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DYNAMICS OF A MODIFIED LESLIE-GOWER
MODEL WITH GESTATION EFFECT AND

NONLINEAR HARVESTING

R. Sivasamy1,†, K. Sathiyanathan1 and K. Balachandran2

Abstract This study focuses on the dynamics of a modified Leslie-Gower
predator-prey model where the intake rate of prey is by per capita preda-
tor according to Crowley-Martin functional response and prey is harvested
through nonlinear harvesting strategy. Further the time-delay (τ) is imposed
to utilize gestation period of predations. We investigate the permanence analy-
sis of proposed system. The local stability of non-delayed model at all possible
equilibrium points is studied. It is shown that the given model undergoes Hopf
bifurcation around positive equilibrium point with respect to delay parameter
τ . Subsequently the stability of Hopf bifurcation and its direction are explored
through normal and center manifold theories. The derived theoretical results
are justified with the help of numerical simulations.

Keywords Predator-Prey Model, prey harvesting, Crowley-Martin function-
al response, stability Analysis, Hopf bifurcation.
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1. Introduction

Since the pioneering work of Lotka and Volterra in 1920’s, the dynamics of in-
teractions between two species models has been gaining special attention among
researchers in both mathematics and biology disciplines. Many remarkable results
on dynamics of predator-prey model have been found in [4–6,8,10,21] and references
therein. Suppose that predators can switch to alternative food when their favorite
food is not sufficiency in abundance. To tackle this issue, authors in [3] have devel-
oped the modified edition of general Leslie-Gower model [19] and the model given
by:

dx

dt
= rx

(
1− x

k

)
− yg(x, y),

dy

dt
= y

(
c− dy

x+ l

)
,

(1.1)

where x(t) and y(t) are the densities of prey and predator populations respective-
ly at time t, r and k stand for the per capita growth rate of prey and carrying
capacity respectively. The predator can consume prey according to the functional
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response g(·, ·). The parameters c and d indicate the growth rate and maximum
reduction rate of predator respectively and l represents the measure of extent to
which environment provides protection to the predator.

The most commonly used functional response in the existing literature is a func-
tion of prey’s density only (Holling I-III) in which the interference among preda-
tors is not utilized whereas this will be common when predators compete for food.
To cover this key factor, functional responses (ratio-dependent [2], Beddington-
DeAngelis [4,10] and Crowley-Martin [9]) have been introduced which do not depend
upon the prey’s density alone rather than on both prey’s and predator’s densities.
The demerits of Beddington-DeAngelis function is handling prey and finding prey
are taken as mutually exclusive events. The Crowley-Martin function assumes that
the interference among predators raises even if individual predator is looking for
prey or handling prey and it is given by g(x, y) = c1x

1+ax+by+abxy , where c1, a and b
are positive parameters that are used for effects of capture rate, handling time and
magnitude of interference among predators respectively on the feeding rate. There-
fore it is interesting to introduce Crowley-Martin function in modified Leslie-Gower
model and corresponding results are found in [1, 26, 31, 34]. This model takes the
form

dx

dt
= rx

(
1− x

k
− c1y

1 + ax+ by + abxy

)
,

dy

dt
= y

(
c− dy

x+ l

)
.

(1.2)

Ali and Jazar in [1] considered the system (1.2) in which they derived the sufficient
conditions for global stability, Hopf bifurcation and the existence and nonexistence
of periodic solutions. In [26], the authors have considered the discrete-time version
of the model (1.2) and they showed that the system exhibits the flip bifurcation
and Neimark-Sacker bifurcation.

By reason of financial income, harvesting of species commonly exists in fishery,
forestry and wildlife management. Enthused by this fact, it is meaningful to estab-
lish the harvesting of species in prey-predator models and different types of har-
vesting strategies have been used in the literatures. To mention few, constant-yield
harvesting [15, 16, 18], constant-effort harvesting [7], age-selective harvesting [17],
nonlinear harvesting [11,12,14,30,32] and so on. Among them, nonlinear harvesting
is more applicable from the financial as well as biological point of view rather than
the other strategies [14]. The formulation of nonlinear harvesting is

H(z) =
qEz

m1E +m2z
,

where z is the density of prey (or predator), q stands for the catchability coefficien-
t, E represents the external effort applied for harvesting and m1, m2 are positive
constants. The problem of modified Leslie-Gower predator-prey model with Holling
II function and nonlinear prey harvesting is considered in [11], while predator har-
vesting on Holling-Tanner type model is dealt with in [14]. In these works, authors
show that the system exhibits complex dynamical behaviors by varying harvesting
parameters.

