switching on nonlinear systems, but also removed some
restriction conditions.

Motivated by the above discussion, in this paper, we further study the ISS/iISS
for impulsive systems with hybrid delayed impulses. First, we mainly focus on the
case that the rate coefficient c ∈ R+ which implies that the continuous dynamics
of the system are stabilizing and dk ∈ R which implies that the hybrid impulses
(i.e., stabilizing impulses and destabilizing impulses) are fully considered. Second,
the case that the rate coefficients c < 0, dk ≡ d ∈ R+, which means that the con-
tinuous dynamics of the system are destabilizing but the impulses are stabilizing,
is considered. Then, we establish the ADT condition for the second case and the
ADT condition shows that the average dwell time must not be overly long intervals
between impulses. The rest of the paper is organized as follows. In Section 2, the
problem is formulated and some notations and definitions are given. In Section 3,
we present the main results. Examples are given in Section 4, and conclusion follows
in Section 5.

2. Preliminaries

Notations. Let R denote the set of real numbers, R+ the set of all nonnegative real
numbers, Z+ the set of positive integer numbers, Rn and Rn×m the n-dimensional
and n×m-dimensional real spaces equipped with the Euclidean norm |·| respectively,
and ‖ · ‖J denote the supremum norm on an interval J ∈ R. Let α ∨ β and
α ∧ β denote the maximum and minimum value of α and β, respectively. Let
K∞ = {α ∈ C(R+,R+)|α(0) = 0, α(r) is strictly increasing in r, and α(r) → ∞ as
r → ∞}, KL = {β ∈ C(R+ × R+,R+)|β(r, t) is in class K w.r.t. r for each fixed
t ≥ 0, and β(r, t) is strictly decreasing to 0 as t→∞ for each fixed r ≥ 0}.

Consider the system with delayed impulses of the form ẋ(t) = f(x(t), u(t)), t ≥ t0 ≥ 0, t 6= tk,

x(t) = g(x(t− − τ(t)), u(t− − τ(t))), t = tk, k ∈ Z+,
(2.1)

where x(t) ∈ Rn is the system state, ẋ(t) denotes the right-hand derivative of x(t),
u ∈ U , U denotes the set of measurable locally bounded functions in Rm. τ(t) is
time-varying delay with 0 ≤ τ(t) ≤ l, l is a constant. f and g :Rn × Rm → Rn
are continuous and f(0, 0) = g(0, 0) ≡ 0, t ≥ t0. To prevent the occurrence of
accumulation points, such as Zeno phenomenon [31], we always assume that the
impulse time sequence {tk, k ∈ Z+} satisfies 0 ≤ t0 < t1 < · · · < tk → ∞ as
k → ∞ (t1 is the first impulse time). Let Fτ denote the set of all impulsive time
sequences satisfying tk − tk−1 ≥ τk, k ∈ Z+, where τk = τ(tk). All signals in this
paper (including the state x and the input u) are assumed to be right-continuous
and to have left limits at all times. Given a sequence {tk, k ∈ Z+} and a pair of
time (t, s) satisfying t > s > t0, let N(t, s) denote the number of impulse times in
the semi-open interval [s, t). Note that the continuity of f and g and a fact that
system (2.1) is an ODE which is continuous on each interval [tn−1, tn). We assume
the vector field f satisfies suitable conditions so the solutions exist in relevant time
intervals. These conditions can be formulated using standard conditions such as
conditions (H1) − (H3) in [29]. Denote by x(t)

.
= x(t, t0, x0) the solution of the

system (2.1).
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Definition 2.1 ( [14]). For the prescribed sequence {tk, k ∈ Z+}, the system (2.1)
is said to be input-to-state stable (ISS) if there exist functions β ∈ KL and γ ∈ K∞
such that for every initial condition (t0, x0) and input u ∈ U , the corresponding
solution of (2.1) satisfies

|x(t)| ≤ β(|x0|, t− t0) + γ(‖u‖[t0,t]), t ≥ t0.

It is said to be uniform ISS over a given class H of admissible sequence of impulse
times if the ISS property expressed by the above inequality holds for every sequence
in H, with functions β and γ that are independent of the choice of the sequence.

Definition 2.2 ( [14]). For the prescribed sequence {tk, k ∈ Z+}, the system (2.1)
is said to be integral-input-to-state stable (iISS) if there exist functions β ∈ KL
and α, γ ∈ K∞ such that for every initial condition (t0, x0) and input u ∈ U , the
corresponding solution of (2.1) satisfies

α
(
|x(t)|

)
≤ β

(
|x0|, t− t0

)
+

∫ t

t0

γ
(
|u(s)|

)
ds+

∑
k∈N(t,t0)

γ
(
|u(tk

− − τk)|
)
, t ≥ t0.

The notion of uniform iISS over a given class S of impulse time sequence is defined
in the same way as for ISS.

Definition 2.3 ( [8]). A function V : Rn → R+ is said to be an exponential ISS-
Lyapunov function for (2.1) with rate coefficients c, dk ∈ R if V is locally Lipschitz,
positive definite, radially unbounded, and satisfies

∇V (x) · f(x, u) ≤ −cV (x) + X (|u|),∀x a.e., ∀u, (2.2)

V (gk(x, u)) ≤ exp(−dk)V (x) + X (|u|),∀x, u,∀k ∈ Z+ (2.3)

for some X ∈ K∞.

