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Abstract The work is concerned with three kinds of fourth-order impulsive
differential equations with nonlinear boundary conditions. We at first focused
on studying the existence and uniqueness of positive solutions for these kinds of
problems. By converting the problem to an equivalent integral equation, then
applying the new class of fixed point theorems for the sum operator on cone,
we obtain the sufficient conditions which not only guarantee the existence
of a unique positive solution, but also be applied to construct two iterative
sequences for approximating it. Further, we present the numerical methods
for solving the fourth-order differential equations. At last, some examples are
given with numerical verifications to illustrate the main results.
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1. Introduction

During the last decades, nonlinear boundary value problem arises in a variety of
different areas of applied mathematics, physics, chemistry and biology, which can
be found in the elastics stability, in chemical or biological problems, and in thermal
ignition of gases and so on(see [1–11, 14–20, 22–28, 30–32, 34, 35, 37]). Thereinto,
fourth-order boundary value problems are extensively applied to mechanics, engi-
neering and physics (see [2, 11, 15]). These applications are intended to motivate
authors investigation of the solutions for the fourth-order nonlinear boundary value
problems. On the one hand, some authors have studied the existence and multiplic-
ity of positive solutions by using the shooting method, the lower and upper solution
method, the Leray-Schauder continuation method, the topological degree theory
and fixed point theorems and so on ( see [3–6,8,22,23,25,32,35] and the references
therein). Moreover, there are some papers concerned with the uniqueness of posi-
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tive solutions (see [9, 18, 19,31, 34, 37]). For example, in [19], Li and Zhang utilized
a fixed point theorem of generalized concave increasing operators to investigate the
existence and uniqueness of the positive solutions for an elastic beam equation with
nonlinear boundary conditions. In [34], by using a fixed point theorems for a class
of general mixed monotone operators, Zhai and Jiang obtain some sufficient con-
ditions which guarantee the existence of unique monotone positive solutions for an
elastic beam equation. In [31], the authors get the existence, nonexistence, and
uniqueness of convex monotone positive solutions of an elastic beam equation with
a parameter via a fixed point theorem of cone expansion and a fixed point theorem
of generalized concave operators.

Besides, It is well recognised that the theorem of impulsive differential equations
is a nature framework for a mathematical modelling of many nature phenomena,
and many authors have already paid much attention to the solutions of differential
equations with impulsive effects. (see [1, 7, 16, 17, 20, 27, 30] and the references
therein). To the best of our knowledge, among these existence literatures, most
studies related to boundary value problem for first-order or second-order impulsive
differential equation, and there are few papers focused on the study of fourth-order
impulsive differential equations with nonlinear boundary conditions.

Motivated by the above work, in this paper, the authors consider the following
boundary value problem for fourth-order impulsive differential equations:

u(4)(t) = f(t, u(t), u′(t)) + g(t, u(t)), t ∈ J ′,
∆u(tk) = Ik(u(tk), u′(tk)), t = tk, k = 1, 2, ...,m,

u(0) = a, u′(0) = u′′(1) = 0,

u′′′(1) = −q(u(1)),

(1.1)

where impulsive points {tk}k∈N+ satisfy 0 < t1 < ... < tk < ... < tm < 1, J = [0, 1],
J ′ = J \ {t1, t2, ..., tm}, f ∈ C(J × R × R), g ∈ C(J × R), q ∈ C(R), and
Ik ∈ C(R × R)(k = 1, 2, ...m). ∆u(tk) denotes the jump of u(t) at t = tk, that
is, ∆u(tk) = u(t+k ) − u(t−k ), with u(t+k ) = limt→t+k

u(t), u(t−k ) = limt→t−k
u(t). The

constant a > 0.
Furthermore, when the variable x ≡ 0 or y ≡ 0 in impulsive term Ik(x, y), that

is to say, the impulsive term Ik = Ik(y), and Ik = Ik(x), the problem (1.1) reduces
to the following boundary value problems:

u(4)(t) = f(t, u(t), u′(t)) + g(t, u(t)), t ∈ J ′,
∆u(tk) = Ik(u′(tk)), t = tk, k = 1, 2, ...,m,

u(0) = a, u′(0) = u′′(1) = 0,

u′′′(1) = −q(u(1)),

(1.2)

and 
u(4)(t) = f(t, u(t), u′(t)) + g(t, u(t)), t ∈ J ′,
∆u(tk) = Ik(u(tk)), t = tk, k = 1, 2, ...,m,

u(0) = a, u′(0) = u′′(1) = 0,

u′′′(1) = −q(u(1)),

(1.3)

where Ik ∈ C(R)(k = 1, 2, ...,m). Under some hypotheses, by using different fixed
theorems of sum operator on cone, we research the existence and uniqueness of
positive solutions for problems (1.1)-(1.3), and also construct two iterative sequences
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for approximating the positive solution. Also, we introduce numerical methods to
deal with the fourth-order impulsive differential equations, and obtain the numerical
solution for some concrete examples.

