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ON AN EXTENDED HARDY-HILBERT"’S
INEQUALITY IN THE WHOLE PLANE*
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Abstract By means of weight coefficients, a complex integral formula and
Hermite-Hadamard’s inequality, a new extended Hardy-Hilbert’s inequality in
the whole plane with multi-parameters and a best possible constant factor is
given. The equivalent forms, the operator expressions and a few particular
cases are considered.
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1. Introduction

pr>1l+l—1 Uy bpy > 0,0 = {am oy € P, b = {b,}52, €19, |||, =
> )P > 0,]|b]|; > 0, then we have the following Hardy-Hilbert’s inequality:

Yy . ,m( syl Pl (1.1)

n=1m=1

where, the constant factor is the best possible (cf. [6]). The more accurate

sin(‘;rr/p)
form of (1.1) was given as follows (cf. [7], Theorem 323):

n ™
b 1.2
meM < sy bl el (1.2)

where, the constant factor m is still the best possible.

In 2011, Yang gave an extension of (1.2) as follows (cf. [22]): If 0 < Ay, <
LA A Ao = A am by 2 0, [lallpe = {5, (m — apP 0= lat 35 € (0,00),
[bllqp = {021 (0 a>q<1-A2>—1bz}% € (0,00), then

ZZ . 2a) < BOw, 2)lallpg bl (0 < @ <

n=1m=1

) (1.3)
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where, the constant factor B(\1, \2) is the best possible and B(u,v) is the beta
function defined by (cf. [20])

e 1
B(u,v) ::/O Wt“_ldt (u,v > 0). (1.4)
For A=1,)\ = é, Ao = 1%,04 = 1, (1.3) reduces to (1.2). some other results relate
0 (1.1)—(1.3) were provided by [ 5,8-13,15-17,19,23,25,26]. In 2016-2017, a few
extensions of (1.1)—(1.2) in the whole plane were obtained by [21,24,27].

In this paper, following the way of [21,24,27], by means of weight coefficients,
using a complex integral formula and Hermite-Hadamard’s inequality, an extension
of (1.1) in the whole plane similar to the type of (1.3) is given as follows: For
0 <A < LAi+X=X<1,&n € [0,5],amb, > 0,0 < > pmj=1 Im =
EPA=A)=1gp < 00, 0 < Z(\f\:l In —n|91=22)=1p4 < 0o, we have

2m
Z Z| —5|A+|n—77|A = Xsin(T)

[n|=1|m|=1 A

o0 oo
Dm0 || g (L)

Im|=1 |n|=1

B =

Moreover, an extended inequality of (1.5) with multi-parameters and a best possible
constant factor is proved. The equivalent forms, the operator expressions and a few
particular cases are considered.

2. Some lemmas and an example

Lemma 2.1. If C is the set of complex numbers and Co, = CU{o0}, 2z, € C\{z| X
Rez > 0, xImz = 0} (k = 1,2,--- ,n) are different points, the function f(z) is
analytic in Co except for z; (i = 1,2,--- ,n), and z = o0 is a zero point of f(z)
whose order is not less than 1, then for a € R, we have

n

/ f(2)z*tde = mZxRes[f(z)za_l,zk], (2.1)

k=1

where, 0 < xImlnz = argz < 2w. In particular, if z, (k=1,--- ,n) are all poles
of order 1, setting pr(z) = (z — z1) f(2) (pr(zx) # 0), then

n

/000 f(x)z* tde = sinﬂwa Z(—zk)o‘%(pk(zk). (2.2)

k=1

Proof. By [18] (P.118), we have (2.1). We find

1—¢e?™ =1 — cos 2ra — isin 27ay

= —2isin Wa(cos T+ isinTa) = —2ie'™ sinTa.
In particular, since f(2)2*~" = 2~ (px(2)2*71), it is obvious that
X Res(f(2)2°7 ", —ar] = 26 oon(2r) = =€ (—21)* " on(21)-

Then by (2.1), we obtain (2.2). O
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Example 2.1. For s e N={1,2,---},¢s > - >¢1 > 0,6 >0, A\, A2 > 0,\; +
Ay = A\, we set

1
kx(z,y) == Hzﬂ(xVS +Cky)\/s)v

and ¢y =cp +(k—1De(k=1,---,s). Inviewof ¢ > --- > ¢ = ¢; > 0, by (2.2),
we find

~ o 1
ks(\) = / - —_tM gt
() o Il (Vs + &)
u=t* S /oo 1 sA1 g
= - —u > du
AJo i (u+cr)