Time delays in biological systems are inevitable due to maturation period, gesta-
tion period, handling and digesting time, etc. The existence of delays in dynamical
systems may enhance the complexity of its dynamics. Some important results on
dynamics of delayed predator-prey model are given in [20, 22, 24, 25, 28–30, 33] and
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references therein. Specifically, gestation delay means that the consumption of prey
by predator will be a source of predator growth which is not instantaneous rather
lagged by some time delay τ . In [32], the modified Leslie-Gower model with gesta-
tion delay and nonlinear harvesting is investigated and it is showed that the system
experiences saddle-node-Hopf bifurcation. Recently the dynamics of Holling-Tanner
model with Beddington-DeAngelis functional response and linear prey harvesting
rate is described in [27]. To our knowledge, there is no literature available on dynam-
ics of system (1.2) with harvesting and gestation effect on predator equation. This
facts has inspired our present work. Thus we focus on the modified Leslie-Gower
predator-prey model with Crowley-Martin functional response and nonlinear prey
harvesting in the form:

dX

dT
= RX

(
1− X

K

)
− mXY

1 +AX +BY +ABXY
− qEX

m1E +m2X
,

dY

dT
= Y

(
C − DY (t− τ)

X(t− τ) + L

)
,

(1.3)

subject to the initial conditions N0(θ) = φ(θ) > 0, P0(θ) = ψ(θ) > 0, ∀θ ∈ [−τ, 0],
where φ(θ), ψ(θ) are continuous and bounded functions in [−τ, 0].

2. Mathematical Model

To reduce the complexity of the considered system, we make the following non-
dimensional scheme X → Kx, Y → Ry, T → 1

R t and let α = AK, β = BR
m ,

g = qE
m2KR

, h = m1E
m2K

, γ = C
R , δ = DR

CmK , ρ = L
K . Then the system (1.3) becomes

dx

dt
= x

(
1− x− y

(1 + αx)(1 + βy)
− g

h+ x

)
,

dy

dt
= γy

(
1− δy(t− τ)

x(t− τ) + ρ

)
,

(2.1)

subjected to the initial conditions

x0(θ) = φ(θ) > 0, y0(θ) = ψ(θ) > 0, ∀θ ∈ [−τ, 0], (2.2)

where φ(θ), ψ(θ) are continuous and bounded functions in [−τ, 0].

2.1. Boundedness and permanence analysis

In this subsection, we present the permanence analysis of solutions of system (2.1).
Generally permanence analysis confirms that the prey and predator will always
coexist at any time and any location of the inhabited domain. These results will be
used in the following sections.

Definition 2.1. System (2.1) is said to be permanent if there exist positive con-
stants c and c̄ such that (x(t), y(t)) of (2.1) with x0 ≥ 0 and y0 ≥ 0 satisfying

0 < c ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

supx(t) ≤ c̄,

0 < c ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤ c̄.
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Lemma 2.1. If a > 0, b > 0 and dx(t)
dt ≤ (≥)x(t)(b − ax(t)), x(t0) > 0, then

lim supt→∞ x(t) ≤ b
a (lim supt→∞ x(t) ≥ b

a ).

Theorem 2.1. Let (x(t), y(t)) be the solution of (2.1) with x0 ≥ 0, y0 ≥ 0. The
following hold:

1. lim
t→∞

supx(t) ≤ 1 and

2. lim
t→∞

sup y(t) ≤ (1 + ρ)eγτ

δ
.

Proof. From the prey equation of (2.1), we have that for all t ∈ [0,∞)

dx(t)

dt
≤ x(t)(1− x(t)).

Then, by Lemma 2.1, we obtain

lim
t→∞

supx(t) ≤ 1.

Similarly, from the predator equation of (2.1), we have

dy(t)

dt
< γy(t).

