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POSITIVE SOLUTION FOR NONLINEAR
THIRD-ORDER MULTI-POINT BOUNDARY

VALUE PROBLEM AT RESONANCE
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Abstract In this paper, positive solutions for a kind of third-order multi-
point boundary value problem at resonance are investigated. By using the
Leggett-Williams norm-type theorem due to O’Regan and Zima, existence
result of at least one positive solution is established. An example is given to
demonstrate the main results.
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1. Introduction
This paper is motivated by the existence of positive solution for the third-order
m-point boundary value problem

x′′′(t) + f(t, x(t)) = 0, t ∈ [0, 1]

x′′(0) = 0, x′(0) = x′(1), x(0) =

m−2∑
i=1

βix(ξi),
(1.1)

where
0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 ≤ βi ≤ 1, i = 1, 2, · · · ,m− 2,

f ∈ C([0, 1]× [0,∞), R),

with the resonant condition
m−2∑
i=1

βi = 1. It is well known that under this resonant

condition the associated linear operator is uninvertible.
Third order differential equations arise in a variety of different areas of applied

mathematics and physics, as the deflection of a curved beam having a constant or
varying cross section, three layer beam and so on [20]. Recently much attention
has been paid to the existence of solutions, especially for the positive solutions, of
third-order multi-point boundary value problems at non-resonance (for details see
[1, 21 30, 10, 7, 17, 22, 12, 27]).

Anderson [1] established the existence of at least three positive solutions to
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problem −x′′′(t) + f(x(t)) = 0, t ∈ (0, 1),

x(0) = x′(t2) = x′′(1) = 0,

where f : R → [0,+∞) is continuous and 1/2 ≤ t2 < 1.
By using the well-known Guo-Krasnoselskĭi fixed point theorem [8], Palamides

and Smyrlis [21] proved that there exist at least one positive solution for third-order
three-point problem x′′′(t) = a(t)f(t, x(t)), t ∈ (0, 1),

x′′(η) = 0, x(0) = x(1) = 0, η ∈ (0, 1).

Yang [30] studied the existence of positive solutions for the third-order m-point
boundary value problem

x′′′(t) + f(t, x(t), x′(t), x′′(t)) = 0, t ∈ [0, 1],

x′′(0) = 0, x′(0) =

m−2∑
i=1

αix
′(ξi), x(1) =

m−2∑
i=1

βix(ξi),

where
0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 ≤ αi < 1, 0 ≤ βi < 1, i = 1, 2, · · · ,m− 2,
m−2∑
i=1

αi < 1,

m−2∑
i=1

βi < 1, and f ∈ C([0, 1]× [0,+∞)×R2, [0,+∞)).

By using the Avery-Peterson fixed point theorem, the author established the exis-
tence of at least three positive solutions of this problem.

For resonant problem of second-order or higher-order differential equations,
many existence results of solutions have been established, see [6, 23, 24, 11, 13, 14,
15, 3, 5, 16, 18, 19, 4]. In [4], the authors considered the third-order problem

x′′′(t) = f(t, x, x′) + e(t), t ∈ (0, 1),

x′(0) = 0, x(1) = βx(η), x(0) =

m−2∑
i=1

αix(ξi).

By using Mawhin continuation theorem, the existence results of solutions are es-
tablished under the resonant condition β = 1,

∑m−2
i=1 αi = 1,

∑m−2
i=1 αiξ

2
i = 0 and

β = 1
η ,

∑m−2
i=1 αi = 1,

∑m−2
i=1 αiξ

2
i = 0 respectively.

It is well known that the problem of existence for positive solution to nonlin-
ear boundary value problem is very difficult when the resonant case is considered.
Only few work gave the approach in this area for first and second-order differential
equations [2, 25, 26, 9, 28, 29]. To our best knowledge, few paper deal with the ex-
istence result of positive solution for resonant third-order boundary value problems.
Motivated by the approach in [25, 26, 9], we study the positive solution for problem
(1.1) under the resonant condition. By using the norm-type Leggett-Williams fixed
point theorem, we establish the existence results of positive solutions.
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2. Preliminaries
Operator L : domL ⊂ X → Y is called a Fredholm operator with index zero, that
is, ImL is closed and dim Ker L=codim ImL< ∞, which implies that there exist
continuous projections P : X → X and Q : Y → Y such that ImP = KerL and
KerQ = ImL. Moreover, since dim Im Q=codim Im L, there exists an isomorphism
J : ImQ → KerL. Denote by LP the restriction of L to KerP ∩ domL to ImL
and its inverse by KP , so KP : ImL → KerP ∩domL and the coincidence equation
Lx = Nx is equivalent to

x = (P + JQN)x+KP (I −Q)Nx.