_ S g UL 1
B Asin(TSA1) “ H Ci — Cj € Ry
X ) k= J=1i#k)

Since we find

u+cp)®
u=c1v S /OO 1 ’l]gilild’U
AP Sy 1)
s SA1 SAg
= son B =) € Ry,
AP TURT T
it follows that
ks()\l) = Elir& ks()\l)
SR L — icsi“l H L cmr (2.3)
B )\sin(”}f\l) b L e —Ck - '
k=1 J=1(i#k)
In particular, for s = 1, we find
1 [ /-1 T
Ao uta )\ci‘Q/)‘Sin(wTAl)
for ¢g = - -+ = ¢1, we obtain
oo -l s SA1 SAs
k(A1) := dt = B —). 2.5
( 1) /0 (t/\/s—f—cl)s /\058)\2)/)\ ( A ) A ) ( )

In the following, we agree that s € N,¢g > --- > ¢; > 0, a,08 € (0,7),&,n €
[0,%],0<)\1,)\2S1,)\1+)\2:>\§8(822);0<)\1,)\2<17>\:)\1+>\2§S:1.

For [t| > 1, we set functions A¢ g(t) == [t — (| + (t — () cos O, ((,0) = (&, a) (or
(n,5)), and

1

Mz, y) == kx(Ae,a(x), Ay, = .
(@,y) == ka(Ag,a(2), Ay p(y)) T (A (@) + A )
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Definition 2.1. Define the following weight coefficients:

A
w(Az,m lzljhmn A1 )\(()),| | € (2.6)
AN,
(A1, n Z h(m Al’\(()) In| € N, (2.7)
|m|=1
where, 37 _ .. =300+ 20 (G =myn).

Lemma 2.2. With regards to the agreements, replacing 0 < Ay < 1(0 < A\ < 1) by
A1 > 0, setting hg(A\1) := 2ks(A\1) esc? B, we still have

hﬁ()\l)(l — 9()\2,’/71)) < w()\27 ) < hﬁ )\1) |m| €N, (28)
where,
1 o ur!
O(A2,m) = - du
ks(M) J hset - [Ty (ue + ck)
1
=0|———)€(0,1),Jm| eN. 2.9
(Agfa(m)> (0,1), |m| (2.9)
Proof. For |z| > 3, we set
1 1
Y () = y<-3
Tl {A¢ (@) + exl(y — m)(cos B — 1)]V/+) 2
1

R (2, y) = 1
o T 1 LA (@) + cil(y — m)(1 + cos B2} Y23

wherefrom, for y > %

(2, —y) = 1 |
o [T {42 () + exl(y + m)(1 = cos )/}
We find
A (m)
(1) £a
S nzlh —n)(cos B — 1)]t—*2
AL, (m)
(2) m.n (3]
+nz::1 e [(n—n)(1 + cos §)]1 A2
Al (m)

B h(l)( n)
T (I—cos By 2 (n+m)i -

+ Ag‘}a(m)i i h(2)(m,1l) .
(TF cos B 2= (= )i

=1

(2.10)
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h A m—y)

(y+m)t=>2 and

It is evident that for fixed m € N and the assumptions, bot

@
% are strictly decreasing and strict convex with respect to y € (

e RO (my(=1)y) d h9(m,(=1)'y)
satisfying W > 7@W

d® h(m, (=1)'y)
4 =IY) o6 =1,2).
W Ty e 0=
By Hermite-Hadamard’s inequality (cf. [14]), we find
Al (m) /°° htD (m, —y)
(1 —cosf)t=22 Ju  (y+mn)'—
Ag(m) /°° h) (m, )
tcos )i Jy —m)i>"

1

5,00),

< 0 and

w(Az,m) <

Ag,a(m) ( Ag,a(m)
(y+n)(1—cos B) * (y—n)(1+cos B)
simplification and (2.3), we find

Setting u = ) in the above first (second) integral, by
1 n 1 )/oo uM~tdu

1—cosf 1+cosB’ )y Tlh_q(u™s+cy)

= 2ks(A\1) csc? B = hg(\1).