Thus for t > τ, integrating above relation from t− τ to t, we get

y(t) ≤ y(t− τ)eγτ ,

which is equivalent to
y(t− τ) ≥ y(t)e−γτ .

Note that there exists a positive integer T for t > T and x(t) < x̄. Thus, for
t > T + τ ,

dy(t)

dt
≤ γy(t)

(
1− δe−γτ

1 + ρ
y(t)

)
.

Now, by using Lemma 2.1, we have

lim
t→∞

sup y(t) ≤ (1 + ρ)eγτ

δ
≡ ȳ.

Therefore, the proof is complete.

Theorem 2.2. Let (x(t), y(t)) be the solution of (2.1) with x0 ≥ 0, y0 ≥ 0. The
following hold:

1. lim
t→∞

inf x(t) ≥ (h− g)(1 + βȳ)− hȳ
h(1 + βȳ)

and

2. lim
t→∞

inf y(t) ≥ (ρ+ x)

δ
exp

(
− γδȳ

ρ+ x
τ

)
.

Proof. It is easy to see that

dx

dt
≥ x

(
1− x− ȳ

1 + βȳ
− g

h

)
.
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Hence, by Lemma 2.1, we obtain

lim
t→∞

inf x(t) ≥ (h− g)(1 + βȳ)− hȳ
h(1 + βȳ)

≡ x.

For any κ > 1, there exists a Tκ > 0 such that t > Tκ, x(t) > x/κ and y(t) < κȳ.
Then, for t > Tκ + τ, we have

dy(t)

dt
≥ γy(t)

(
1− δκ

κρ+ x
y(t− τ)

)
.

For t > Tκ + τ, the above inequality gives

dy(t)

dt
≥ − κ

2γδȳ

κρ+ x
y(t),

which leads to

y(t− τ) < y(t)exp

(
κ2γδȳ

κρ+ x
τ

)
.

Then, for t > Tκ + τ,

dy(t)

dt
≥ γy(t)

(
1− δκ

κρ+ x
exp

(
κ2γδȳ

κρ+ x
τ

)
y(t)

)
which implies

lim
t→∞

inf y(t) ≥ (κρ+ x)

δκ
exp

(
− κ

2γδȳ

κρ+ x
τ

)
.

Putting κ→ 1, we get

lim
t→∞

inf y(t) ≥ (ρ+ x)

δ
exp

(
− γδȳ

ρ+ x
τ

)
≡ y.

Let c = min{x, y} and c̄ = max{1, ȳ}. Then, by Definition 1 and Theorems 2.1
and 2.2, we arrive at the following result.

Theorem 2.3. If

h(1 + βȳ) > hȳ + g(1 + βȳ) (2.3)

holds, then the system (2.1) is permanent.

2.2. Existence of Equilibria

The equilibria of system (2.1) are given by

x

(
1− x− y

(1 + αx)(1 + βy)
− g

h+ x

)
= 0,

y

(
1− δy

x+ ρ

)
= 0.

Solving the above equations, we get the following equilibrium points:
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i. the trivial equilibrium point E0 = (0, 0).

ii. The predator free axial equilibrium points E−1 = (x−, 0) and E+
1 = (x+, 0)

where x− and x+ are the roots of equation x2 − (1− h)x+ g− h = 0, that is,

x−=
1−h

2
− 1

2

√
(1−h)2−4(g−h) and x+ =

1−h
2

+
1

2

√
(1−h)2−4(g−h).

iii. The prey extinction equilibrium point E2 = (0, ρδ ).

iv The interior equilibrium point E∗ = (x∗, y∗), where y∗ = x∗+ρ
δ and x∗ is a

root of the following quintic equation in z,

az4 + bz3 + cz2 + dz + e = 0, (2.4)

where

a = −αβ,
b = (1− h)αβ − (β + αδ + αβρ),

c = −(δ + βρ) + (1− h)(β + αδ + αβρ) + (h− g)αβ − 1,

d = (h− g)(δ + βρ)− (h− g)(β + αδ + αβρ)− (ρ+ h),

e = (h− g)(δ + βρ)− ρh.