3. Main results

In this section, we shall present some sufficient conditions for ISS/iISS of system
(2.1) according to the different ranges of coefficients c and dk. The idea is inspired
by the works of Dashkovskiy et al in [7, 8]. Firstly, we consider the case that the
rate coefficients c ∈ R+, dk ∈ R.

Theorem 3.1 (Uniformly ISS). Let V be an exponential ISS-Lyapunov function of
system (2.1) with rate coefficients c ∈ R+ and dk ∈ R. If there exists a constant
M ≥ 0 such that

N(t,t0)∑
k=1

(
− dk + cτk

)
≤M, ∀t ≥ t0. (3.1)

Then system (2.1) is uniformly ISS over the class Fτ .

Proof. Assume that x(t) = x(t, t0, x0) be the solution of system (2.1) with the
initial value (t0, x0), and u ∈ U be a given input function. Choose ε > 0, εk > 0
such that c > c̄ = c

1+ε ,−dk < d̄k = −dk + εk and
∑
k∈Z+

εk = m <∞. Then using
the standard argument, we have

∇V (x) · f(x, u) ≤ −c̄V (x), (3.2)
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when (−c̄+ c)V (x) ≥ X (|u|),∀x a.e., ∀u, and

V (x(tk)) ≤ exp(d̄k)V
(
x(t−k − τk)

)
, (3.3)

when
(

exp(d̄k)− exp(−dk)
)
V (x) ≥ X (|u(t−k − τk)|),∀x a.e., ∀u.

Let ť1 = inf
{
t ≥ t0 : V (x(t)) ≤ ρX (‖u‖[t0,t])

}
≤ ∞, where ρ = 1

c−c̄ ∨
1

exp(d̄k)−exp(−dk)
. It’s clear that ť1 > t0. We consider two cases: ť1 < ∞ and

ť1 =∞. If ť1 <∞, then let N(ť1, t0) = N. When N = 0, it holds that

V (x(t)) ≤ exp
(
− c̄(t− t0)

)
V0,∀t ∈ [t0, ť1),

where V0 = V (x0). When N > 0, we get V (x(t)) ≤ exp
(
− c̄(t− t0)

)
V0,∀t ∈ [t0, t1).

In view of (3.3) , it gives

V (x(t1)) ≤ exp(d̄1)V
(
x(t1 − τ1)

)
= exp

(
d̄1

) exp
(
− c̄(t1 − τ1 − t0)

)
V0, t0 ≤ t1 − τ1 < t1

V0, t1 − τ1 < t0

≤ exp
(
d̄1 + c̄τ1 − c̄(t1 − t0)

)
V0.

Then it directly follows that

V (x(t)) ≤ exp
(
d̄1 + c̄τ1 − c̄(t− t0)

)
V0,∀t ∈ [t1, t2 ∧ ť1).

If t2 > ť1, then

V (x(t)) ≤ exp
(
d̄1 + c̄τ1 − c̄(t− t0)

)
V0,∀t ∈ [t1, ť1).

Or else, then

V (x(t)) ≤ exp
(
d̄1 + c̄τ1 − c̄(t− t0)

)
V0,∀t ∈ [t1, t2).

Thus, in view of (3.3) and the fact tk − tk−1 ≥ τk, it gives that

V (x(t2)) ≤ exp(d̄2)V
(
x(t2 − τ2)

)
= exp(d̄2)


exp

(
d̄1 + c̄τ1 − c̄(t2 − τ2 − t0)

)
V0, t1 ≤ t2 − τ2 < t2

exp
(
− c̄(t2 − τ2 − t0)

)
V0, t0 ≤ t2 − τ2 < t1

V0, t2 − τ2 < t0

≤ exp
(
d̄1 + d̄2 + c̄τ1 + c̄τ2 − c̄(t2 − t0)

)
V0,

which implies that

V (x(t)) ≤ exp
(
d̄1 + d̄2 + c̄τ1 + c̄τ2 − c̄(t− t0)

)
V0, ∀t ∈ [t2, t3 ∧ ť1).

Repeating the similar argument, we conclude that

V (x(t)) ≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0)
)
V0,∀t ∈ [t0, ť1),
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where d̄0 := −c̄τ0.
If ť1 =∞, then similar to the argument of the case that ť1 <∞, one may derive

that

V (x(t)) ≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0)
)
V0,∀t ∈ [t0,∞).

In either case, one can easily obtain that

V (x(t)) ≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0)
)
V0,∀t ∈ [t0, ť1). (3.4)

Furthermore, let t̂1 = inf
{
t > ť1 : V (x(t)) ≥ ρX (‖u‖[t0,t])

}
≤ ∞. If t̂1 =∞, then it

is easy to see that

V (x(t)) ≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0)
)
V0 + ρX (‖u‖[t0,t]),∀t ∈ [t0,∞).

