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Abstract In this article, we studied a discontinuous Galerkin finite element
method for convection-diffusion-reaction problems with singular perturbation.
Our approach is highly flexible by allowing the use of discontinuous approxi-
mating function on polytopal mesh without imposing extra conditions on the
convection coefficient. A priori error estimate is devised in a suitable energy
norm on general polytopal mesh. Numerical examples are provided.
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1. Introduction
In this paper, we consider a priori error estimation of a discontinuous Galerkin
(DG) method for the stationary state convection-diffusion problem

−ϵ∆u+∇ · (bu) + cu = f in Ω ⊂ Rd, (1.1)
u = 0 on ∂Ω, (1.2)

where ϵ > 0 is the diffusion parameter, d = 2 or 3, and Ω is a polygonal (when d = 2)
or polyhedral (when d = 3) domain with boundary ∂Ω. It is usually assumed that
b, c, and f are sufficiently smooth, b ∈ [W 1,∞(Ω)]d, and c+ 1

2∇·b ≥ c0 > 0 for some
constant c0, so that problem (1.1)-(1.2) has a unique solution in H1

0 (Ω) ∩ H2(Ω)
(cf., e.g., [11]).

It is well-known that, when convection dominates diffusion (i.e. ϵ ≪ 1, which is
also referred to as the singular perturbation parameter in this case), the solution of
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the boundary value problem typically possesses layers, which are thin regions where
the solution and/or its derivatives change rapidly. Standard numerical methods
will produce solutions with nonphysical oscillations in this case, unless the compu-
tational mesh has a size of the magnitude of the layers. Numerical stabilization
techniques, including fitted mesh methods and fitted operator methods, have been
developed to resolve the difficulty; cf. the books [8,9,11] and the references therein.
In particular, DG methods with interior penalty have been proved to be an effective
approach for solving convection-diffusion problems [3, 6, 7].

In this paper, we are interested in using discontinuous Galerkin methods with
interior penalty to solve convection-diffusion-reaction problems with singular per-
turbation. In [2], Ayuso and Marini apply weighted-residual approach to recover
discontinuous Galerkin formulations for advection-diffusion-reaction problems with
singular perturbation. An optimal error estimation of the order O((ϵ1/2 + h1/2)hk)
has been obtain on triangular mesh under a set of assumptions for the convection
coefficient b. Analysis of finite element method on polygonal mesh is a new trend
in the field of numerical PDE, such as the works [1, 5, 10, 12] and the references
therein. The goal of this article is to analyze an interior penalty discontinuous
Galerkin method for the problem (1.1)-(1.2) on polygonal mesh. Compare to [2],
our analysis is simple and allows the use of general mesh such as polytopal mesh,
hybrid mesh and mesh with hanging nodes. In addition, a set of strict assumptions
for the convection coefficient in [2] is removed in our analysis.

The DG methods in [2] and the DG methods proposed in this paper share the
same finite element space. For the DG formulations in [2], integration by parts
is used for the convection term and as a consequence, derivative of trial function
turns to derivative of the test function. In this paper, we handle the convection
term differently without applying integration by parts on it. As a result, we can
relax the restriction of the convection coefficient.

The rest of this article is organized as follows. In Section 2, the DG FEM
will be introduced. Analysis of the DG method is found in Section 3. Numerical
experiments are presented in Section 4 to support the theoretical results.

2. Discontinuous Galerkin Finite Element Schemes
In this paper, standard definitions and notations of Sobolev spaces are used. For
a polyhedron D ⊆ Ω, we denote Hs(D) = W s,2(D) the Hilbertian Sobolev space
of index s ≥ 0 defined on D. The associated inner product, norm, and semi-
norms in Hs(D) are denoted by (·, ·)s,D, ∥ · ∥s,D, and | · |s,D, respectively. When
s = 0, H0(D) coincides with the space of square integrable functions L2(D). In
this case, the subscript s is suppressed from the notations of norm, semi-norm,
and inner product. Furthermore, the subscript D is also suppressed when D = Ω.
Throughout this article, we use C for generic constants independent of ϵ, mesh
size, and the solution to equation (1.1)-(1.2), which may not necessarily be the
same at each occurrence. We will use plain and bold fonts for scalars and vectors,
respectively.

