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SOLVABILITY FOR IMPULSIVE FRACTIONAL
LANGEVIN EQUATION∗
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Abstract We investigate impulsive fractional Langevin equation involving
two fractional Caputo derivatives with boundary value conditions. By Banach
contraction mapping principle and Krasnoselskii’s fixed point theorem, some
results on the existence and uniqueness of solution are obtained.
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1. Introduction
The states of many processes are often subject to instantaneous perturbations and
experience abrupt changes at certain moments of time. The model of impulsive
differential equations is better than pure continuous-time or discrete-time model
for describing those processes [3,16,17]. Although fractional differential equation is
developing rapidly owing to its wide applications of science and engineering in recent
decades [1, 8, 9, 13, 15, 18, 20–23, 25], the study of fractional impulsive differential
equations has been started quite recently ( [17,25]).

There are some ways to consider the concept of a solution to fractional differ-
ential equations with impulses. In 2012, Fečkan et al. [5] gave a new concept which
is to keep the lower limit t0 of the fractional derivative for all t ≥ t0 but consider
different initial conditions on each interval (tk, tk+1). Fractional derivative provides
an excellent instrument for the description of memory and hereditary properties of
processes. This is the main advantage of fractional derivatives in comparison with
classical integer derivatives [15]. This concept can reflect that fractional derivatives
have global property and the memory accumulated by the long time effects in the
whole process including impulsive moments. This approach is used in some papers
(for example, [2, 5–7,14,19,24]).

In this paper, also in this way, we consider the boundary value problem of two-
term Caputo fractional impulsive Langevin equation

Dδu(t) + λDδ−1u(t) + f(t, u(t)) = 0, t ∈ J ′ := J\{t1, · · · , tm}, (1.1)

∆u|t=tk = ak, ∆u′|t=tk = bk, k = 1, · · · ,m, (1.2)
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λu(0) = u(1), u′(0) = d, (1.3)

where Dδ and Dδ−1 are the standard Caputo fractional derivatives with the lower
limit zero and 1 < δ ≤ 2, J = [0, 1], f : J × R → R is a given continuous function,
ak, bk, λ and d ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = 1, ∆u|t=tk = u(t+k ) − u(t−k ),
∆u′|t=tk = u′(t+k )− u′(t−k ).

The Langevin equation was introduced by Langevin in 1908 to give an elaborate
description of Brownian motion. It has been widely used to describe the evolution
of physical phenomena in fluctuating environments [4]. The nonlinear fractional
Langevin equation involving two fractional derivatives as a kind of generalization of
Langevin equation has been studied by many researchers [10–12]. In addition, A.
Kilbas et al. [8] considered the fractional differential equation with two fractional
derivatives of the type: Dαx(t)−λDβx(t) = f(t), where λ ∈ R, Dα and Dβ denote
the Caputo fractional derivatives with the lower limit zero. However, there are less
results about multi-term fractional impulsive differential equations and no paper
considered the solution for two-term Caputo fractional impulsive Langevin equation
with boundary conditions (1.1)-(1.3). What’s more, the equation we studied can
reduce to single-term fractional differential equations by letting parameter λ = 0
and reduce to classical Langevin equation by letting order δ = 2. In this article,
we will study the existence and uniqueness of solution for BVP (1.1)-(1.3), using
Banach contraction mapping principle and Krasnoselskii’s fixed point theorem.

The paper is organized as follows. In Section 2, we recall some necessary con-
cepts and results and present preliminary results. In Section 3, some results on
the existence and uniqueness of solution are obtained. Two examples are given in
Section 4.

2. Preliminaries
In this section, we give some definitions and lemmas which are required for building
our theorems.

Definition 2.1 ( [15]). The fractional integral of order α > 0 of a function f :
[0,+∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

where Γ(α) is the Gamma function, provided the right side is pointwise defined on
[0,+∞).

Definition 2.2 ( [15]). The Riemann-Liouville fractional derivative of order α > 0
of a function f : [0,+∞) → R is given by

RLDαf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α+1f(s)ds, t > 0,

where n is the smallest integer greater than or equal to α, provided that the right
side is pointwise defined on [0,+∞).

Definition 2.3 ( [15]). The Caputo fractional derivative of order α > 0 of a func-
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tion f : [0,+∞) → R is given by

Dα
0+f(t) =

RLDα

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0,

where n is the smallest integer greater than or equal to α, provided that the right
side is pointwise defined on [0,+∞).

Lemma 2.1 ( [3]). (Compactness criterion) The set F ∈ PC([0, T ],Rn) is relatively
compact if and only if:

(1) F is bounded, that is, ||x|| ≤ c for each x ∈ F and some c > 0;
(2) F is quasiequicontinuous in [0, T ].