Now we consider the case that t̂1 < ∞, which indicates that t̂1 must be impulse
time. It follows from (2.3) that

V (x(t̂1)) ≤ exp(−dσ(t̂1))V
(
x(t̂1 − τσ(t̂1))

)
+ X (‖u‖[t0,t̂1]), (3.5)

where σ(t̂i) :=
{
m ∈ Z+ : t̂i = tm

}
and

V
(
x(t̂1 − τσ(t̂1))

)

≤


ρX (‖u‖[t0,t̂1−τσ(t̂1)]

), ť1 ≤ t̂1 − τσ(t̂1) < t̂1

exp
(∑N(t̂1−τσ(t̂1),t0)

k=1 (d̄k + c̄τk)− c̄(t̂1 − τσ(t̂1) − t0)
)
V0, t0 ≤ t̂1 − τσ(t̂1) < ť1

V0, t̂1 − τσ(t̂1) < t0

≤ exp
(N(t̂1−τσ(t̂1),t0)∑

k=0

(d̄k + c̄τk)− c̄(t̂1 − τσ(t̂1) − t0)
)
V0 + ρX (‖u‖[t0,t̂1−τσ(t̂1)]

).

Combining with (3.5), it can be deduced that

V (x(t̂1)) ≤ exp
(N(t̂1,t0)∑

k=0

(d̄k + c̄τk)− c̄(t̂1 − t0)
)
V0 + exp(d̄σ(t̂1))ρX (‖u‖[t0,t̂1]).

Therefore, in view of (3.4), for all t ∈ [t̂1, ť2), we have

V (x(t)) ≤ exp
( N(t,t0)∑
k=N(t̂1,t0)

(d̄k + c̄τk)− c̄(t− t̂1)
)
V (x(t̂1))

≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0
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+ exp
( N(t,t0)∑
k=N(t̂1,t0)

(d̄k + c̄τk)− c̄(t− t̂1) + d̄σ(t̂1)

)
ρX (‖u‖[t0,t̂1])

≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0

+ exp
( N(t,t0)∑
k=N(t̂1,t0)

(d̄k + c̄τk)− c̄(t− t̂1) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
ρX (‖u‖[t0,t]).

Repeating the similar argument as (3.5), it holds that

V (x(t̂2)) ≤ exp(−dσ(t̂2))V
(
x(t̂2 − τσ(t̂2))

)
+ X (‖u‖[t0,t̂2]),

where

V
(
x(t̂2 − τσ(t̂2))

)

≤



ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), ť2 ≤ t̂2 − τσ(t̂2) < t̂2,

exp
(∑N(t̂2−τσ(t̂2),t0)

k=0 (d̄k + c̄τk)− c̄(t̂2 − τσ(t̂2) − t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0

+ exp
(∑N(t̂2−τσ(t̂2),t0)

k=N(t̂1,t0)
(d̄k + c̄τk) + c̄τσ(t̂2)

+ (d̄σ(t̂1) + c̄τσ(t̂1))
)
ρX (‖u‖[t0,t̂2−τσ(t̂2)]

), t̂1 ≤ t̂2 − τσ(t̂2) < ť2,

ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), ť1 ≤ t̂2 − τσ(t̂2) < t̂1,

exp
(∑N(t̂2−τσ(t̂2),t0)

k=0 (d̄k + c̄τk)− c̄(t̂2 − τσ(t̂2) − t0)
)
V0, t0≤ t̂2−τσ(t̂2)<ť1,

V0, t̂2 − τσ(t̂2) < t0.

Let M11 =
(∑N(t̂2−τσ(t̂2),t0)

k=N(t̂1,t0)
(d̄k + c̄τk)

)
∨ 0, then it follows that

V
(
x(t̂2 − τσ(t̂2))

)

≤



ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), ť2 ≤ t̂2 − τσ(t̂2) < t̂2,

exp
(∑N(t̂2−τσ(t̂2),t0)

k=0 (d̄k + c̄τk)− c̄(t̂2 − τσ(t̂2) − t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0

+ exp
(
M11 + c̄τσ(t̂2)

+ (d̄σ(t̂1) + c̄τσ(t̂1))
)
ρX (‖u‖[t0, t̂2−τσ(t̂2)]

), t̂1 ≤ t̂2 − τσ(t̂2) < ť2,

ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), ť1 ≤ t̂2 − τσ(t̂2) < t̂1,

exp
(∑N(t̂2−τσ(t̂2),t0)

k=0 (d̄k + c̄τk)− c̄(t̂2 − τσ(t̂2) − t0)
)
V0, t0≤ t̂2−τσ(t̂2)<ť1,

V0, t̂2 − τσ(t̂2) < t0,

≤ exp
(N(t̂2−τσ(t̂2),t0)∑

k=0

(d̄k + c̄τk)− c̄(t̂2 − τσ(t̂2) − t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0

+ exp
(
M11 + c̄τσ(t̂2) + (d̄σ(t̂1) + c̄τσ(t̂1))

)
ρX
(
‖u‖[t0,t̂2−τσ(t̂2)]

)
,
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which implies that

V
(
x(t̂2)

)
≤ exp

(N(t̂2,t0)∑
k=0

(d̄k + c̄τk)− c̄(t̂2 − t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0

+ exp
(
M11 + (d̄σ(t̂2) + c̄τσ(t̂2)) + (d̄σ(t̂1) + τσ(t̂1))

)
ρX (‖u‖[t0,t̂2])