Let Th be a shape regular quasi-uniform triangulation of the domain Ω which
consists of polygons in two dimension or polyhedra in three dimension satisfying a
set of conditions specified in [13]. Denote by Eh the set of all edges or flat faces in Th,
and let E0

h = Eh\∂Ω be the set of all interior edges or flat faces. For every element
T ∈ Th, we denote by hT its diameter. The mesh size for Th is h = maxT∈Th

hT .
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For a given integer k ≥ 1, let Vh be a discontinuous Galerkin finite element space
associated with Th defined as

Vh = {v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th}, (2.1)

where Pk is the space of polynomials of total degree up to k.
Let T1 and T2 be elements sharing a common edge e, for which n1 and n2 are

the unit outward normal vectors with respect to T1 and T2, respectively. We define
the jump and the average of a scalar valued function v on e as

[[v]]e =

 v|T1
n1 + v|T2

n2, e ∈ E0
h,

vn, e ⊂ ∂Ω,

{v}e =

 1
2 (v|T1

+ v|T2
), e ∈ E0

h,

v, e ⊂ ∂Ω.

We introduce the following inner products for broken Sobolev spaces

(v, w)Th
=

∑
T∈Th

(v, w)T =
∑
T∈Th

∫
T

vwdx,

⟨v, w⟩∂Th
=

∑
T∈Th

⟨v, w⟩∂T =
∑
T∈Th

∫
∂T

vwds.

Define

∂+T = {x ∈ ∂T : b(x) · n(x) ≥ 0}, ∂−T = {x ∈ ∂T : b(x) · n(x) ≤ 0}.

For any T ∈ Th, let vo represent the value of v at the element adjacent to T and
let vo = 0 on e if e ⊂ ∂Ω ∩ ∂T . We may introduce some forms on Vh as follows:

sd(v, w) = α
∑
e∈Eh

ϵh−1
e

∫
e

[[v]] · [[w]]ds,

sc(v, w) =
∑
T∈Th

⟨(b · n)(vo − v), w⟩∂−T ,

ad(v, w) = ϵ(∇v,∇w)Th
− ϵ⟨{∇v}, [[w]]⟩Eh

− ϵ⟨{∇w}, [[v]]⟩Eh
+ sd(v, w),

ac(v, w) = (∇ · (bv), w)Th
+ (cv, w) + sc(v, w),

a(v, w) = ad(v, w) + ac(v, w).

Algorithm 2.1 (Discontinuous Galerkin Method). A numerical approximation for
(1.1) and (1.2) can be obtained by seeking uh ∈ Vh satisfying the following equation:

a(uh, v) = (f, v), ∀ v ∈ Vh. (2.2)
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3. Analysis
First for any v ∈ Vh, we define

|||v|||2a = ad(v, v) = ϵ
∑
T∈Th

∥∇v∥2T + α
∑
e∈Eh

ϵh−1
e ∥[[v]]∥2e,

|||v|||2c = ∥v∥2 +
∑
e∈E0

h

∥|b · n|1/2[[v]]∥2e,

|||v|||2 = |||v|||2a + |||v|||2c .

It is easy to verify that ||| · ||| is a norm in Vh.
For any function φ ∈ H1(T ), the following trace inequality holds true,

∥φ∥2e ≤ C
(
h−1
T ∥φ∥2T + hT ∥∇φ∥2T

)
. (3.1)

The following lemmas are useful to establish the coercivity of the bilinear form
a(·, ·).

Lemma 3.1. For v, w ∈ Vh ∩H1(Ω),

(∇ · (bv), w)Th
= ((∇ · b)v, w)Th

− (v,∇ · (bw))Th

+⟨(b · n)v, w⟩∂Th
, (3.2)

and

(∇ · (bv), v)Th
=

1

2
((∇ · b)v, v)Th

+
1

2
⟨(b · n)v, v⟩∂Th

, (3.3)

Proof. It follows from the definition of integration by parts that

(∇ · (bv), w)Th
= ((∇ · b)v, w)Th

+ (∇v, bw)Th

= ((∇ · b)v, w)Th
− (v,∇ · (bw))Th

+ ⟨(b · n)w, v⟩∂Th
,

which implies (3.2). The equation (3.3) is a direct consequence of (3.2).