Denote γ : X → C be a retraction, that is, a continuous mapping such that γx = x
for all x ∈ C and

Ψ := P + JQN +KP (I −Q)N,

Ψγ := Ψ ◦ γ.
Lemma 2.1 (Leggett-Williams norm-type theorem, [25]). Let C be a cone in
X, Ω1,Ω2 be open bounded subsets of X with Ω1 ⊂ Ω2, C ∩ (Ω2 \Ω1) ̸= ∅. Assume
that L : domL ⊂ X → Y is a Fredholm operator of index zero and
(C1) QN : X → Y is continuous and bounded, KP (I −Q)N : X → X is compact
on every bounded subset of X,
(C2) Lx ̸= λNx for all x ∈ C ∩ ∂Ω2 ∩ domL and λ ∈ (0, 1),

(C3) γ maps subsets of Ω2 into bounded subsets of C,
(C4) dB([I − (P + JQN)γ]|kerL,KerL ∩ Ω2, 0) ̸= 0, where dB stands for the
Brouwer degree,
(C5) There exists u0 ∈ C\{0} such that ∥x∥ ≤ σ(u0)∥Ψx∥ for x ∈ C(u0) ∩ ∂Ω1,
where C(u0) = {x ∈ C : µu0 ≤ x} for some µ > 0 and σ(u0) is such that
∥x+ u0∥ ≥ σ(u0)∥x∥ for every x ∈ C,
(C6) (P + JQN)γ(∂Ω2) ⊂ C,
(C7) Ψγ(Ω2\Ω1) ⊂ C,
then the equation Lx = Nx has a solution in the set C ∩ (Ω2\Ω1).

3. Main results
We define the spaces X = Y = C[0, 1] endowed with the maximum norm. It is well
known that X and Y are Banach spaces.

Define the linear operator L : domL ⊂ X → Y,

(Lx)(t) = −x′′′(t), t ∈ [0, 1],

where

domL = {x ∈ X| x′′′ ∈ C[0, 1], x′′(0) = 0, x′(0) = x′(1), x(0) =

m−2∑
i=1

βix(ξi)},

and the nonlinear operator N : X → Y with

(Nx)(t) = f(t, x(t)), t ∈ [0, 1].



Positive solutions of BVP with resonance 845

It is obvious that KerL = {x ∈ domL : x(t) ≡ c , t ∈ [0, 1]}. Denote the function
G(s), s ∈ [0, 1] as follow:

G(s) = 1− s, 0 ≤ s ≤ 1.

Denote β0 = 0, ξ0 = 0, βm−1 = 0, ξm−1 = 1. Define the function k(t, s) as follow:

k(t, s) =



2t− 1

2

m−1∑
k=0

βiξi

m−1∑
i=j+1

βi(ξis−
1

2
s2 − 1

2
ξ2i )−

1

6
(1− s)3 +

1

2
(t− s)2,

t ≥ s, ξj−1 ≤ s ≤ ξj ,

2t−1

2

m−1∑
k=0

βiξi

m−1∑
i=j+1

βi(ξis−
1

2
s2− 1

2
ξ2i )−

1

6
(1−s)3, t ≤ s, ξj−1 ≤ s ≤ ξj ,

for j = 1, 2, · · · ,m− 1.
Define the functions U(t, s) and positive number κ as follow:

U(t, s) = k(t, s) +
G(s)∫ 1

0

G(s)ds

(1−
∫ 1

0

k(t, s)ds), t, s ∈ [0, 1],

κ := min

{
1

2
, min
t,s∈[0,1]

1

U(t, s)

}
.