Remark 2.1. The equilibriums E0 and E2 always exist. If g > h, both equilibriums
E−1 = (x−, 0) and E+

1 = (x+, 0) exist when 1 > h and (1 − h)2 > 4(g − h) while
if g < h then E+

1 = (x+, 0) only exists. It is easy to observe from (2.4) that the
leading coefficient a is always negative and e is positive if

(h− g)(δ + βρ) > ρh (2.5)

holds. Hence, if (2.5) is satisfied, the Descartes rule of sign assures that the equation
(2.4) possesses at least one positive root. Further equation (2.4) has a unique
positive root, say x∗, if (2.5) holds along with any one the following conditions:

H1 b < 0, c < 0 and d < 0,

H2 b < 0, c < 0 and d > 0,

H3 b < 0, c > 0 and d > 0,

H4 b > 0, c > 0 and d > 0.

Hereafter we always assume that the system (2.1) satisfies any one of the above
conditions.

3. Local stability analysis and Hopf bifurcation

In this section, we deal with the local stability of the system (2.1) about the possible
equilibrium points. We consider two cases.
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Case 1: The non-delayed model

Theorem 3.1. For system (2.1) without delay (i.e. τ = 0),

i. E0 = (0, 0) is saddle if h < g and unstable if h > g.

ii. E−1 = (x−, 0) is always unstable.

iii. E+
1 = (x+, 0) is always saddle.

iv. E2 = (0, ρδ ) is stable if 1 < ρ
δ+βρ + g

h and saddle if 1 > ρ
δ+βρ + g

h .

Proof. i. The Jacobian matrix of (2.1) calculated at E0 = (0, 0) is given by

J |E0 =

 1− g
h 0

0 γ

 .

The eigenvalues of J |E0
are λ1 = h−g

h and λ2 = γ > 0. Hence the result.

ii. Evaluation J at E−1 is given by

J |E−
1

=

x
(
−1 + g

(h+x)2

)
− x

1+αx

0 γ

 .

The corresponding eigenvalues are λ1 = x−
√

(1− h)2 − 4(g − h) > 0 and λ2 = γ >
0.

iii. Similarly the eigenvalues of J at E+
1 are λ1 = −x+

√
(1− h)2 − 4(g − h) < 0

and λ2 = γ > 0.
iv. The eigenvalues of J at E2 are λ1 = 1− ρ

δ+βρ −
g
h and λ2 = −γ < 0. Hence

the proof is complete.
Now we look at the local asymptotic stability and Hopf bifurcation of the positive

equilibrium E∗.

Theorem 3.2. Assume that (2.5) holds and

γ∗ < γ,

γ∗ <
n∗

δ(1 + αn∗)(1 + βp∗)2
.

(3.1)

Then the positive equilibrium E∗ is locally asymptotically stable.

Proof. The Jacobian matrix of (2.1) at E∗ is

J |E∗ =

 j∗11 j
∗
12

j∗21 j
∗
22

 ,

where

j∗11 = x∗

(
αy∗

(1 + αx∗)2(1 + βy∗)
+

g

(h+ x∗)2
− 1

)
= γ∗,

j∗12 = − x∗
(1 + αx∗)(1 + βy∗)2

< 0, j∗21 =
γ

δ
> 0, j∗22 = −γ < 0.
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The characteristic equation for J |E∗ is

λ2 − tr(J |E∗)λ+ det(J |E∗) = 0, (3.2)

where tr(J |E∗) = γ∗−γ and det(J |E∗) = −γ∗γ+
γx∗

δ(1 + αx∗)(1 + βy∗)2
. According

to Routh-Hurwitz criterion, characteristic equation will have negative real roots if
tr(J |E∗) < 0 and det(J |E∗) > 0. Here, if (3.1) holds (i.e. γ∗ < 0), then we get
tr(J |E∗) < 0 and det(J |E∗) > 0.

Theorem 3.3. Assume that γ = γ∗ and

x∗
δ(1 + αx∗)(1 + βy∗)2

> γ. (3.3)

Then the system (2.1) exhibits Hopf bifurcation near E∗ with respect to γ.