≤ exp
(N(t̂2,t0)∑

k=0

(d̄k + c̄τk)− c̄(t̂2 − t0) + (d̄σ(t̂1) + c̄τσ(t̂1))
)
V0

+ exp
(
M12 + (d̄σ(t̂1) + τσ(t̂1))

)
ρX (‖u‖[t0,t̂2]),

where M12 =
(
d̄σ(t̂2) + c̄τσ(t̂2)

)
∨
(∑N(t̂2,t0)

k=N(t̂1,t0)
(d̄k + c̄τk)

)
. Then, for all t ∈ [t̂2, ť3),

it follows that

V (x(t))

≤ exp
( N(t,t0)∑
k=N(t̂2,t0)

(d̄k + c̄τk)− c̄(t− t̂2)
)
V (x(t̂2))

≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0) + (d̄σ(t̂1) + c̄τσ(t̂1)) + (d̄σ(t̂2) + c̄τσ(t̂2))
)
V0

+ exp
( N(t,t0)∑
k=N(t̂2,t0)

(d̄k + c̄τk) +M12 − c̄(t− t̂2) + (d̄σ(t̂1) + τσ(t̂1))
)
ρX (‖u‖[t0,t])

≤ exp
(N(t,t0)∑

k=0

(d̄k + c̄τk)− c̄(t− t0) + (d̄σ(t̂1) + c̄τσ(t̂1)) + (d̄σ(t̂2) + c̄τσ(t̂2))
)
V0

+ exp
(
M13 − c̄(t− t̂2) + (d̄σ(t̂1) + τσ(t̂1)) + (d̄σ(t̂2) + τσ(t̂2))

)
ρX (‖u‖[t0,t]),

where M13 =
(∑N(t,t0)

k=N(t̂2,t0)
(d̄k + c̄τk))

)
∨
(∑N(t,t0)

k=N(t̂1,t0)
(d̄k + c̄τk)

)
. In the view of

(3.1), one can obtain that there exist constants T,Q <∞ such that

T ≥
N(t,t0)∑

k=N(t̂i,t0)

(d̄k + c̄τk),∀t ≥ t̂i, i = 1, 2, · · · , n,

Q ≥
∑

k=σ(t̂i)

(d̄k + c̄τk).

In this way, we finally obtain the global bound

V (x(t)) ≤ exp
(
M +m+Q− c̄(t− t0)

)
V0 + exp(T +Q)ρX (‖u‖[t0,t]),∀t ∈ [t0,∞).

(3.6)

Note that the function V is positive definite and radially unbounded, that is, it
satisfies α1(|x|) ≤ V (x) ≤ α2(|x|) for some α1, α2 ∈ K. Therefore, (3.6) implies
the uniform ISS with β(s, t) = α−1

1

(
2 exp(M + m + Q − c̄(t))α2(s)

)
and γ(s) =

α−1
1

(
2 exp(T +Q)ρX (s)

)
. The proof is completed.
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Remark 3.1. Note that, in [44], authors only considered the case that the rate
coefficients c > 0, d > 0. That is, the continuous dynamics are stabilizing and the
discrete dynamics play a positive effect to stability. In Theorem 2 of [3], all of the
discrete dynamics governing the impulses are stabilizing impulses. But our main
result of Theorem 3.1 considered the hybrid effects of both two types of impulses
on the ISS property. Thus the results in this paper have wider applications than
the results obtained in [44] and [3].

Corollary 3.1 (Uniformly iISS). Let all hypotheses of theorem 3.1 hold and define
the same class of impulse time sequences Fτ . Then the system (2.1) is uniformly
iISS over Fτ .

Proof. From Definition 2.3, it is obvious that V in (2.2) and (2.3) is upper bound-
ed by the nonnegative solution υ(t) of the system with delayed impulses υ̇(t) = −cυ(x(t)) + X (|u(t)|), t 6= tk,

υ(t) = exp(−dk)υ(t− − τ(t)) + X
(
|u(t− τ(t))|

)
, t = tk

with initial value υ0 = υ(x0). Let ν be the nonnegative solution to ν̇(t) = X (|u(t)|), t 6= tk,

ν(t) = ν(t− − τ(t)) + X
(
|u(t− τ(t))|

)
, t = tk

with initial value ν0 = 0, which implies that

ν(t) ≤
∫ t

t0

X (|u(s)|)ds+

N(t,t0)∑
k=1

X
(
|u(t−k − τ(tk))|

)
, t ≥ t0. (3.7)

Next, define y(t) := υ(t)− ν(t). Then y satisfies y0 = y(x0) and ẏ(t) = υ̇(t)− ν̇(t) = −cy(t)− cν(t), t 6= tk,

y(t) = exp(−dk)y
(
t− − τ(t)

)
−
(
1− exp(−dk)

)
ν
(
t− − τ(t)

)
, t = tk,

which leads to ẏ(t) ≤ −cy(t) + (−c+ 1)ν(t), t 6= tk,

y(t) ≤ exp(−dk)y
(
t− − τ(t)

)
+
(
1− exp(−dk)

)
ν
(
t− − τ(t)

)
, t = tk.