Theorem 3.1. Suppose that there exist positive constant R ∈ (0,∞) such that

f : [0, 1]× [0, R] → (−∞, +∞)

is continuous and satisfies the following conditions:
(S1) f(t, x) ≥ −κx, for (t, x) ∈ [0, 1]× [0, R],
(S2) f(t, x) < 0 for [t, x] ∈ [0, 1]× [(1− κ

2
)R, R],

(S3) there exists r ∈ (0, R), M ∈ (0, 1), t0 ∈ [0, 1], a ∈ (0, 1] and continuous
functions

g : [0, 1] → [0,+∞), h : (0, r] → [0,+∞),

such that
f(t, x) ≥ g(t)h(x), [t, x] ∈ [0, 1]× (0, r],

and h(x)/xa is non-increasing on (0, r] with

h(r)

ra

∫ 1

0

U(t0, s)g(s)ds ≥
1−M

Ma
,

then resonant problem (1.1-1.2) has at least one positive solution.

Proof. Firstly we may claim that

ImL = {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}.
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Indeed, for each y ∈ {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}, we choose

x(t) = −1

2

∫ t

0

(t− s)2y(s)ds+

m−2∑
i=1

βit

2

m−2∑
i=1

βiξi

∫ ξi

0

(ξi − s)2y(s)ds.

We can check that

−x′′′(t) = y(t), x′′(0) = 0, x′(0) = x′(1), x(0) =

m−2∑
i=1

βix(ξi),

which means x(t) ∈ domL. Thus

{y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0} ⊂ ImL.

On the other hand, for each y(t) ∈ ImL, there exists x(t) ∈ domL such that

−x′′′(t) = y(t), x′′(0) = 0, x′(0) = x′(1), x(0) =

m−2∑
i=1

βix(ξi).

Integrating both sides on [0, t], we have

x(t) = −1

2

∫ t

0

(t− s)2y(s)ds+
1

2
x′′(0)t2 + x′(0)t+ x(0).

Considering condition x′′(0) = 0, x′(0) = x′(1), x(0) =
∑m−2

i=1 βix(ξi) and resonant
condition

∑m−1
i=0 βi = 1, we have∫ 1

0

(1− s)y(s)ds =

∫ 1

0

G(s)y(s)ds = 0.

Thus,

ImL = {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}.

It is obvious that dim KerL=1 and ImL is closed.
Secondly we see Y = Y1

⊕
ImL, where

Y1 = {y1| y1 =
1∫ 1

0

G(s)ds

∫ 1

0

G(s)y(s)ds, y ∈ Y }.

In fact, for each y(t) ∈ Y , we have∫ 1

0

G(s)[y(s)− y1]ds = 0.
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This induces that y − y1 ∈ ImL. Since Y1 ∩ ImL = {0}, we have Y = Y1

⊕
ImL.

Thus L is a Fredholm operator with index zero.
Define two projections P : X → X, Q : Y → Y by

Px =

∫ 1

0

x(s)ds,

Qy =
1∫ 1

0

G(s)ds

∫ 1

0

G(s)y(s)ds.

Clearly, ImP = KerL, KerQ = ImL and KerP = {x ∈ X :
∫ 1

0
x(s)ds = 0}. Note

that for y ∈ ImL, the inverse KP of LP is given by

(KP )y =

∫ t

0

k(t, s)y(s)ds.

In fact, It is easy to check that

L(KP )(y) = (−
∫ 1

0

k(t, s)y(s)ds)′′′ = y(t),

KP (L)(x) =

∫ 1

0

k(t, s)(−x′′′(s))ds = x(t).

Next we will check that every condition of Lemma 2.1 is fulfilled. Remark that
f can be extended continuously on [0, 1] × (−∞,+∞), condition (C1) of Lemma
2.1 is fulfilled.

Define the set of nonnegative functions C and subsets of X Ω1, Ω2 by

C = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]},

Ω1 = {x ∈ X : r > |x(t)| > M∥x∥, t ∈ [0, 1]},

Ω2 = {x ∈ X : ∥x(t)∥ < R, t ∈ [0, 1]}.

Remark that Ω1 and Ω2 are open and bounded sets. Furthermore

Ω1 = {x ∈ X : r ≥ |x(t)| ≥ M∥x∥, t ∈ [0, 1]} ⊂ Ω2, C ∩ Ω2\Ω1 ̸= .

Let the isomorphism J = I and (γx)(t) = |x(t)| for x ∈ X. Then γ is a retraction
and maps subsets of Ω2 into bounded subsets of C, which ensures that condition
(C3) of Lemma 2.1 is fulfilled.