Proof. It is well known that if tr(J |E∗) = 0, then the characteristic equation has
purely imaginary roots whenever det(J |E∗) > 0. Let γ be a bifurcation parameter,
that is, when g crosses critical value it loses its stability and a Hopf bifurcation

occurs. If γhb = γ∗ = x∗

(
αy∗

(1 + αx∗)2(1 + βy∗)
+

g

(h+ x∗)2
− 1

)
, it is evident that

(i) tr(J |E∗) = 0 and (ii) det(J |E∗) > 0 provided (3.3) holds. Moreover transitivity
condition is given by (iii) d

dγ (tr(J |E∗)) = −1 6= 0. These conditions assure the
existence of a Hopf bifurcation around E∗.

Case 2: The delayed model

Now we consider the system (2.1) (with delay) and we seek the local stability around
E∗ = (x∗, y∗). For simplicity, let us take u = x−x∗ and v = y−y∗. By using Taylor
series expansion of (2.1) at (x∗, y∗), we obtain

u̇(t) = p10u(t) + p01v(t) +
∑

i+j≥2
piju

i(t)vj(t),

v̇(t) = q100u(t− τ) + q001v(t− τ) +
∑

i+j+k≥2
gijku

i(t− τ)vj(t)vk(t− τ),
(3.4)

where

p10 = x∗
(

αy∗

(1 + αx∗)2(1 + βy∗)
+

g

(h+ x∗)2
− 1

)
,

p01 = − x∗
(1 + αx∗)(1 + βy∗)2

, q100 =
γδy2∗

(x∗ + ρ)2
, q001 = − γδy∗

x∗ + ρ
,

fij =
1

i!j!

∂i+jf

∂xi(t)∂yj(t)

∣∣∣∣
(x∗,y∗)

,

gijk =
1

i!j!k!

∂i+j+kg

∂xi(t− τ)∂yj(t)∂yk(t− τ)

∣∣∣∣
(x∗,y∗)

,

f = x

(
1− x− y

(1 + αx)(1 + βy)
− g

h+ x

)
,

g = γy

(
1− δy(t− τ)

x(t− τ) + ρ

)
.



Dynamics of a modified Leslie-Gower model. . . 755

Therefore, linearize the system (3.4) as follows

u̇(t) = p10u(t) + p01v(t),

v̇(t) = q100u(t− τ) + q001v(t− τ),
(3.5)

whose characteristic equation can be given by∣∣∣∣∣∣ p10 − λ p01

q100e
−λτ b001e

−λτ − λ

∣∣∣∣∣∣ = 0,

that is λ2 −Aλ−Bλe−λτ + Ce−λτ = 0, (3.6)

where A = p10, B = q001 and C = p10q001 − p01q100. Assume that there exists a
purely imaginary solution λ(τ) = ±iη(τ) of (3.6). Substituting this into (3.6) and
separating the real and imaginary parts, we get

Bη sin(ητ)− C cos(ητ) = −η2,

C sin(ητ) +Bη cos(ητ) = −Aη.
(3.7)

Solving the above equations, we obtain

cos(ητ) =
η2(C −AB)

B2η2 + C2
,

sin(ητ) = −η(Bη2 +AC)

B2η2 + C2
.

(3.8)

Since sin2(ητ) + cos2(ητ) = 1, we have

η4 − (B2 −A2)η2 − C2 = 0. (3.9)

Hence the equation (3.9) has unique positive root (say η0) given by

η0 =

√
(B2 −A2) +

√
(B2 −A2)2 + 4C2

2
. (3.10)

Since η0 is a root of equation (3.9), from (3.7), we get the critical delay τn as

τn =
1

η0
arcsin

(
−η0(Bη20 +AC)

B2η20 + C2

)
+

2nπ

η0
, n = 0, 1, 2, · · · . (3.11)

Let λ(τ) = ζ(τ)+iη(τ) be the root of the characteristic equation (3.6) with ζ(τn) = 0
and η(τn) = η0.

Theorem 3.4. The following transversality condition is satisfied:[
d(R(λ(τ)))

dτ

]
τ=τn

> 0.