w(Az,m) < (

M (. @)
By (2.8), since both w and (Z—zn(% are strictly decreasing, we still

have

AM © (D) (. —
w(Ag,m) > £,a (m) / R (m, —y)
1

(1 —cosB)l—*2 (y+m)t—
Ag\,la(m) /OO h3 (m,y)
T tcosB) 2 Jy (y—mi—

Ag o (m)
m(

1 /m uM Ly
1—cosfB Jo I, (s + )

a(m)

agalm) A —1
N 1 /(1—n>(1+cosﬁ> u™M " du
1+cosf J, [— (ws +c)

o (m)

Ag,
{TFn) (1Fc0s B) 1

> 2sec? / < du
=i, T, (7 + i)

= hs(A2)(1 — O(Aa,m)) > 0,

where, 6(A2, m)(< 1) is indicated by (2.9). We obtain

1 > w1
8N d
0< (g,m)<ks(/\1)/ " U

Ag o (m)
(TFm) (1+c0s B)

1 > A2—1
= 2T
kS(Al) / Ag o (m) u u

(I+n) (1+cos B)

__ 1 {(1+n)(1+cosﬂ)r2
Aoks(Ar) Ac.a(m) ’
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and then we have (2.8) and the estimation of (2.9). O
In the same way, we have

Lemma 2.3. With regards to the agreements, replacing 0 < Ao < 1(0 < Ay < 1) by
Ao > 0, setting ho (M) = 2ks(A\1) esc? a, we still have

ha(M)(1 — 9(A1,n)) < @(A,n) < ha(A1), |n] € N, (2.11)

where,

90\ L[~ L
( 1,71) o ]{35()\1)/ Ap,p(n) szl(u)\/s +Ck) !

TFE) (1 Feosa)
1
=0 (A;\Ilﬁ(n)> € (0,1),|n| € N. (2.12)
Lemma 2.4. For p > 0,(¢,0) = (§,a) (or (n,B)), we have
> 1 1+o0(1)
H,((,0) = =
1 1
8 {(1 + cos @)1 +r * (1 —cos 0)1-5-0} (p—07). (2.13)
Proof. We have
HCO = 2 = Ooost— 17 * 2= o= O(eond 7 5

k=-1 k=1

oo oo

1 1 1 1
~ (I —cos)lts > k1O T +cosf)ir 2 (k— )t

k=1 k=1
For a = W > 0, by Hermite-Hadamard’s inequality, we find
o0

1
a+;W1

=2

< S o+ [
(1 —cos@)+r = (14 cos@)+r s (y—Qr

_apt (3-¢) 1 N 1
p (1 —cosf)itr = (1+cos@)itr]|’

1 1
HP(C,H) < |:(1 — cos@)lﬂ’ + (1 +COS@)1+p:|

o0

1 1 1
H,(¢,0) = {(1 —cosf)1te + (1 +C089)1+"} ; (k+Q)ttr

g o
_1a+97 1 1
= ( '

p 1 —cosf)itr * (14 cos@)lte

Hence, we have (2.13). O
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3. Main results
Theorem 3.1. Ifp > 1, % + % =1,am, by >0 (Jm],|n| € N),

O<Z:Ap1A1 )ap<OOO<ZAq1’\2 "(n)b? < oo,

|m|=1 In|=1

1 1
Kap(M) = h (An)hd (M) = 2ks(A1) esc? Besci a, (3.1)

then we have the following equivalent inequalities:

- > 1 ol

A e T (A2 (m) + ce A5 ()

Q=

KaO) | 3 A2 et || 30 4t oo |, 2

[m|=1 In|=1
0o Py ®
L A2 1 Am
e |ZA g;l [Ty (437 (m) + ce A5 (n)
Ka (A1) Z ALCTM T (m)at, ;. (3.3)
Im|=1

In particular, for s = ¢; = 1,a = 8 = Z(0 < A1, A2 < 1), (3.2) reduces to (1.5),
and (3.3) reduces to the equivalent form of (1.5) as follows:

Py 7
p)\z 1
%'” g Z e T
< ———— m — ¢PA— =1, . 3.4
o (L |le| q (3-4)
Proof. By Hélder’s inequality (cf. [14]) and (2.7), we have
- P
Z h(m,n)an,
|m|=1
1-\ 1-Xs P
_ Z A éa )/Q(m)am A;,ﬁ )/P(n)
Y Y
22, M TRy A0
p—1
oo A(lfh)p/q m 00 A(lf)\z)Q/P n
< Z h(m,n) S ( >afn Z h(m,n)n’?T()