Then we prove that (C2) of Lemma 2.1 is fulfilled. For this purpose, suppose
that there exists x0 ∈ C ∩ ∂Ω2 ∩ domL and λ0 ∈ (0, 1) such that Lx0 = λ0Nx0.
Then

−x′′′
0 (t) = λ0f(t, x0),

for all t ∈ [0, 1]. Let x0(t0) = ∥x0∥ = R. The proof is divided into two cases:
(1) We show that t0 ̸= 0. Suppose, on the contrary, that x0(t) achieves maximum

value R only at t0 = 0. Then the boundary condition x(0) =
∑m−2

i=1 βix0(ξi) in com-
bination with the resonant condition

∑m−2
i=1 βi = 1 yields that max1≤i≤m−2 x0(ξi) ≥

R, which is a contradiction.
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(2) Thus there exists t0 ∈ (0, 1] such that x0(t0) = R = max0≤t≤1 x0(t). We may
choose η < t0 nearest to t0 with x′′

0(η) = 0. From the Mean Value theory, we claim
that there exists ξ ∈ (η, t0) such that

x0(η) = x0(t0)− x′
0(ξ)(t0 − η).

However, from

x′′
0(t) = −λ0

∫ t

0

f(s, x0(s))ds,

and
x′
0(t) = −λ0

∫ t

t0

(t− s)f(s, x0(s))ds,

we have

x′
0(ξ) =− λ0

∫ ξ

t0

(ξ − s)f(s, x0)ds ≤ λ0κ

∫ ξ

t0

(ξ − s)x0(s)ds ≤ λ0κR

∫ ξ

t0

(ξ − s)ds

=
1

2
(t0 − ξ)2λ0κR.

Thus

x0(η) = x0(t0)− x′
0(ξ)(t0 − η) ≥ R− 1

2
(t0 − ξ)2λ0κ(t0 − η)R ≥ (1− κ

2
)R.

Then
0 ≥ x′′

0(t0)− x′′
0(η) = −λ0

∫ t0

η

f(s, x0(s))ds,

which contradict to condition (S2). Thus (C2) of Lemma 2.1 is fulfilled.
Remark. The sign of third order derivative of a function y(t) at point t0 can not
be confirmed when t0 is a maximal value of y(t). Thus the method in [29] are
not applicable directly to problem (1.1-1.2). In our opinion, it is the key that the
conditions (S2) in this paper are stronger than that in [29].

For x ∈ KerL ∩ Ω2, define

H(x, λ) = x− λ|x| − λ∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |x|)ds,

where x ∈ KerL ∩ Ω2 and λ ∈ [0, 1].
Suppose H(x, λ) = 0. In view of (S1) we obtain

c = λ|c|+ λ∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |c|)ds

≥ λ|c| − λ∫ 1

0

G(s)ds

∫ 1

0

G(s)κ|c|ds

= λ|c|(1− κ) ≥ 0.
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Hence H(x, λ) = 0 implies c ≥ 0. Furthermore, if H(R, λ) = 0, we get

0 ≤ R(1− λ)

∫ 1

0

G(s)ds = λ

∫ 1

0

G(s)f(s,R)ds,

contradicting to (S2). Thus H(x, λ) ̸= 0 for x ∈ ∂Ω2 and λ ∈ [0, 1]. Therefore

dB(H(x, 0),KerL ∩ Ω2, 0) = dB(H(x, 1),

KerL ∩ Ω2, 0) = dB(I,KerL ∩ Ω2, 0) = 1.

This ensures

dB([I−(P+JQN)γ]|KerL,KerL ∩ Ω2, 0)=dB(H(x, 1),KerL ∩ Ω2, 0) ̸=0.

Let x ∈ Ω2\Ω1 and t ∈ [0, 1]. From condition (S1), we see

(Ψγx)(t) =

∫ 1

0

|x(t)|dt+ 1∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |x(s)|)ds

+

∫ 1

0

k(t, s)[f(s, |x(s)|)− 1∫ 1

0

G(s)ds

∫ 1

0

G(τ)f(τ, |x(τ)|)dτ ]ds

=

∫ 1

0

|x(t)|dt+
∫ 1

0

U(t, s)f(s, |x(s)|)ds

≥
∫ 1

0

|x(s)|ds− κ

∫ 1

0

U(t, s)|x(s)|ds

=

∫ 1

0

(1− κU(t, s))|x(s)|ds ≥ 0.