Lemma 2.2 ( [15]). (Krasnoselskii’s fixed point theorem) Let M be a closed,
bounded, convex and nonempty subset of a Banach space X. Let A,B be the
operators such that

(i) Ax+By ∈ M whenever x, y ∈ M ;
(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z ∈ M such that z = Az +Bz.

Consider the piecewise continuous functions space

PC(J,R) = {u : [0, 1] → R : u ∈ C((tk, tk+1],R) and there
exist u(t+k ), u(t−k ) with u(t−k ) = u(tk), k = 0, 1 · · · ,m}.

with the norm ||u|| = sup0≤t≤1 |u(t)|. Denote PC1(J,R) = {u, u′ ∈ PC(J,R)} with
the norm ||u||1 = ||u||+ ||u′||. Obviously, PC1(J,R) is Banach space.

Definition 2.4. A function u ∈ PC2(J,R) is said to be a solution of (1.1)-(1.3)
if u satisfies the equation Dδu(t) + λDδ−1u(t) + f(t, u(t)) = 0, t ∈ J ′, and the
conditions ∆u|t=tk = ak, ∆u′|t=tk = bk, k = 1 · · · ,m, λu(0) = u(1) and u′(0) = d.

Lemma 2.3. Let h : J → R be continuous. A function u is a solution of the
boundary value problem

Dδu(t) + λDδ−1u(t) + h(t) = 0, t ∈ J ′, (2.1)

λu(0) = u(1), u′(0) = d, ∆u|t=tk = ak, ∆u′|t=tk = bk, k = 1, 2, · · · ,m, (2.2)

if and only if u ∈ PC(J,R) is a solution of the integral equation

u(t) =


p(t) + λ

∫ 1

0
H(t, s)u(s)ds+

∫ 1

0
G(t, s)h(s)ds, t ∈ [0, t1],

p(t) + q(t, k) + λ
∫ 1

0
H(t, s)u(s)ds+

∫ 1

0
G(t, s)h(s)ds, t ∈ (tk, tk+1],

k = 1, 2, · · · ,m,

(2.3)
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where

p(t) = −(λt+ 1)

(
m∑
i=1

(
ai + (bi + λai)(1− ti)

))
+ (−λt+ t− 1)d,

q(t, k) =

k∑
i=1

(
ai + (bi + λai)(t− ti)

)
,

H(t, s) =

{
λt, 0 ≤ s < t ≤ 1,

λt+ 1, 0 ≤ t < s ≤ 1,

and

G(t, s) =

{
(1 + λt)(1− s)δ−1 − (t− s)δ−1, 0 ≤ s < t ≤ 1,

(1 + λt)(1− s)δ−1, 0 ≤ t < s ≤ 1.

Proof. Assume u satisfies (2.1)-(2.2). If t ∈ [0, t1], applying Iδ on both sides of
(2.1), one has

u(t) = A0 +B0t− λ

∫ t

0

u(s)ds− 1

Γ(δ)

∫ t

0

(t− s)δ−1h(s)ds. (2.4)

Note that u(0) = A0. By boundary condition u′(0) = d, one has B0 = d+ λA0.
Furthermore, in general, if t ∈ (tk, tk + 1], k = 1, 2, · · · ,m, then

u(t) = Ak +Bkt− λ

∫ t

0

u(s)ds− 1

Γ(δ)

∫ t

0

(t− s)δ−1h(s)ds, (2.5)

u′(t) = Bk − λu(t)− 1

Γ(δ − 1)

∫ t

0

(t− s)δ−2h(s)ds. (2.6)

By the impulsive conditions u(t+k ) = ak+u(t−k ) and u′(t+k ) = bk+u′(t−k ), we deduce
that

Ak +Bktk = ak +Ak−1 +Bk−1tk, (2.7)
Bk − λu(t+k ) = bk +Bk−1 − λu(t−k ).

Thus,

Bk =bk + λak +Bk−1 =

k∑
i=1

(bi + λai) + d+ λA0. (2.8)

Combining (2.8) with (2.7), we get
Ak =ak +Ak−1 +Bk−1tk −Bktk = ak − (bk + λak)tk +Ak−1

=

k∑
i=1

(
ai − (bi + λai)ti

)
+A0.

Therefore, substituting Ak and Bk into (2.5), one has, for t ∈ (tk, tk+1], k =
1, 2, · · · ,m,

u(t) =A0 + (d+ λA0)t+

k∑
i=1

(
ai + (bi + λai)(t− ti)

)
− λ

∫ t

0

u(s)ds

− 1

Γ(δ)

∫ t

0

(t− s)δ−1h(s)ds. (2.9)
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In particular, u(1) = u(tm+1) = A0 + d + γA0 +
∑m

i=1

(
ai + (bi + γai)(1 − ti)

)
−

γ
∫ 1

0
u(s)ds − 1

Γ(δ)

∫ 1

0
(1 − s)δ−1h(s)ds. From boundary condition λu(0) = u(1), we

have

−A0 =

m∑
i=1

(
ai + (bi + λai)(1− ti)

)
+ d− λ

∫ 1

0

u(s)ds− 1

Γ(δ)

∫ 1

0

(1− s)δ−1h(s)ds.