1—Xo
|m|=1 Ay (n) |m|=1 Aot (m)
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p—1 A(l—)\l)P/q m
:(fi(pi\l;;ni)) Z h(m,n) 5:21,)\2 ( )afn
ns (1) |m|=1 g (1)

Then by (2.8) we have

=

A(lf/\l)P/q (m)

J < h() [N
Z Z A:?ﬂ/\z (n)

—
=
>

e

Z

=

S~

=)

=

1 0o o0 A m
= h&()\l) Z Z h(m,n)s’an()afn

Qual=

=hd (M) Z w()\g,m)AZ’(if)‘l)fl(m)afn . (3.5)

In view of (2.8) we have (3.3).
By Holder’s inequality (cf. [14]), we have

I= Z A, 5" (n) Z h(m,n)an | Ay 5" (n)bn

In|=1 |m|=1
0o q
<J |30 AT et | (3.6)
n|=1

Then by (3.3) we have (3.2).
On the other hand, assuming that (3.2) is valid, we set

p—1
by :Agf‘gfl(n) Z h(m,n)an, , |n| €N.
|m|=1
and then
Z AILAD 7 ()

In|=1

y (3.5) we find J < oo. If J = 0, then (3.3) is evidently valid; if J > 0, then by
(3.2), we have

0< ZA"“ ALyt = gp = T

n|=1

St
Q=

KapO) | S0 4209 gar, || S 41097 s |

|m|=1 |n|=1
J= |3 AU et | < Kap(h) | D AR m)at, |
In|=1 |m|=1

namely, (3.3) follows, which is equivalent to (3.2). O
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Theorem 3.2. With regards to the assumptions of Theorem 3.1, the constant factor
Ko (A1) in (3.2) and (3.3) is the best possible.

Proof. For e € (0,¢)\;), we set A\, = Ay + ite 0), A2 = Ay — £ (€(0,1)), and

~ ()\1*%)*1 X —e—

am = Ag (m) = A2 (m) (Im| € N),
T ()‘275)71 Xo—

by = A, (n) = 422" (n) (In] € N).

Then by (2.13) and (2.8), we find

Qlm

1
L= Z AL ya || ST AT ()b

[m|=1 In|=1
= | 2 Acm) Z ATLE(
[m|=1 In|=1
1 1 1 3 )
€ [(1+Cosa)1+€ + (1cosa)1+5] (14 01(1))
" 1 N 1 2 L+ o1,
(1 +cosB)tte (1 —cosf)ite 2
T A)\l E— 1(m)
I:= h( b h(
Z Z (m,n)a Z Z (m, n) Al ,\2( )
‘n‘ 1\m| 1 |77L| 1|m‘ 1
o wlom) s S 100 m)
= 3 A ) Y e
1+¢ BN TTe
‘m‘:l A&a (m) \M|:1 Ag’a (m)
= ha(M) Z A (m) Z g+l
|m|=1 Aco (m) |m|=1 O(A( ) (m))

~ hs(\) [ 1 N 1
T« (I+cosa)tte = (1 —cosa)lte

If there exists a constant k < K, g(\1), such that (3.2) is valid when replacing
Ko (A1) by k, then in particular, we have eI < kI, namely,

J(1+01(1)) — 50(1)} .

ho(M) {[(1 + cos )1t + (1- cosOé)lﬁ}(
1 1 : B
(14 cosa)lte * (1- cosOé)1+s} (I+o1(1)>

1+o0(1)) - 60(1)}

o

1 1 3 N
) {(1+005ﬂ)1+6 * (1—0055)1+6} (1 +02(1))7.