Arguing as in the proof of Theorem 1, with y and ν playing the roles V and X (|u|),
respectively, we obtain that the system (2.1) is iISS with respect to ν with linear
gain :y(t) ≤ β(|x0|, t − t0) + ην(t), t ≥ t0 for some function β ∈ KL and constant
η > 0. It then follows that

V (x(t)) ≤ υ(t) ≤ β(|x0|, t− t0) + (η + 1)ν(t),

which together with (3.7) yields that

V (x(t)) ≤ β(|x0|, t− t0) +

∫ t

t0

(η + 1)ν(s)ds
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+

N(t,t0)∑
k=1

(η + 1)X
(
|u(t−k − τ(tk))|

)
,∀t ∈ [t0,∞),

which implies that system (2.1) is uniformly iISS over Fτ . The proof is completed.

Next, we consider the case that the rate coefficients c < 0, dk ≡ d > 0, which
means that discrete dynamics of impulses are stabilizing but the continuous dynam-
ics of the system are not.

Theorem 3.2. (Uniformly ISS). Let V be an exponential ISS-Lyapunov function
of system (2.1) with rate coefficients c < 0, d ∈ R+. For any constants λ > 0 and
µ ∈ (0, d), let S[µ, λ] denote the class of impluse time sequence {tk} ∈ Fτ satisfying

−dN(t, s) + c

N(t,t0)∑
k=0

τk − c(t− s) ≤ µ− λ(t− s),∀t ≥ s ≥ t0,∀k ∈ Z+, (3.8)

and for arbitrary k ∈ Z+ such that µ − d + λτk < 0. Then the system (2.1) is
uniformly ISS over S[µ, λ].

Proof. Assume that x(t) = x(t, t0, x0) be the solution of system (2.1) with the
initial value (t0, x0), and u ∈ U be a given input function. Choose ε ∈ R+ and
δ ∈ (−cε,+∞) such that d > d̄ = d

1+ε , c > c̄ = c−δ
1+ε , λ̄ = λ−δ

1+ε > 0. Adding δ(t − s)
to both side of (3.8) and then dividing both side by (1 + ε), we conclude that

−d̄N(t, s) + c̄Σ
N(t,s)
k=0 τk − c̄(t− s) ≤ µ̄− λ̄(t− s), ∀t ≥ s ≥ t0,

where µ̄ = µ
1+ε . Using the similar argument as Theorem 3.1, one has

∇V (x) · f(x, u) ≤ −c̄V (x), (3.9)

when (−c̄+ c)V (x) ≥ X (|u|),∀x a.e., ∀u, and

V (x(tk)) ≤ exp(−d̄)V
(
x(t−k − τk)

)
, (3.10)

when
(

exp(−d̄)− exp(−d)
)
V (x(t−k − τk)) ≥ X (|u(t−k − τk)|),∀x a.e., ∀u.

Let ť1 = inf
{
t ≥ t0 : V (x(t)) ≤ ρX (‖u‖[t0,t])

}
≤ ∞, where ρ = 1

−c̄+c ∨
1

exp(−d̄)−exp(−d)
. It is clear that ť1 > t0. We consider two cases: ť1 < ∞ and

ť1 =∞. If ť1 <∞, then let N(ť1, t0) = N. When N = 0, it is obvious that

V (x(t)) ≤ exp
(
− c̄(t− t0)

)
V0,∀t ∈ [t0, ť1),

where V0 = V (x0). When N > 0, one has V (x(t)) ≤ exp
(
− c̄(t−t0)

)
V0,∀t ∈ [t0, t1).

In view of (3.10), it gives that

V (x(t1)) ≤ exp(−d̄)V
(
x(t1 − τ1)

)
= exp(−d̄)

 exp
(
− c̄(t1 − τ1 − t0)

)
V0, t0 ≤ t1 − τ1 < t1

V0, t1 − τ1 < t0

≤ exp
(
− d̄− c̄(t1 − τ1 − t0)

)
V0
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and V (x(t)) ≤ exp
(
− d̄+ c̄τ1 − c̄(t− t0)

)
V0,∀t ∈ [t1, t2 ∧ ť1). If t2 > ť1, then

V (x(t)) ≤ exp
(
− d̄+ c̄τ1 − c̄(t− t0)

)
V0,∀t ∈ [t1, ť1).

Or else, then

V (x(t)) ≤ exp
(
− d̄+ c̄τ1 − c̄(t− t0)

)
V0,∀t ∈ [t1, t2).

Thus, it follows from (3.10) and the fact tk − tk−1 ≥ τk that

V (x(t2)) ≤ exp(−d̄)V
(
x(t2 − τ2)

)
= exp(−d̄)


exp

(
− d̄+ c̄τ1 − c̄(t2 − τ2 − t0)

)
V0, t1 < t2 − τ2 < t2

exp
(
− c̄(t2 − τ2 − t0)

)
V0, t0 < t2 − τ2 < t1

V0, t2 − τ2 < t0

≤ exp
(
− 2d̄+ c̄τ1 + c̄τ2 − c̄(t2 − t0)

)
V0,

which implies that

V (x(t)) ≤ exp
(
− 2d̄+ c̄τ1 + c̄τ2 − c̄(t− t0)

)
V0,∀t ∈ [t2, t3 ∧ ť1).