Our work presented in this paper has the following new features. First, we
not only prove the existence and uniqueness of positive solution for fourth-order
impulsive differential equations, but also present the numerical methods for solving
the equations. So, for the concrete examples, we at first prove its unique existence of
positive solution, then give its the numerical solution, which makes the property of
unique positive solution more clearly. Second, the sum operator is an efficient way
to solve the existence and uniqueness of positive solution for differential equations.
Especially, the method used in this paper is about the sum of three operators with
different property, which is new to the existing literature. Third, the nonlinear
term and impulsive term does not depend solely on the unknown solution but on
its first order derivative, and the equations in this paper is the generalization of
the equations in [18], the equations (1.1)-(1.3) reduces to equations in [18] if a = 0,
Ik ≡ 0, g(t, u(t)) ≡ 0 and the authors provide some alternative approaches to study
these kinds of equations. Fourth, our conclusions not only obtain the existence of
unique positive solution, but also be applied to construct two iterative sequences
for approximating it. Moreover, for the problem (1.1)-(1.3), the estimate of unique
positive solution is derived with µ(t2 + 1

2 ) � u∗ � λ(t2 + 1
2 ) for some λ > µ > 0.

Consequently, the results obtained in this paper are more general and complement
many previous known conclusions.

With this content in mind, the outline of this paper is organized as follows.
Section 2 review some of the standard facts on definitions, fixed point theorems and
derive the integral equation for problem (1.1). In Section 3, by using the fixed point
theorems of sum operator, our main results are stated and proved. In section 4,
the numerical methods will be discussed and applied to some concrete examples to
illustrate the effectiveness of our main results in practise.

2. Preliminaries

As for prerequisites, we briefly present some necessary definitions in ordered Banach
spaces, some lemmas that will be used in the proofs of our theorems. For more
details, we refer the reader to [12,13,21,36].

Recall that a non-empty closed convex set P ⊂ E is a cone if it satisfies (i)
x ∈ P, λ ≥ 0 ⇒ λx ∈ P ; (ii) x ∈ P,−x ∈ P ⇒ x = θ, in which (E, ‖ · ‖) is a
real Banach space with partially ordered by a cone P ⊂ E, i.e., x ≤ y if and only
if y − x ∈ P , and θ is the zero element of E. P is called normal if there exists a
constant N > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, and
N is called the normality constant of P . For all x, y ∈ E, the notation x ∼ y
means that there exist λ > 0 and µ > 0 such that λx ≤ y ≤ µx. Clearly, ∼ is an
equivalence relation. Given h > θ (i.e., h ≥ θ and h 6= θ), we denote by Ph the set
Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P .

We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies
Ax ≤ Ay(Ax ≥ Ay).

Definition 2.1 (see [12]). A : P ×P → P is said to be a mixed monotone operator
if A(x, y) is increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤
u2, v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point of
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A if A(x, x) = x.

Definition 2.2 (see [12]). An operator A : P → P is said to be sub-homogeneous
if it is satisfies

A(tx) ≥ tA(x), ∀t ∈ (0, 1), x ∈ P.

An operator A is said to be α−concave if it satisfies

A(tx) ≥ tαA(x), ∀t ∈ (0, 1), x ∈ P,

where α be a real number with 0 ≤ α < 1.

Lemma 2.1 (Theorem 3.1, [29]). Let P be a normal cone in E. Let α ∈ (0, 1).
Suppose that A : P → P is an increasing sub-homogeneous operator, B : P → P is
a decreasing operator, C : P × P → P is a mixed monotone operator, and satisfy
the following conditions:

B(t−1y) ≥ tBy, C(tx, t−1y) ≥ tαC(x, y), ∀t ∈ (0, 1), x, y ∈ P. (2.1)

Assume that:

(H1) there is h ∈ Ph such that Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph;

(H2) there exists a constant δ0 > 0 such that C(x, y) ≥ δ0(Ax+By), ∀x, y ∈ P .

Then:

(i) the operator equation Ax+Bx+C(x, x) = x has a unique solution x∗ in Ph;

(ii) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = Axn−1+Byn−1+C(xn−1, yn−1), yn = Ayn−1+Bxn−1+C(yn−1, xn−1),

n = 1, 2, . . ., we have xn → x∗ and yn → x∗ as n→∞.

Lemma 2.2 (Theorem 3.7, [29]). Let P be a normal cone, α ∈ (0, 1). Suppose that
A : P → P is an increasing sub-homogeneous operator, B : P → P is a decreasing
operator, C : P × P → P is a mixed monotone operator, and satisfy:

B(t−1y) ≥ tαBy, C(tx, t−1y) ≥ tC(x, y), ∀t ∈ (0, 1), x, y ∈ P. (2.2)

Assume (H1) holds and

(H′2) there exists a constant δ0 > 0 such that Ax+ C(x, y) ≤ δ0By, ∀x, y ∈ P .