It follows that

4ko(\) csc?® Besc? a < 2k cscr acsca B (e —=07),
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namely, K, 5(A1) = 2k’s()\1)csc% Bcsc% a < k. Hence, k = K, g(\1) is the best
possible constant factor in (3.2). The constant factor K, g(A1) in (3.3) is still the
best possible. Otherwise, we would reach a contradiction by (3.6) that the constant
factor in (3.2) is not the best possible. O
4. Operator expressions and a few particular cases
For p > 1, % + é =1, we set functions ®(m) and ¥(n) as follows:

®(m) := AL (m) (Im| € N), (n) == AYL 7 () (In| € N),

wherefrom, ¥!=P(n) = Agf‘g_l(n) (In] € N). We also set the following weight
normed spaces:

=

oo
o =14 a={an}inillallpe = | Y @m)anl’ | <oop,
|m|=1
1
00 q
lgw:=qb= {bn}m:ﬂ [[bl]q,0 = Z ¥ (n)[bn|? <000
n|=1
5o P
i = e = {eadimsllellpws = | D ¥ P@)]eal’ | < oo
|n|=1

Then for a = {am}y, ) € lpo,c = {ca}jy_1,0n = Zm\ﬂ h(m, n)ay,, in view
of (3.3), we have ||c[|, g1-» < Ko g(A1)||a]|p,o, namely, ¢ € I, g1-».

Definition 4.1. Define a Hilbert-type operator 1" : I, & — I, g1-» as follows: for
any a = {am}ﬁ‘,’” 1 € lp,e, there exists a unique representation ¢ = T'a € I, g1-».
We also define the formal inner product of T'a and b = {b"}\n| 1 Elgw (by >0) as

follows: -

(Ta,b) Z Z (my, n)amby,. (4.1)

Then for a,, > 0 (|m| € N), we may rewrite (3.2) and (3.3) as the following
equivalent forms:

(Ta,b) < Kao,p(M)llallp,albllg,v, (4.2)
| Tallp,wr—» < Ka,p(A1)llallp,e- (4.3)

We define the norm of operator 1" as follows:

IT|| == sup M_ (4.4)
a(#0)€lp o llallp,o

Since by Theorem 3.2, the constant factor K, g(A1) in (4.3) is the best possible, we
have , ,
|1T|| = Ka,8(A1) = 2ks(A1) csc? S esca a. (4.5)



2134 B. Yang, M. Huang & Y. Zhong

Remark 4.1. (i) For £ =n =0, (3.2) reduces to

>y (o

o ey Tz [(Im] + mecos a)V/s + e (] + ncos 5)°]

< Kap(M) | D (jm|+meosa)P@01at,
Im|=1
X Z (|n| 4+ ncos B)2—A2)=1pa | (46)

In|=1

Hence, (3.2) is an extension of (4.6). In particular, for « = = 7 in (4.6), we have
the following new inequality:

A bn
Z Z [T € lml*/S+CklnlA/S)

n|=1|m|=1

< 2k ( Z m|P(1=2)=1gp. Z n|?(=A2)=1pa | @7)
[m|=1 |n|=1
(H) For a = ’8 = g’ A—m = Qm, b—n = bn (myTL € N) in (32)7 we have
i i { . A/19 s
n=1m=1 [Tee1[(m = ) + cx(n —n)P/5]
L 1

[T [(m + O + cx(n— ] Thomy[(m + O + cx(n + )]

1
M Y V~+%m+mVﬂ} mbn

< 2ks(M1) {i [(m — =21y (g g)p(l—Al)—l} aﬁl} b
m=1
x {i[(n =)t (n n)"<”2“}bz} - (4.8)
n=1

In particular, for £ = n = 0, we have the following new Hilbert-type inequality:

ﬁMg

Z k 1 mA/s+CknA/s)

[i p(1=A1)— r [inqﬂmlbgr, (4.9)
(1.1

n=1

which is an extension of (1

. It follows that (3.2) is an extended inequality of (1.1)
in the whole plane.
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5. Conclusions

In this paper, by means of weight coefficients, a complex integral formula and
Hermite-Hadamard’s inequality, a new extended Hardy-Hilbert’s inequality in the
whole plane with multi-parameters and a best possible constant factor is given by
Theorem 3.1 and Theorem 3.2. The equivalent forms, the operator expressions
and a few particular cases are considered by Theorem 3.1, (4.2)—(4.5) and Remark
4.1. The lemmas and theorems can provide an extensive account of this type of
inequalities.

Acknowledgements. The authors are grateful to the anonymous referees for their
useful comments and suggestions.

References

[1] L. E. Azar, On some extensions of Hardy-Hilbert’s inequality and applications,
Journal of Inequalities and Applications, 2008, Article ID 546829, 2008.

[2] V. Adiyasuren, Ts. Batbold and M. Krnié, Half-discrete Hilbert-type inequal-
ities with mean operators, the best constants, and applications, Appl. Math.
Comput., 2014, 231, 148-159.