In this way, we conclude that

V (x(t)) ≤ exp
(
− d̄N(t, t0) + c̄Σ

N(t,t0)
k=0 τk − c̄(t− t0)

)
V0,∀t ∈ [t0, ť1),

where τ0 := 0.
If ť1 =∞, then similar to the argument of the case that ť1 <∞, one may derive

that

V (x(t)) ≤ exp
(
− d̄N(t, t0) + c̄Σ

N(t,t0)
k=0 τk − c̄(t− t0)

)
V0,∀t ∈ [t0,∞).

In either case, combining with (3.8) one can easily obtain that

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t0)

)
V0,∀t ∈ [t0, ť1).

Furthermore, define t̂1 = inf
{
t > ť1 : V (x(t)) ≥ ρX (‖u‖[t0,t])

}
≤ ∞. If t̂1 = ∞,

then the following ISS estimate can be derived

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t0)

)
V0 + ρX (‖u‖[t0,t]),∀t ∈ [t0,∞).

If t̂1 < ∞, then we consider two cases that t̂1 is an impulse time and t̂1 is not an
impulse time.

When t̂1 is an impulse time, then it follows from (2.3) that

V (x(t̂1)) ≤ exp(−d)V
(
x(t̂1 − τσ(t̂1))

)
+ X (‖u‖[t0,t̂1−τσ(t̂1)]

),

where σ(t̂i) :=
{
m ∈ Z+ : t̂i = tm

}
and

V
(
x(t̂1 − τσ(t̂1))

)
≤


ρX (‖u‖[t0,t̂1−τσ(t̂1)]

), ť1 ≤ t̂1 − τσ(t̂1) < t̂1

exp
(
µ̄− λ̄(t̂1 − τσ(t̂1) − t0)

)
V0, t0 ≤ t̂1 − τσ(t̂1) < ť1

V0, t̂1 − τσ(t̂1) < t0
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≤ exp
(
µ̄− λ̄(t̂1 − τσ(t̂1) − t0)

)
V0 + ρX (‖u‖[t0,t̂1]).

Thus it is easy to see that

V (x(t̂1)) ≤ exp
(
− d+ µ̄− λ̄(t̂1 − τσ(t̂1) − t0)

)
V0 + (exp(−d)ρ+ 1)X (‖u‖[t0,t̂1])

≤ exp
(
− d̄+ µ̄− λ̄(t̂1 − τσ(t̂1) − t0)

)
V0 + exp(−d̄)ρX (‖u‖[t0,t̂1]).

When t̂1 is not an impulse time, one has

V (x(t̂1)) = ρX (‖u‖[t0,t̂1]).

Then it can be deduced that

exp
(
− d̄+ µ̄− λ̄(t̂1 − τσ(t̂1) − t0)

)
V0 + exp(−d̄)ρX (‖u‖[t0,t̂1]) ≥ ρX (‖u‖[t0,t̂1]).

In either case, one obtain

V (x(t̂1)) ≤ exp
(
− d̄+ µ̄− λ̄(t̂1 − τσ(t̂1) − t0)

)
V0 + exp(−d̄)ρX (‖u‖[t0,t̂1]),

which implies that

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t̂1)

)
V (x(t̂1))

≤ exp
(
2µ̄− d̄+ λ̄τσ(t̂1) − λ̄(t− t0)

)
V0

+ exp
(
µ̄− d̄− λ̄(t− t̂1)

)
ρX (‖u‖[t0,t]),∀t ∈ [t̂1, ť2).

It then follows from the fact µ− d+ λτk < 0 that

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t0)

)
V0 + ρX (‖u‖[t0,t]),∀t ∈ [t̂1, ť2).

Let t̂2 = inf
{
t > ť2 : V (x(t)) ≥ ρ(X (‖u‖[t0,t])

}
≤ ∞. If t̂2 = ∞, then it’s easy to

get that

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t0)

)
V0 + ρX (‖u‖[t0,t]),∀t ∈ [t0, t).

If t̂2 < ∞, then we consider two cases that t̂2 is an impulse time and t̂2 is not an
impulse time. If t̂2 is an impulse time, then it follows from (2.3) that

V (x(t̂2)) ≤ exp(−d)V
(
x(t̂2 − τσ(t̂2))

)
+ X (‖u‖[t0,t̂2−τσ(t̂2)]

),

where

V
(
x(t̂2 − τσ(t̂2))

)

≤



ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), ť2 ≤ t̂2 − τσ(t̂2) < t̂2

exp
(
µ̄− λ̄(t̂2 − τσ(t̂2) − t0)

)
V0

+ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), t̂1 ≤ t̂2 − τσ(t̂2) < ť2

ρX (‖u‖[t0,t̂2−τσ(t̂2)]
), ť1 ≤ t̂2 − τσ(t̂2) < t̂1

exp
(
µ̄− λ̄(t̂2 − τσ(t̂2) − t0)

)
V0, t0 ≤ t̂2 − τσ(t̂2) < ť1

V0, t̂2 − τσ(t̂2) < t0
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≤ exp
(
µ̄− λ̄(t̂2 − τσ(t̂2) − t0)

)
V0 + ρ(‖u‖[t0,t̂2−τσ(t̂2)]

)

and therefore

V (x(t̂2)) ≤ exp
(
µ̄− d− λ̄(t̂2 − τσ(t̂2) − t0)