Then, the conclusions (i)− (ii) of Lemma 2.1 hold.

Lemma 2.3 (Theorem 3.8, [29]). Let P be a normal cone, α ∈ (0, 1). Suppose
that A : P → P is an increasing α − concave operator, B : P → P is a decreasing
operator, C : P × P → P is a mixed monotone operator, and satisfy:

B(t−1y) ≥ tBy, C(tx, t−1y) ≥ tC(x, y), ∀t ∈ (0, 1), x, y ∈ P. (2.3)

Assume (H1) holds and

(H′′2) there exists a constant δ0 > 0 such that By + C(x, y) ≤ δ0Ax, ∀x, y ∈ P .

Then, the conclusions (i)− (ii) of Lemma 2.1 hold.
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Remark 2.1. It is shown that the Lemmas 2.1-2.3 can be treated as a special case
of Corollary 3.7 in [21]. Besides, If we take B ≡ θ in Lemma 2.1 and Lemma 2.3,
then the corresponding conclusions are still true(see Theorem 2.1 and Theorem 2.4
in [33]).

In what follows, for convenience, we give some notations:
Let PC[J,R] = {x|x : J → R, x(t) is continuous at t 6= tk, left continuous at

t = tk, and the right limit x(t+k ) exists for k = 1, 2, 3....,m}. Then PC[J,R] is a
Banach space with the norm ‖x‖PC = supt∈J |x(t)|.

X = PC1[J,R] = {x|x ∈ PC[J,R], such that x′(t) is continuous at t 6= tk, left
continuous at t = tk, and the right limit x′(t+k ) exists for t = 1, 2, 3....,m}. Then
PC1[J,R] is a Banach space with the norm ‖x‖PC1 = max{‖x‖PC , ‖x′‖PC}.

Lemma 2.4. If f : J ×R ×R → R, g : J ×R → R, q : R → R are continuous,
then u ∈ PC1[J,R] ∩ C4[J ′, R] is the solution of the problem (1.1) if and only if
u ∈ PC1[J,R] is the solution of the integral equation

u(t) =a+

∫ 1

0

G(t, s)[f(s, u(s), u′(s)) + g(s, u(s))]ds+ q(u(1))ψ(t)

+
∑

0<tk<t

Ik(u(tk), u′(tk)), ∀t ∈ J, (2.4)

where

G(t, s) =
1

6

{
s2(3t− s), 0 ≤ s ≤ t ≤ 1;

t2(3s− t), 0 ≤ t ≤ s ≤ 1,
(2.5)

and

ψ(t) =
t2

2
− t3

6
, ∀t ∈ J. (2.6)

Proof. At first, we prove the sufficiency.
Assuming that u ∈ PC1[J,R] ∩ C4[J ′, R] is the solution of problem (1.1),

for u(4)(t) = f(t, u(t), u′(t)) + g(t, u(t)), combined with the boundary conditions
u′′′(1) = −q(u(1)), we integrate it from t to 1:

u′′′(t) = −q(u(1))−
∫ 1

t

[f(s, u(s), u′(s)) + g(s, u(s))]ds, ∀t ∈ J.

Next, we continue to integrate u′′′(t) from t to 1:

u′′(t) = q(u(1))(1− t) +

∫ 1

t

[f(s, u(s), u′(s)) + g(s, u(s))](s− t)ds, ∀t ∈ J.

Then, combined with u′(0) = 0, we integrate the above formula from 0 to t:

u′(t) =q(u(1))

(
t− t2

2

)
+

∫ t

0

s2

2
[f(s, u(s), u′(s)) + g(s, u(s))]ds

+

∫ 1

t

(
ts− t2

2

)
[f(s, u(s), u′(s)) + g(s, u(s))]ds, ∀t ∈ J.

At last, integrating u′(t) from 0 to t, and using u(0)=a, ∆u|t=tk =Ik((u(tk), u′(tk)),
we have

u(t) =a+ q(u(1))

(
t2

2
− t3

6

)
+

∫ t

0

(
s2t

2
− s3

6

)
[f(s, u(s), u′(s)) + g(s, u(s))]ds
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+

∫ 1

t

(
st2

2
− t3

6

)
[f(s, u(s), u′(s)) + g(s, u(s))]ds+

∑
0<tk<t

I
k
(u(tk), u′(tk))

=a+

∫ 1

0

G(t, s)[f(s, u(s), u′(s))+g(s, u(s))]ds+q(u(1))ψ(t)+
∑

0<tk<t

I
k
(u(tk), u′(tk)),

where G(t, s) and ψ(t) are defined by (2.5) and (2.6), respectively.
Next, we prove the necessity. Suppose that u(t) is the solution of the integral

equation (2.4), obviously, ∆u|t=tk = Ik((u(tk), u′(tk)). Then direct differentiation
of (2.4) implies, for t 6= tk, u(4)(t) = f(s, u(s), u′(s)) + g(s, u(s)). Further, it is easy
to verify that u(0) = a, u′(0) = 0, u′′(1) = 0, u′′′(1) = −q(u(1)). The Lemma is
proved.