For t ∈ [0, t1], substituting A0 into (2.4), one has u(t) = p(t) + λ
∫ 1

0
H(t, s)u(s)ds+∫ 1

0
G(t, s)h(s)ds. For t ∈ (tk, tk+1], k = 1, 2, · · · ,m, according to (2.9), we can get

u(t) = p(t) + q(t, k) + λ

∫ 1

0

H(t, s)u(s)ds+
1

Γ(δ)

∫ 1

0

G(t, s)h(s)ds.

Conversely, assume that u(t) is a solution of (2.3), we can easily show that u(t)
is the solution of (2.1)-(2.2). The proof is complete.

For convenience, we denote H = supt∈[0,1]

∫ 1

0
|H(t, s)|ds, P = supt∈[0,1] |p(t)|,

G = supt∈[0,1]

∫ 1

0
|G(t, s)|ds, Q = maxk supt∈(tk,tk+1]

|q(t, k)|, k = 1, 2, · · · ,m.
For the forthcoming analysis, we need the following hypotheses

(H1) There exists a constant L > 0 such that

|f(t, u)− f(t, v)| ≤ L|u− v|, for each t ∈ [0, 1], and all u, v ∈ R;

(H2) There exists a integrable function µ : [0, 1] → R+ such that

|f(t, u)| ≤ µ(t), (t, u) ∈ [0, 1]× R.

3. Existence and uniqueness of solution
In this section, we will show the existence and uniqueness of solution for boundary
value problems (1.1)-(1.3) by Banach contraction mapping principle and Krasnosel-
skii’s fixed point theorem.

Theorem 3.1. Assume that (H1) holds. If |λ|H + LG
Γ(δ) < 1, then BVP (1.1)-(1.3)

has a unique solution.

Proof. Define operator T : PC(J,R) → PC(J,R) by

Tu(t) =


p(t) + λ

∫ 1

0
H(t, s)u(s)ds+ 1

Γ(δ)

∫ 1

0
G(t, s)f(s, u(s))ds, t ∈ [0, t1],

p(t) + q(t, k) + λ
∫ 1

0
H(t, s)u(s)ds+ 1

Γ(δ)

∫ 1

0
G(t, s)f(s, u(s))ds,

t ∈ (tk, tk+1], k = 1, · · · ,m.

Then T is well-defined and u ∈ PC(J,R) is a solution to the BVP (1.1)-(1.3), if and
only if u is a fixed point of T . It is easy to verify that Tu ∈ PC(J,R) by Lebesgue’s
dominated convergence theorem.

For all u, v ∈ PC(J,R), t ∈ [0, 1], by (H1), we have

|Tu(t)− Tv(t)|

=

∣∣∣∣λ ∫ 1

0

H(t, s)
(
u(s)− v(s)

)
ds+

1

Γ(δ)

∫ 1

0

G(t, s)
(
f(s, u(s))− f(s, v(s))

)
ds

∣∣∣∣
≤|λ|||u− v||

∫ 1

0

|H(t, s)|ds+ L||u− v||
Γ(δ)

∫ 1

0

|G(t, s)|ds ≤
(
|λ|H +

LG

Γ(δ)

)
||u− v||.
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Hence, T is a contraction mapping and there exists a unique fixed point according to
Banach contraction mapping principle. Therefore, (1.1)-(1.3) has a unique solution.

Theorem 3.2. Assume that (H2) holds. If |λ|H < 1, then BVP (1.1)-(1.3) has at
least one solution.

Proof. Define operators E and F from PC(J,R) into itself by

Eu(t) =

{
p(t) + λ

∫ 1

0
H(t, s)u(s)ds, t ∈ [0, t1],

p(t) + q(t, k) + λ
∫ 1

0
H(t, s)u(s)ds, t ∈ (tk, tk+1], k = 1, · · · ,m,

(3.1)

Fu(t) =
1

Γ(δ)

∫ 1

0

G(t, s)f(s, u(s))ds, t ∈ [0, 1], (3.2)

for u ∈ PC(J,R). It is easy to verify that E and F are continuous on PC(J,R)
by Lebesgue’s dominated convergence theorem. Since |λ|H < 1, we can take r > 0

large enough such that |λ|H +
P+Q+ G

Γ(δ)
||µ||

r < 1. Set Br = {u ∈ PC(J,R) : ||u|| ≤
r}. Then Br is a nonempty bounded closed convex subset in PC(J,R). For any
u, v ∈ Br, k = 1, · · · ,m, we have

|Eu(t)| =
∣∣∣∣p(t) + q(t, k) + λ

∫ 1

0

H(t, s)u(s)ds

∣∣∣∣ ≤ P +Q+ |λ|Hr, t ∈ (tk, tk+1],

and |Eu(t)| ≤ P + |λ|Hr, t ∈ [0, t1]. For all v ∈ Br, t ∈ [0, 1],

|Fv(t)| =
∣∣∣∣ 1

Γ(δ)