)
V0 +

(
exp(−d)ρ+ 1

)
X (‖u‖[t0,t̂2])

≤ exp
(
µ̄− d̄− λ̄(t̂2 − τσ(t̂2) − t0)

)
V0 + exp(−d̄)ρX (‖u‖[t0,t̂2]). (3.11)

If t̂2 is not an impulse time, then it is obvious that

V (x(t̂2)) = ρX (‖u‖[t0,t̂2]). (3.12)

Combining (3.11) with (3.12), one obtain

V (x(t̂2)) ≤ exp
(
µ̄− d̄− λ̄(t̂2 − τσ(t̂2) − t0)

)
V0 + exp(−d̄)ρX (‖u‖[t0,t̂2]),

then

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t0)

)
V0 + ρX (‖u‖[t0,t]),∀t ∈ [t̂2, ť3).

In this way, we finally arrive at

V (x(t)) ≤ exp
(
µ̄− λ̄(t− t0)

)
V0 + ρX (‖u‖[t0,t]),∀t ∈ [t0, t). (3.13)

Note that the function V is positive definite and radially unbounded, that is, it
satisfies α1(|x|) ≤ V (x) ≤ α2(|x|) for some α1, α2 ∈ K. Therefore, (3.13) implies
the uniform ISS with β(s, t) = α−1

1

(
2 exp(µ̄−λ̄(t))α2(s)

)
and γ(s) = α−1

1

(
2ρX (s)

)
.

The proof is completed.
Let Savg[τ∗, N0] denote the class of ADT impulse time sequences which satisfy

tk − tk−1 ≥ τk and N(t, s) ≤ t−s
τ∗ + N0,∀t ≥ s ≥ t0, and let Sr−avg[τ∗, N0] denote

the class of reverse ADT impulse time sequences which satisfy tk − tk−1 ≥ τk and
N(t, s) ≥ t−s

τ∗ − N0,∀t ≥ s ≥ t0. Assume that
∑
k∈Z+

τk := P < ∞, then the
following result follows from Theorem 3.2.

Corollary 3.2 (ADT ISS). Let V be an exponential ISS-Lyapunov function for sys-
tem (2.1) with rate coefficients c < 0, d > 0, then the system (2.1) is uniformly ISS
over Sr−avg[τ∗, N0] for all τ∗ < d

|c| and N0 > 0, where τ∗ denotes the average dwell

time for impulse time sequence.

Proof. To prove above result, pick some τ∗ < d
|c| and take an arbitrary impulse

time sequence in Sr−avg[τ∗, N0], then we have that N(t, s) ≥ −(c−λ)(t−s)
d −N0,∀t ≥

s ≥ t0, for λ := c + d
τ∗ > 0, from which we conclude that (3.8) holds with µ :=

dN0 + cP. Uniformly ISS then follows from Theorem 3.1.

Remark 3.2. When c̄ > 0, d̄ < 0, condition (3.9) and (3.10) imply that the con-
tinuous dynamics are stabilizing and the discontinuous dynamics are not, see [14].
In this case, the destabilizing impulses should not occur too frequently. Conversely,
when c̄ < 0, condition (3.9) implies that the continuous dynamics are destabiliz-
ing. Nevertheless, d̄ > 0 implies that the discontinuous dynamics play a positive
impact to stability. In this case, the reverse ADT constant meets τ∗ < d

λ−c , which
indicates that the average dwell time must not be overly long intervals between
impulses. When there is no delay effect, i.e., τ(t) = 0, the ISS/iISS of system
(2.1) has been extensively studied in [12] and a set of Lyapunov-based sufficient
conditions was provided.
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Remark 3.3. In Theorem 3.1, we consider the case that the rates coefficients
c > 0 and dk ∈ R, which implies that the continuous dynamics of the system
is stabilizing and the hybrid impulses (i.e., stabilizing impulses and destabilizing
impulses) are fully considered. While in Theorem 3.2, we consider the case that the
rate coefficients c < 0, dk ≡ d > 0, which means that discrete dynamics of impulses
are stabilizing but the continuous dynamics of the system are not. However, the
case of destabilizing continuous dynamics with hybrid impulses is not addressed
in this paper due to the technical difficulty of handling destabilizing flow. More
methods and tools should be developed and explored on this issue.

Corollary 3.3. Under the same hypotheses in Theorem 3.2, system (2.1) is uni-
formly iISS over S[µ, λ].

4. Numerical examples

In this section, examples are given to show the effectiveness of our obtained results.

Example 4.1. Consider the following impulsive system with hybrid delayed im-
pulses

ẋ(t) = −sat(x(t)) + 0.7sat(u(t)), t 6= tk,

x(t) =

x(t− − τ1) + 0.5sat(u(t− − τ1)), t = t2k−1

0.1x(t− − τ2) + 0.1sat(u(t− − τ2)), t = t2k,

where k ∈ N+, τk ∈ R+, sat(s) = 1
2 (|s+ 1| − |s− 1|). Choose Lyapunov function

V (x(t)) =


x2, |x| ≤ 1,

exp(2|x| − 1), |x| > 1.