Lemma 3.2. For v ∈ Vh, then

1

2

∑
T∈Th

⟨b · nv, v⟩∂T +
∑
T∈Th

⟨b · n(vo − v), v⟩∂−T ≥ 1

4

∑
e∈E0

h

∥|b · n|1/2[[v]]∥2e. (3.4)

Proof. It follows from the definitions of ∂+T and ∂−T ,

1

2

∑
T∈Th

⟨b · nv, v⟩∂T +
∑
T∈Th

⟨b · n(vo − v), v⟩∂−T

=
∑
T∈Th

⟨b · nvo, v⟩∂−T − 1

2

∑
T∈Th

⟨b · nv, v⟩∂−T +
1

2

∑
T∈Th

⟨b · nv, v⟩∂+T

=
∑
T∈Th

⟨b · nvo, v⟩∂−T\∂Ω − 1

2

∑
T∈Th

⟨b · nv, v⟩∂−T\∂Ω +
1

2

∑
T∈Th

⟨b · nv, v⟩∂+T\∂Ω

−1

2

∑
T∈Th

⟨b · nv, v⟩∂−T∩∂Ω +
1

2

∑
T∈Th

⟨b · nv, v⟩∂+T∩∂Ω
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=
∑
T∈Th

⟨b · nvo, v⟩∂−T\∂Ω − 1

2

∑
T∈Th

⟨b · nv, v⟩∂−T\∂Ω − 1

2

∑
T∈Th

⟨b · nvo, vo⟩∂−T\∂Ω

−1

2

∑
T∈Th

⟨b · nv, v⟩∂−T∩∂Ω +
1

2

∑
T∈Th

⟨b · nv, v⟩∂+T∩∂Ω

≥ −1

2

∑
T∈Th

⟨b · n(vo − v), (vo − v)⟩∂−T\∂Ω

= −1

4
(
∑
T∈Th

⟨b · n(vo − v), (vo − v)⟩∂−T\∂Ω −
∑
T∈Th

⟨b · n(vo − v), (vo − v)⟩∂+T\∂Ω)

≥ 1

4

∑
e∈E0

h

∥|b · n|1/2[[v]]∥2e,

which completes the proof of the lemma.
The following coercivity result holds.

Lemma 3.3. For v ∈ Vh, then for α large enough,

C|||v|||2 ≤ a(v, v). (3.5)

Therefore, the DG formulation (2.2) has a unique solution.

Proof. It is well known that for α large enough

C|||v|||2d ≤ ad(v, v). (3.6)

Using (3.3) and (3.4), we have

ac(v, v) = (∇ · (bv), v)Th
+ (cv, v) + sc(v, v)

= ((c+
1

2
∇ · b)v, v) + 1

2
⟨(b · n)v, v⟩∂Th

+ sc(v, v)

≥ c0∥v∥2 +
1

4

∑
e∈E0

h

∥|b · n|1/2[[v]]∥2e

≥ C|||v|||2c .

Combining the above two estimates implies (3.5).
We next establish a priori error estimation of the DG method. Let Qh be

a element-wise defined L2 projections such that for each element T ∈ Th, Qh :
H1(T ) → Pk(T ).

Lemma 3.4. Let u be the solution of the problem (1.1)-(1.2). Then for any v ∈ Vh,

|ad(u−Qhu, v)| ≤ Cϵ1/2hk|u|k+1|||v|||, (3.7)
|ac(u−Qhu, v)| ≤ Chk+1/2|u|k+1|||v|||. (3.8)

Proof. Using the Cauchy-Schwarz inequality, the trace inequality and the defini-
tion of Qh, we have

|ad(u−Qhu, v)| ≤ |ϵ(∇(u−Qhu),∇v)Th
|+ |ϵ⟨{∇(u−Qhu)}, [[v]]⟩Eh

|
+|ϵ⟨{∇v}, [[u−Qhu]]⟩Eh

|+ |sd(u−Qhu, v)|

≤ Cϵ1/2hk|u|k+1|||v|||.
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It follows from the definition of ac(·, ·) that

ac(u−Qhu, v) = (∇ · (b(u−Qhu), v)Th
+ (c(u−Qhu), v) + sc(u−Qhu, v)

= −(u−Qhu, b · ∇v)Th
+ (c(u−Qhu), v) (3.9)

+[⟨(b · n)(u−Qhu), v⟩∂Th
+ sc(u−Qhu, v)].