Proof. Taking λ(τ) = ζ(τ) + iη(τ) in (3.6) and taking the derivative with respect
to τ , we have [

dλ

dτ

]−1
=

(2λ−A)eλτ

λ(C −Bλ)
+

B

λ(C −Bλ)
− τ

λ
.
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Then

R

([
dλ

dτ

]−1)
λ=iη0

=

[
(2λ−A)eλτ

λ(C −Bλ)
+

B

λ(C −Bλ)

]
λ=iη0

=

[
−B2η0+(−AB+2C)η0 cos(η0τ)+(−2Bη20−AC) sin(η0τ)

η0(B2η20+C2)

]
=

[√
(B2 −A2)2 + 4C2

η0(B2η20 + C2)

]
> 0.

From the above results, it is easy to derive the following theorem:

Theorem 3.5. Suppose that αy∗
(1+αx∗)2(1+βy∗)

+ g
(h+x∗)2

< 1 holds. Then the follow-

ing results hold:

i. the interior equilibrium point E∗ of the model (2.1) is locally asymptotically
stable for τ ∈ [0, τ0).

ii. The interior equilibrium point E∗ of the model (2.1) undergoes Hopf bifurca-
tion around E∗ at τ = τn, (n = 0, 1, 2, · · · ).

Remark 3.1. For all τ = τn, (n = 0, 1, 2, · · · ), the transversality condition and
Hopf-bifurcation hold. When τ = τn, the equation (3.9) has only one positive root.
Because of this, there is no interval for τ exists for which stability of equilibrium
point E∗ switches from stability to instability to stability.

4. Stability and direction of the Hopf bifurcation

In Section 3, we have shown that the system (2.1) undergoes Hopf bifurcation at
critical delay τ = τ0. Now we are in a position to investigate the direction of Hopf
bifurcation, stability and period of the bifurcating periodic solution from E∗. The
method used in this section is based on center manifold theory and normal form
theory explored by Hassard et al. [13]. At τ = τ0, ±iη0 are the purely imaginary
roots of the equation (3.6) at E∗. Assume τ = τ0 + σ, σ ∈ R, which yields Hopf
bifurcation at σ = 0 of (2.1). Let z1 = x − x∗ and z2 = y − y∗. Normalizing the
delay with scaling t→ t/τ , equation (2.1) becomes

ż(t) = Lσ(zt) + F (zt, σ), (4.1)

where z(t) = (z1(t), z2(t))T ∈ R2, Lσ : C→ R and F : R× C→ R are respectively
given by

Lσ(φ) = (τ0 + σ)D1

φ1(0)

φ2(0)

+ (τ0 + σ)D2

φ1(−1)

φ2(−1)

 , (4.2)
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where D1 =

p10 p01

0 0

 , D2 =

 0 0

q100 q001

 and

F (φ, σ) =


∑
i+j≥2

pijφ
i
1(0)φj2(0)∑

i+j+k≥2

qijkφ
i
1(−1)φj2(0)φk2(−1)

 . (4.3)

The values of p10, p01, q100 and q001 are same as given in (3.4) and pij and qijk are
given by:

p20 = −1 +
gh

(h+ x∗)3
+

αy∗

(1 + αx∗)3(1 + βy∗)
, p11 = − 1

(1 + αx∗)2(1 + βy∗)2
,

p02 =
βx∗

(1 + αx∗)(1 + βy∗)3
, q200 = − γδy2∗

(x∗ + ρ)3
, q110 =

γδy∗
(x∗ + ρ)2

,

q101 =
γδy∗

(x∗ + ρ)2
, q011 = − γδ

x∗ + ρ
, q300 =

γδy2∗
(x∗ + ρ)4

, q210 = − γδy∗
(x∗ + ρ)3

.

Using Riesz representation theorem, there exists a function ω(θ, σ) of bounded
variation for θ ∈ [−1, 0], such that

Lσ(φ) =

∫ 0

−1
dω(θ, σ)φ(θ) for φ ∈ C. (4.4)

In fact, we choose

ω(θ, σ) = (τ0 + σ)D1ξ(θ) + (τ0 + σ)D2ξ(θ + 1), (4.5)

where ξ(θ) is a Dirac delta function. For φ ∈ C1([−1, 0],R2), we define

A(σ)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dω(m,σ)φ(m), θ = 0,

and

R(σ)φ(θ) =

0, θ ∈ [−1, 0),

F (σ, φ), θ = 0.