∫ 1

0

G(t, s)f(s, v(s))ds

∣∣∣∣ ≤ G

Γ(δ)
||µ||. (3.3)

Hence, |Eu(t) + Fv(t)| ≤ |Eu(t)|+ |Fv(t)| ≤ P +Q+ |λ|Hr + G
Γ(δ) ||µ|| < r, which

implies that Eu + Fv ∈ Br, for t ∈ [0, 1]. On the other hand, E is a contraction
mapping since for all t ∈ [0, 1],

|Eu(t)− Ev(t)| =|λ|
∣∣∣∣∫ 1

0

H(t, s)u(s)ds−
∫ 1

0

H(t, s)v(s)ds

∣∣∣∣ ≤ |λ|H||u− v||

<||u− v||.

Next we prove F is compact. Take any bounded subset Bη = {u ∈ PC(J,R) :
||u|| ≤ η}. According to (3.3), F (Bη) is bounded. Taking τ1, τ2 ∈ [0, t1] with
τ1 < τ2, for any u ∈ Bη, we have

|Fu(τ2)− Fu(τ1)| =
∣∣∣∣ 1

Γ(δ)

∫ 1

0

G(τ2, s)f(s, u(s))−
1

Γ(δ)

∫ 1

0

G(τ1, s)f(s, u(s))ds

∣∣∣∣
≤ ||µ||
Γ(δ)

∣∣∣∣∫ 1

0

(1 + λτ2)(1− s)δ−1ds−
∫ τ2

0

(τ2 − s)δ−1ds

−
∫ 1

0

(1 + λτ1)(1− s)δ−1ds+

∫ τ1

0

(τ1 − s)δ−1ds

∣∣∣∣
=

||µ||
Γ(δ + 1)

(
|λ(τ2 − τ1)|+ τ δ2 − τ δ1

)
.
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As τ1 → τ2, the right side of the above inequality tends to zero. In general, using the
same way, for τ1, τ2 ∈ (tk, tk+1], we can get |Fu(τ2)−Fu(τ1)| → 0 as τ1 → τ2. Then
F (Bη) is quasiequicontinuous on [0, 1]. According to Lemma 2.1, F is compact. Now
we apply Krasnoselskii’s fixed point theorem to the operators E and F to get that
there exists at least a u ∈ Br such that u = Eu + Fu, which is a solution to the
BVP (1.1)-(1.3) and the proof is complete.

4. Examples
Example 4.1. Consider the following BVP for two-term fractional impulsive Lang-
evin equation{

D
3
2u(t) + 1

2D
1
2u(t) = u(t)

8+u(t) , t ∈ [0, 1]\ 1
2 ,

∆u|t= 1
2
= 1, ∆u′|t= 1

2
= 1, 1

2u(0) = u(1), u′(0) = 1.
(4.1)

We can find | u(t)
8+u(t) −

v(t)
8+v(t) | ≤

||u−v||
8 , L = 1

8 , λ = 1
2 , H ≤ |λ| + 1 = 3

2 , δ = 3
2 ,

G ≤ |λ|+1
δ = 1. Therefore, |λ|H + LG

Γ(δ) < 1 and (H1) are satisfied. According to
Theorem 3.1, (4.1) has a unique solution.

Example 4.2. Consider the following BVP for two-term fractional impulsive Lang-
evin equation{

D
3
2u(t) + 1

2D
1
2u(t) = sinx(t) + t, t ∈ [0, 1]\ 1

2 ,

∆u|t= 1
2
= 1, ∆u′|t= 1

2
= 1, 1

2u(0) = u(1), u′(0) = 1.
(4.2)

Let µ(t) = 1 + t. Obviously, (H2) are satisfied and |λ|H ≤ 3
4 , where λ = 1

2 .
Furthermore, ||µ|| = 2, P = (|λ| + 1)[a1 + (b1 + λa1)(1 − 1

2 )] + (|λ| + 2)d = 41
8 ,

Q = a1 + (b1 + λa1)(1 − 1
2 ) =

7
4 , where a1 = b1 = d = 1. Because P+Q+ G

Γ(δ)
||µ||

1−|λ|H ≤
55
2 + 16√

π
, we can chose r > 55

2 + 16√
π

. Then by Theorem 3.2, (4.2) has at least one
solution.
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