We will bound the three terms on the right hand side of the above equation.
The inverse inequality and the definition of Qh imply

|(u−Qhu, b · ∇v)Th
| = |(u−Qhu, (b− b̄) · ∇v)Th

|
≤ Chk+1|u|k+1∥v∥,

where b̄ is the average of b on each element T ∈ Th.
Obviously, we have

|(c(u−Qhu), v)| ≤ Chk+1|u|k+1∥v∥.

It follows from the definitions of ∂+T and ∂−T ,∑
T∈Th

⟨(b · n)w, v⟩∂T + sc(w, v)

=
∑
T∈Th

⟨(b · n)w, v⟩∂T +
∑
T∈Th

⟨(b · n)(wo − w), v⟩∂−T

=
∑
T∈Th

⟨(b · n)wo, v⟩∂−T +
∑
T∈Th

⟨(b · n)w, v⟩∂+T

=
∑
T∈Th

⟨(b · n)wo, v⟩∂−T\∂Ω +
∑
T∈Th

⟨(b · n)w, v⟩∂+T\∂Ω

+
∑
T∈Th

⟨(b · n)wo, v⟩∂−T∩∂Ω +
∑
T∈Th

⟨(b · n)w, v⟩∂+T∩∂Ω

= −
∑
T∈Th

⟨(b · n)w, vo⟩∂+T\∂Ω +
∑
T∈Th

⟨(b · n)w, v⟩∂+T\∂Ω

+
∑
T∈Th

⟨(b · n)w, v⟩∂+T∩∂Ω

=
∑
T∈Th

⟨(b · n)w, (v − vo)⟩∂+T\∂Ω +
∑
T∈Th

⟨(b · n)w, v⟩∂+T∩∂Ω.

Using the equation above with w = u−Qhu and trace inequality (3.1), we have∑
T∈Th

⟨(b · n)(u−Qhu), v⟩∂T + sc(u−Qhu, v)

=
∑
T∈Th

⟨(b · n)(u−Qhu), (v − vo)⟩∂+T\∂Ω +
∑
T∈Th

⟨(b · n)(u−Qhu), v⟩∂+T∩∂Ω

≤ Chk+1/2|u|k+1|||v|||.

Combining the above estimates with (3.9) gives (3.8). We complete the proof of
the lemma.
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Theorem 3.1. Let uh ∈ Vh be the DG finite element solution of the problem (1.1)-
(1.2) arising from (2.2). Then there exists a constant C such that

|||u− uh||| ≤ C(ϵ1/2 + h1/2)hk|u|k+1. (3.10)

Proof. Let u be the solution of the problem (1.1)-(1.2). Then it is obvious that
for any v ∈ Vh,

a(u, v) = (f, v).

Subtracting (2.2) from the equation above yields

a(u− uh, v) = 0.

Adding and subtracting Qhu give

a(Qhu− uh, v) = −a(u−Qhu, v), ∀v ∈ Vh.

Letting v = Qhu− uh := eh, and using (3.5), (3.7) and (3.8), we have

|||eh|||2 ≤ Ca(eh, eh) ≤ C|a(u−Qhu, eh)| ≤ C(|ad(u−Qhu, eh)|+ |ac(u−Qhu, eh)|)
≤ C(ϵ1/2 + h1/2)hk|u|k+1|||eh|||.

Using the triangle inequality, we have proved the theorem.

4. Numerical example
In this section, we present numerical results for the DG formulation (2.2). Exam-
ples of different types are used to confirm numerically the theoretical estimates in
Section 3. Pk elements (k = 1, 2, 3, 4) on either uniform rectangular meshes, or
uniform pentagonal (hybrid with rectangles) meshes, shown in Figure 1, are used in
all the examples. Note that as Qk elements fit rectangular meshes, the rectangular
meshes are still considered as general polygonal meshes for the Pk elements.
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Figure 1. The uniform rectangular meshes of h = 1/2, 1/4, and the uniform pentagonal meshes of
h = 1/2, 1/4.