Then the system (4.1) can be rewritten as follows

ż(t) = A(σ)zt +R(σ)zt, (4.6)

where zt(θ) = z(t+ θ) for θ ∈ [−1, 0]. Similarly, for ψ ∈ C1([−1, 0],R2), we assume

A∗(σ)ψ(m) =


−dψ(m)

dm
, m ∈ (0, 1],∫ 0

−1
dωT (0, σ)ψ(−t), m = 0,
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and a bilinear form:

< ψ(s), φ(θ) >= ψ̄T (0)φ(0)−
∫ 0

θ=−1

∫ θ

ζ=0

ψ̄T (ζ − θ)dω(θ)φ(ζ)dζ, (4.7)

where ω(θ) = ω(θ, 0). Then A(0) and A∗ are disjoint operators. We discussed from
previous section that ±iη0 are the eigenvalues of A(0) as well as eigenvalues of A∗.
Let s(θ) = (1, µ)T eiη0τ0θ be the eigenvector of A(0) with respect to eigenvalue iη0τ0
which yields A(0)s(θ) = iη0τ0s(θ). Then it is easy to obtain following:

τ0

 iη0 − p10 −p01
q100e

−iη0τ0 iη0 − b001e−iη0τ0

 1

µ

 =

 0

0

 ,

which gives

s(0) = (1, µ)T =

(
1,

q100e
−iη0τ0

iη0 − q001e−iη0τ0

)
.

On the other hand s∗(m) = E(1, µ∗)T eiη0τ0m is the eigenvector of A∗(0) with respect
to eigenvalue −iη0τ0. Therefore

Eτ0

−iη0 − p10 q100e
iη0τ0

−p01 −iη0 − b001eiη0τ0

 1

µ∗

 =

 0

0

 ,

from which we obtain

s∗(0) = E(1, µ∗)T = E

(
1,− iη0 + p10

q100eiη0τ0

)
.

We compute E such that < s∗(m), s(θ) >= 1, that is

< s∗(m), s(θ) >= Ē(1, µ̄∗)(1, µ)T−
∫ 0

−1

∫ θ

0

Ē(1, µ̄∗)e−iη0τ0(ζ−θ)dη(θ)(1, ρ)T eiω0τ0ζdζ

= Ē{1 + µ̄∗q100τ0e
−iη0τ0 + µµ̄∗(1 + q001τ0e

−iη0τ0)}.

Hence

E =
1

1 + µ∗q100τ0eiη0τ0 + µ̄µ∗(1 + q001τ0eiη0τ0)
.

The remaining part of the derivation is given in Appendix of [23]. Now we define

υ1(0) =
1

2ω0

(
g20g11 − 2 |g11|2 −

|g02|2

3

)
+
g21
2

,

µ2 =
Re {υ1(0)}
Re {λ′(τ0)}

,

β2 = 2Re {υ1(0)} ,

T2 = −Im {υ1(0)}+ µ2Im {λ′(τ0)}
ω0

,

(4.8)

where gij are given in equations (A.5a)-(A.5d) of [23]. Now we summarize the above
results into following theorem:
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Theorem 4.1. From (4.8), we conclude that

1. The sign of µ2 determines the direction of the Hopf bifurcation: if µ2 > 0
(µ2 < 0), then the Hopf bifurcation is supercritical (sub-critical).

2. The sign of β2 determines the stability of the bifurcating periodic solution: the
bifurcation periodic solutions are stable (unstable) if β2 < 0(β2 > 0).

3. The sign of T2 determines the periodic solution: the period increases (decreas-
es) if T2 > 0(T2 < 0).

5. Numerical examples

In this subsection, we develop numerical simulations to illustrate our proposed the-
oretical results in the previous sections. We consider two cases.

Case 1: The non-delayed model: Consider the system (4.1) without time
delay (τ = 0) and with the following fixed parameters α = 2.0, β = 0.2, δ =
0.32, ρ = 0.2, g = 0.09, h = 0.3 and γ regarded as bifurcation parameter; that is

dx

dt
= x

(
1− x− y

(1 + 2.0x)(1 + 0.2y)
− 0.09

0.3 + x

)
,

dy

dt
= γy

(
1− 0.32y

x+ 0.2

)
.