When t 6= tk, k ∈ Z+, if |x| ≤ 1, then it is easy to check that

∇V (x) · f ≤ −(2− 0.7)V (x) + 0.7sat2(u).

If |x| > 1, then ∇V (x) · f ≤ −0.6V (x). Thus (2.2) holds with X (s) = s2, c = 0.6.
When t = t2k−1, if |x+ 0.5sat(u)| ≤ 1, then we have that

V (g(x, u)) = x2 + 0.25sat2(u) + x · sat(u) ≤ exp(1 + ln 1.5)V (x) + 0.75u2.

If |x+ 0.5sat(u)| > 1, that is, |x| > 0.5, then it follows that

V (g(x, u)) = V
(
x+ 0.5sat(u)

)
≤ exp

(
2|x+ 0.5sat(u)| − 2

)
≤

1.5eV (x), 1 < |x|,

exp(2|x| − 2)e, 0.5 < |x| ≤ 1,

≤

 1.5eV (x), 1 < |x|,

1.5ex2, 0.5 < |x| ≤ 1,
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≤ exp(1 + ln 1.5)V (x).

When t = t2k, if |0.1x+ 0.1sat(u)| > 1, then it is easy to see that

V (g(x, u)) ≤ exp
(
2|0.1x+ 0.1sat(u)| − 2

)
≤ exp(−1.6)V (x).

If |0.1x+ 0.1sat(u)| ≤ 1, then we have

V (g(x, u)) ≤ exp(−1.6)V (x) + u2.

Thus in all cases, (2.3) holds with d1 = −(ln 1.5 + 1), d2 = 1.6,X (s) = s2. Let
τ1 = 0.2, τ2 = 0.1, then it is easy to check that condition (3.1) holds with M = 1.6,
which implies that the system (2.1) is uniformly ISS over Fτ . If the impulsive
time sequence t2n−1 = 2n− 1, t2n = 2n, n ∈ Z+ and x0 = 1, u = 2x are given, then
Figure 1 illustrates the state trajectory of the system (2.1).

0 10 20 30 40 50 60
t
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1

 x
(t

) 

Figure 1. Simulation results of ISS for Example 4.1.

Example 4.2. Consider the following 2D impulsive system with delayed impulses

ẋ(t) =

0.1x1 + x1x2

0.1x2 − x2
1

+

u1

u2

 , t 6= tk,

x(t) =

0.2x1(t− − τk)

0.2x2(t− − τk)

+

u1

u2

 , t = tk.

We choose Lyapunov function V (x(t)) = x2
1 + x2

2. When t 6= tk, then it is easy to
see that

∇V (x) · f = 2x1ẋ1 + 2x2ẋ2

= 0.2x2
1 + 2x1u1 + 0.2x2

2 + 2x2u2

≤ 1.2V (x) + (u2
1 + u2

2).

When t = tk, then it follows that

V (g(x)) = 0.04x2
1 + 0.04x2

2 + u2
1 + u2

1 + 0.4x1u1 + 0.4x2u2

≤ 0.24V (x) + 1.2u2
1 + 1.2u2

2

= exp(ln 0.24)V (x) + 1.2u2
1 + 1.2u2

2.

Thus, it is obvious that (2.2) and (2.3) hold with X (s) = 1.2(s2
1 + s2

2), c = −1.2,
and d = − ln 0.24. In particular, let µ = λ = 0.5, τ3n−2 = 0.2, τ3n−1 = 0.3, τ3n =
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0.5, n ∈ Z+ and x1(0) = 2, x2(0) = 1, u1 = cos(x1), u2 = sin(x2) and the impulsive
time sequence t3n−2 = 2n − 1.5, t3n−1 = 2n − 1, t3n = 2n, n ∈ Z+ are given, then
it is easy to check that condition (3.8) is satisfied. According to Theorem 3.2, the
system (2.1) is ISS over S[µ, λ]. Then the Figure 2 is given to illustrate the 2-norm
of the state trajectory of the system (2.1).
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Figure 2. Simulation results of ISS for Example 4.2.

5. Conclusion

Utilizing the concept of exponential ISS-Lyapunov function we have presented a
series of theorems which provide sufficient conditions for ISS/iISS of impulsive
systems with hybrid delayed impulses. When the continuous behaviors is stabiliz-
ing, the delayed impulses may destroy the ISS property, thus the rate coefficients
should be restrained to ensure the ISS property. We have also shown that even
the continuous behaviors is destabilizing, the designed ADT scheme coupled with
stabilizing impulses with delay is sufficient to stabilize the system in ISS sense.
Those conditions established the relationship between impulsive frequency and the
time delay existing in hybrid impulses, and showed the effect of hybrid delayed
impulses on ISS/iISS. Our results developed a procedure for ISS/iISS analysis
of impulsive systems with different impulsive time sequences. Examples have been
given to illustrate the efficiency of the obtained results. However, it is worth men-
tioning that our results only apply to the systems with delayed impulses in which
the interval lengths between two consecutive impulsive times are greater than time
delays in impulses. In other words, the time delays in impulses only occur between
two consecutive impulsive times. Thus investigating other possible cases is a topic
for future research. Another topic is the development of ISS conditions for impul-
sive switched systems with delayed impulses in which state-dependent impulse and
switching are fully involved.
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