Example 4.1 (Smooth solution). Let Ω = (0, 1)2, b = (1, 1)T , and c = 1. The
source term f is determined such that the exact solution of (1.1) is

u(x, y) = x(1− x)y(1− y). (4.1)

We computed approximate solutions to the boundary value problem for ϵ = 10−3

and 10−9 to confirm the error estimates of the DG scheme. Here, α = 10 is used for
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(2.2) in all computations. Numerical error eh = Qhu−uh is measured in both the L2

norm ||·|| and the energy norm |||·|||. The corresponding convergence rates for linear,
quadratic, and cubic elements have been collected in Tables 1-3, respectively. Each
convergence rate r is computed under the presumption that one has convergence of
order O(hr). The optimal L2 estimate of order O(hk+1) is observed. On the other
hand, numerical errors measured in the energy norm converges at O(hk+1/2), which
matches the estimate in Theorem 3.1.

Table 1. Example 4.1: The errors eh = Qhu − uh and the orders of convergence for (4.1) with k = 1.

h ϵ = 10−3 ϵ = 10−9

∥eh∥ Rate |||eh||| Rate ∥eh∥ Rate |||eh||| Rate
Rectangular meshes

1/4 0.002652 — 0.00865 — 0.002680 — 0.00857 —
1/8 0.000620 2.1 0.00311 1.5 0.000637 2.1 0.00304 1.5
1/16 0.000144 2.1 0.00115 1.4 0.000152 2.1 0.00109 1.5
1/32 0.000034 2.1 0.00043 1.4 0.000037 2.0 0.00039 1.5

Pentagonal meshes
1/4 0.002047 — 0.00828 — 0.002081 — 0.00826 —
1/8 0.000483 2.1 0.00287 1.5 0.000508 2.0 0.00288 1.5
1/16 0.000115 2.1 0.00101 1.5 0.000128 2.0 0.00102 1.5
1/32 0.000027 2.1 0.00035 1.5 0.000032 2.0 0.00036 1.5

Table 2. Example 4.1: The errors eh = Qhu − uh and the orders of convergence for (4.1) with k = 2.

h ϵ = 10−3 ϵ = 10−9

∥eh∥ Rate |||eh||| Rate ∥eh∥ Rate |||eh||| Rate
Retangular meshes

1/4 0.000606 — 0.00300 — 0.000609 — 0.00290 —
1/8 0.000074 3.0 0.00054 2.5 0.000075 3.0 0.00051 2.5
1/16 0.000009 3.0 0.00010 2.4 0.000009 3.0 0.00009 2.5
1/32 0.000001 3.0 0.00002 2.4 0.000001 3.0 0.00001 2.5

Pentagonal meshes
1/4 0.000431 — 0.00163 — 0.000433 — 0.00158 —
1/8 0.000050 3.1 0.00029 2.5 0.000051 3.1 0.00027 2.5
1/16 0.000006 3.1 0.00005 2.4 0.000006 3.0 0.00005 2.5
1/32 0.000001 3.0 0.00001 2.4 0.000001 3.0 0.00001 2.5

Example 4.2 (Two boundary layers). In this example, we examine the perfor-
mance of the proposed DG method in the occurrence of boundary layer. Let
Ω = (0, 1)2, b = (1, 0)T , and c = 1. We choose f and homogeneous Dirichlet
boundary conditions so that the exact solution to (1.1)-(1.2) is

u(x, y) = sin(πx)
(
1− e−y/

√
ϵ
)(

1− e(y−1)/
√
ϵ
)(

1− e−1/
√
ϵ
)−1

. (4.2)
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Table 3. Example 4.1: The errors eh = Qhu − uh and the orders of convergence for (4.1) with k = 3.

h ϵ = 10−3 ϵ = 10−9

∥eh∥ Rate |||eh||| Rate ∥eh∥ Rate |||eh||| Rate
Retangular meshes

1/2 0.0019459 — 0.007840 — 0.0019487 — 0.007699 —
1/4 0.0001230 4.0 0.000690 3.5 0.0001234 4.0 0.000666 3.5
1/8 0.0000077 4.0 0.000062 3.5 0.0000077 4.0 0.000058 3.5
1/16 0.0000004 4.0 0.000005 3.4 0.0000005 3.9 0.000005 3.5

Pentagonal meshes
1/2 0.0007408 — 0.002477 — 0.0007447 — 0.002426 —
1/4 0.0000477 4.0 0.000220 3.5 0.0000483 3.9 0.000212 3.5
1/8 0.0000030 4.0 0.000020 3.5 0.0000031 4.0 0.000019 3.5
1/16 0.0000002 4.0 0.000002 3.4 0.0000002 3.6 0.000002 3.5

This problem has two characteristic boundary layers with the width of O(
√
ϵ) near

boundaries y = 0 and y = 1.