(5.1)

The above model has four equilibrium points, namely, E0 = (0, 0), E1 = (0.9266, 0),
E2 = (0, 0.625) and positive interior equilibrium (x∗, y∗) = (0.114545, 0.982954).
The graphical visualization of equilibrium points (red bullets) through nullclines is
shown Figure 1. At γ = 0.1, it can be concluded from simple calculations that E0

is unstable while E1 and E2 are saddle. With the same parameters and γ = 0.1,
the conditions given in Theorem 3.2 are well satisfied as γ∗ − γ = −0.0299818 < 0
and γ∗ − x∗

δ(1+αx∗)(1+βy∗)2
= −0.133382 < 0. The equilibrium point E∗ is locally

asymptotically stable and which also can be confirmed from Figure 2. In addition,
we choose γ as a bifurcation parameter and keep other parameters fixed as in the
above. We find that γhb = γ∗ = 0.07 and when γ crosses its critical value γ∗, system
loses its stability and Hopf bifurcation occurs around E∗, see Figure 3.
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Figure 1. The existence of all possible equilibrium points (red bullets).
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Figure 2. (a) The phase space diagram of (5.1) for γ = 0.1. (b) The time trajectories of system (5.1)
for γ = 0.1. Thus E∗ = (0.114545, 0.982954) is locally asymptotically stable.
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Figure 3. (a) The phase space diagram of (5.1) for γ = 0.07. (b) The time trajectories of system (5.1)
for γ = 0.07. Thus the model (5.1) undergoes Hopf bifurcation around E∗.

Case 2: The delayed model: We consider the following delayed system

dx

dt
= x

(
1− x− y

(1 + 2.0x)(1 + 0.2y)
− 0.09

0.3 + x

)
,

dy

dt
= γy

(
1− 0.32y(t− τ)

x(t− τ) + 0.2

)
.

(5.2)

Using (3.10) and (3.11), one can easily obtain η0 = 0.22244 and critical delay
τ0 = 3.26242. As stated in Theorem 3.5, when 0 < τ < τ0, the equilibrium point
E∗ of system (5.2) is asymptotically stable, which is easily verified from Figure
4. Whenever τ crosses its critical value τ0, system (5.2) loses its stability and
family of periodic solutions (that is, Hopf bifurcation) exists. For this value, the

transversality condition holds by Theorem 3.4 since ([d(R(λ(τ)))
dτ ]τ=τ+

1,n
) > 0. Figure

5 displays the periodic solution of (5.2) for τ = 3.26242. From the results derived in
Section 4, we get s(0) = (1, 1.07574− 3.41753i)T , s∗(0) = Ē(1,−0.32− 0.19188i)T

g20 = 5.47613+3.15866i, g11 = 0.093921+0.20673i, g02 = −6.65778+0.11011i and
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g21 = 18.0231 + 31.0934i where Ē = 0.14936 + 0.61924i. Also we get µ2 < 0, β > 0
and T2 > 0. Thus we conclude that Hopf bifurcation at τ0 = 3.26242 is subcritical.
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Figure 4. (a) The phase space diagram of (5.2) for τ = 3.0. (b) The time trajectories of system (5.2)
for τ = 3.0. Thus E∗ is locally asymptotically stable.
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Figure 5. (a) The phase space diagram of (5.2) for τ = 3.27. (b) The periodic solutions of system (5.2)
for τ = 3.27. Thus the model (5.2) undergoes Hopf bifurcation around E∗.

6. Conclusion

This work discusses the dynamical properties of modified Leslie-Gower predator-
prey model (2.1) with Crowley-Martin functional response. The nonlinear harvest-
ing and gestation delay are respectively utilized into the prey and predator equa-
tions to construct the more suitable model. Long term coexistence of both predator
and prey is ensured by persistence analysis of model (2.1). We have established
the existence of possible equilibrium points and their local stability without delay.
Non-delayed version of model (2.1) experiences Hopf bifurcation near E∗ when the
parameter γ crosses its critical value γ = γhb. It is clear that from the proposed



762 R. Sivasamy, K. Sathiyanathan & K. Balachandran

results that time-delay causes the existence of Hopf bifurcation around positive e-
quilibrium point. With the help of the center manifold theorem, the stability of
Hopf bifurcation and its direction are performed. The developed theoretical results
are verified by numerical examples.
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