[3] V. Adiyasuren, Ts. Batbold, and M. Krnié, Multiple Hilbert-type inequalities
involving some differential operators, Banach J. Math. Anal., 2016, 10(2), 320—
337.

[4] A. Benyi and C. Oh, Best constant for certain multilinear integral operator,
Journal of Inequalities and Applications, 2006, Article ID 28582, 2006.

[5] M. Gao and B. Yang, On extened Hilbert’s inequality, Proceedings of the Amer-
ican Math. Society, 1998, 126(3), 751-759.

[6] G. H. Hardy, Note on a theorem of Hilbert concerning series of positive terms,
Proceedings London Math. Soc., Records of Proc. xlv-xlvi, 1925, 23(2).

[7] G.H. Hardy, J. E. Littlewood and G. Pdlya, Inequalities, Cambridge University
Press, Cambridge, 1934.

[8] B. He, A multiple Hilbert-type discrete inequality with a new kernel and best
possible constant factor, Journal of Mathematical Analysis and Applications,
2015, 431, 890-902.

[9] Y. Hong, All-side generalization about Hardy-Hilbert integral inequalities, Acta
Mathematica Sinica, 2001, 44(4), 619-625.

[10] Q. Huang, A new extension of Hardy-Hilbert-type inequality, Journal of In-
equalities and Applications, 2015, 2015(397).

[11] Q. Huang, On a multiple Hilbert-type integral operator and applications, Jour-
nal of Inequalities and Applications, 2010, Article ID 309319, 2010.

[12] J. Jin and L. Debnath, On a Hilbert-type linear series operator and its ap-
plications, Journal of Mathematical Analysis and Applications, 2010, 371(2),
691-704.

[13] J. Kuang and L. Debnath, On Hilbert’s type integral inequalities on the weighted
Orlicz spaces, Pacific J. Appl. Math., 2001, 1(1), 95-104.



2136

B. Yang, M. Huang & Y. Zhong

14]
[15]
[16]
17)
18]

[19]

J. Kuang, Applied inequalities, Shangdong Science and Technology Press, Ji-
nan, China, 2004.

M. Krnié¢ and P. Vukovié, On a multidimensional version of the Hilbert-type
inequality, Analysis Mathematica, 2012, 38, 291-303.

Y. Li and B. He, On inequalities of Hilbert’s type, Bulletin of the Australian
Mathematical Society, 2007, 76(1), 1-13.

D. S. Mitrinovié, J. E. Pecari¢ and A. M. Fink, Inequalities involving functions
and their integrals and derivatives, Kluwer Acaremic Publishers, Boston, 1991.

Y. L. Pan, H. T. Wang and F. T. Wang, On complex functions, Science Press,
Beijing, China, 2006.
Y. Shi and B. Yang, A new Hardy-Hilbert-type inequality with multiparameters

and a best possible constant factor, Journal of Inequalities and Applications,
2015, 2015(380).

Z. Wang and D. Guo, Introduction to special functions, Science Press, Beijing,
China, 1979.

D. Xin, B. Yang and Q. Chen, A discrete Hilbert-type inequality in the whole
plane, Journal of Inequalities and Applications, 2016, 2016(133).

B. Yang, Discrete Hilbert-type inequalities, Bentham Science Publishers Ltd.,
The United Arab Emirates, 2011.

B. Yang and M. Krnié, On the norm of a multi-dimensional Hilbert-type oper-
ator, Sarajevo Journal of Mathematics, 2011, 7(20), 223-243.

B. Yang and Q. Chen, A new extension of Hardy-Hilbert’s inequality in the
whole plane, Journal of Function Spaces, 2016, Article ID 9197476, 8 pages.

K. Zhang, A bilinear inequality, Journal of Mathematical Analysis and Appli-
cations, 2002, 271, 188-296.

W. Zhong, The Hilbert-type integral inequality with a homogeneous kernel of
Lambda-degree, Journal of Inequalities and Applications, 2008, Article ID
917392, 2008.

Y. Zhong, B. Yang and Q. Chen, A more accurate Mulholland-type inequality
in the whole plane, Journal of Inequalities and Applications, 2017, 2017(315).



	Introduction
	Some lemmas and an example
	Main results
	Operator expressions and a few particular cases
	Conclusions