P1 finite element space is used on rectangular meshes. The numerical solution
behaves as expected when ϵ = 10−4, (cf. Table 4), where it converges before resolv-
ing the layer and after resolving the layer. The numerical solutions for the boundary
value problem with ϵ = 10−4 and ϵ = 10−10 are plotted in Figure 2. We can see
the first solution resolves the boundary layer while the second does not. When
ϵ = 10−10, the strongly convection-dominated case, optimal convergence rates in
both L2 and energy norms are obtained as shown in Table 4.

(  1.0,  1.0,-0.3E-01)

(  0.0,  0.0, 0.1E+01)

(  1.0,  1.0,-0.5E-05)

(  0.0,  0.0, 0.1E+01)

Figure 2. Example 4.2. The P1 numerical solution for ϵ = 10−4 (top) and ϵ = 10−10, on a 64 × 64
rectangle mesh.

Example 4.3 (Internal layer–discontinuous boundary conditions). Let Ω = (0, 1)2,
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Table 4. Example 4.2: The errors eh = Qhu − uh and the orders of convergence for (4.2) on square
grids with k = 1.

h ϵ = 10−4 ϵ = 10−10

∥eh∥0 Rate |||eh||| Rate ∥eh∥0 Rate |||eh||| Rate
1/2 0.7645E-01 2.3 0.2297E+00 1.4 0.763E-01 2.3 0.231E+00 1.4
1/4 0.2100E-01 1.9 0.9099E-01 1.3 0.201E-01 1.9 0.934E-01 1.3
1/8 0.1300E-01 0.7 0.3287E-01 1.5 0.513E-02 2.0 0.351E-01 1.4
1/16 0.1657E-01 0.0 0.2436E-01 0.4 0.130E-02 2.0 0.127E-01 1.5
1/32 0.1529E-01 0.1 0.3172E-01 0.0 0.326E-03 2.0 0.452E-02 1.5
1/64 0.7213E-02 1.1 0.2369E-01 0.4 0.819E-04 2.0 0.159E-02 1.5
1/128 0.2399E-02 1.6 0.1108E-01 1.1 0.247E-04 1.7 0.473E-03 1.7

ϵ = 10−9, b = (1/2,
√
3/2)T , and c = 0 for (1.1). We choose a non-homogeneous

Dirichlet boundary condition

u =

{
1 on {0} × (1/4, 1),

0 elsewhere on ∂Ω.
(4.3)

Due to the discontinuities in boundary conditions, the solution of this problem
is not in H1(Ω). Numerical oscillations occur near the interior layer caused by
the joints of the conflicting Dirichlet boundary conditions. This phenomenon has
been reported in the literature for DG methods; see, e.g., [2, 4]. We use P2 and
P4 elements over rectangular meshes. The numerical solutions on a mesh of 1,024
uniform squares are plotted in Figure 3. The solutions do not oscillate outside of
the internal layer.

Figure 3. Example 4.3. The P2 and P4 numerical solutions for ϵ = 10−9 over a mesh of 1,024 elements.

Example 4.4 (A rotational flow). We solve the following boundary value problem−ϵ∆u+∇ · (bu) + cu = 0, in Ω = (0, 1)2 \ {1/2} × (0, 1/2),

u = x(1− x)y(1− y)(y − 1/2)2 on ∂Ω,
(4.4)
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where ϵ = 10−9, b = (1/2− y, x− 1/2)T , and c = 10−3.

The numerical solutions for P1 and P4 elements over a mesh of 1,024 uniform
squares are plotted in Figure 4. The numerical results indicate that the discontin-
uous Galerkin discretization is stable, and accurate.

Figure 4. Example 4. The numerical P1 and P4 solutions for ϵ = 10−9 over a mesh of 1,024 elements.
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