Hence Ψγ(Ω2)\Ω1 ⊂ C. Moreover, since for x ∈ ∂Ω2, we have

(P + JQN)γx =

∫ 1

0

|x(s)|ds+ 1∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |x(s)|)ds

≥
∫ 1

0

(1− κ∫ 1

0

G(s)ds

G(s))|x(s)|ds ≥ 0,

which means (P + JQN)γ(∂Ω2) ⊂ C. These ensure that (C6), (C7) of Lemma 2.1
hold.

At last, we confirm that (C5) is satisfied. Taking u0(t) ≡ 1 on [0,1], we see

u0 ∈ C\{0}, C(u0) = {x ∈ C| x(t) > 0 on [0, 1]}

and we can take σ(u0) = 1. Let x ∈ C(u0) ∩ ∂Ω1, we have

x(t) > 0, t ∈ [0, 1], 0 < ∥x∥ ≤ r and x(t) ≥ M∥x∥ on [0, 1].
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Therefore, in view of (S3), we obtain for all x ∈ C(u0) ∩ ∂Ω1,

(Ψx)(t0) =

∫ 1

0

x(s)ds+

∫ 1

0

U(t0, s)f(s, x(s))ds

≥ M∥x∥+
∫ 1

0

U(t0, s)g(s)h(x(s))ds

= M∥x∥+
∫ 1

0

U(t0, s)g(s)
h(x(s))

xa(s)
xa(s)ds

≥ M∥x∥+ h(r)

ra

∫ 1

0

U(t0, s)g(s)M
a∥x∥ads

≥ M∥x∥+ (1−M)∥x∥ = ∥x∥.

So ∥x∥≤σ(u0)∥Ψx∥ for all x∈C(u0)∩∂Ω1, which means (C5) of Lemma 2.1 holds.
Thus by Lemma 2.1, we confirm that the equation Lx = Nx has a solution

x ∈ C ∩ (Ω2\Ω1), which implies that nonlinear resonant third-order multi-point
boundary value problem (1.1) has at least one positive solution.

4. Example
We investigate the resonant third-order three-point boundary value problem

x′′′(t)+(−1
2
t2+

1

2
t+

3

8
)(x2−4x+

12

5
)
√

x2−6x+10=0, t ∈ [0, 1]

x′′(0) = 0, x′(0) = x′(1), x(0) = x(
2

3
)

where β = 1, ξ =
2

3
and

f(t, x) = (−1

2
t2 +

1

2
t+

3

8
)(x2 − 4x+

12

5
)
√

x2 − 6x+ 10.

Here

k(t, s) =



3(2t−1)

4
(
2

3
s− 1

2
s2− 2

9
)− 1

6
(1−s)3+

1

2
(t−s)2, t≥s, 0≤s≤ 2

3
,

3(2t− 1)

4
(
2

3
s− 1

2
s2 − 2

9
)− 1

6
(1− s)3, t ≤ s, 0 ≤ s ≤ 2

3
,

− 1

6
(1− s)3 +

1

2
(t− s)2, t ≥ s,

2

3
≤ s ≤ 1,

− 1

6
(1− s)3, t ≤ s,

2

3
≤ s ≤ 1

By a simple computation, we have∫ 1

0

G(s)ds =
1

2
, κ =

1

2
,

∫ 1

0

U(0, s)ds = 1.

Choose R = 1, r =
1

4
, t0 = 0, a = 1, M =

1

2
.

We take

g(t) = −1

2
t2 +

1

3
t+

3

8
, t ∈ [0, 1], h(x) =

√
x2 − 6x+ 10, x ∈ [0,

1

4
].
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Then,
3

8
≤ g(t) ≤ 1

2
, t ∈ [0, 1], x2 − 4x+

12

5
≥ −x, x ∈ [0, 1].

It is easy to check that

(1) f(t, x) > −1

2
x, for all (t, x) ∈ [0, 1]× [0, 1],

(2) f(t, x) < 0, for all (t, x) ∈ [0, 1]× [
3

4
, 1],

(3) f(t, x)≥ 117

80
(−1
2
t2+

1

3
t+

3

8
)
√

x2−6x+10≥ g(t)h(x), [t, x] ∈ [0, 1] × (0,
1

4
] and

h(x)
x =

√
x2−6x+10

x is non-increasing on (0, 1
4 ] with

h(r)

ra

∫ 1

0

U(0, s)g(s)ds >
411

32
> 1 =

1−M

Ma
.

Thus all the conditions of Theorem 4.1 are satisfied. This ensures that the resonant
problem has at least one solution, positive on [0,1].
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