Lemma 2.5 (Lemma 2.1, [19]). For any t, s ∈ [0, 1], we have

1

3
s2t2 ≤ G(t, s) ≤ 1

2
st2,

1

3
t2 ≤ ψ(t) ≤ 1

2
t2.

1

2
s2t ≤ ∂G(t, s)

∂t
≤ st, 1

2
t ≤ ψ′(t) ≤ 2t.

3. Main results

In this section, we shall apply Lemma 2.1-2.3 to study the equations (1.1)-(1.3)
and obtain new results on the existence and uniqueness of positive solutions. We
will work in the Banach apace X = PC1[J,R] equipped with the norm ‖x‖ =
max{supt∈J |x(t)|, supt∈J |x′(t)|} and a partial order given by:

x, y ∈ PC1[J,R], x � y ⇔ x(t) ≤ y(t), x′(t) ≤ y′(t) for t ∈ J.

Define a cone P in X as follows:

P = {x ∈ PC1[J,R] : x(t) ≥ 0, x′(t) ≥ 0, t ∈ J}, the standard cone. It is clear
that P is a normal cone in PC1[J,R] and the normality constant is 1.

Theorem 3.1. The basic assumptions are the following:

(L1) f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous, f(t, x, y) is increasing
in x ∈ [0,+∞) for fixed t ∈ J , y ∈ [0,+∞) and decreasing in y ∈ [0,+∞) for
fixed t ∈ J , x ∈ [0,+∞);

(L2) g : [0, 1] × [0,+∞) → [0,+∞) is continuous, and g(t, x) is increasing in
x ∈ [0,+∞) for fixed t ∈ J ; q : [0,+∞) → [0,+∞) is continuous, and q(y)
is decreasing in y ∈ [0,+∞);

(L3) For any k = 1, 2, ...,m, Ik : [0,+∞) × [0,+∞) → [0,+∞) are continuous.
Ik(x, y) is nondecreasing in x ∈ [0,+∞) for fixed y ∈ [0,+∞), and nonin-
creasing in y ∈ [0,+∞) for fixed x ∈ [0,+∞).

(L4) g(t, λx) ≥ λg(t, x) for λ ∈ (0, 1), t ∈ J, x ∈ [0,+∞), and q(λ−1y) ≥ λq(y)
for λ ∈ (0, 1), y ∈ [0,+∞), and there exist constants α1, α2 ∈ (0, 1), ∀t ∈
J, λ ∈ (0, 1), x, y ∈ [0,+∞), such that

f(t, λx, λ−1y) ≥ λα1f(t, x, y), Ik(λx, λ−1y) ≥ λα2Ik(x, y), k = 1, 2, ...,m.
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(L5) There exist constants σ > 0, δ > 0, such that f(t, x, y), g(t, x) ≥ σ ≥ q(y) > 0
and f(t, x, y) ≥ δg(t, x), ∀t ∈ J, x, y ∈ [0,+∞).

Then:

(1) problem (1.1) has a unique positive solution u∗ in Ph, where h(t)= t2+1
2 ,∀t∈J ;

(2) for any x0, y0 ∈ Ph, t ∈ J , constructing successively the sequences

xn(t) =a+

∫ 1

0

G(t, s)[f(s, xn−1(s), y′n−1(s))+g(s, xn−1(s))]ds+q(yn−1(1))ψ(t)

+
∑

0<t<tk

Ik(xn−1(tk), y′n−1(tk)), n = 1, 2, . . . , (3.1)

yn(t) =a+

∫ 1

0

G(t, s)[f(s, yn−1(s), x′n−1(s))+g(s, yn−1(s))]ds+q(xn−1(1))ψ(t)

+
∑

0<t<tk

Ik(yn−1(tk), x′n−1(tk)), n = 1, 2, . . . , (3.2)

we have xn(t)→ u∗(t) and yn(t)→ u∗(t) in PC1[J,R] as n→∞.

Proof. For any u, v ∈ P , we define three operators A : P → X, B : P → X,
C : P × P → X by

Au(t) =
a

4
+

∫ 1

0

G(t, s)g(s, u(s))ds, Bv(t) =
a

4
+ q(v(1))ψ(t),

C(u, v)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds+
∑

0<tk<t

I
k
(u(tk), v′(tk)).

Then

(Au)′(t) =

∫ 1

0

Gt(t, s)g(s, u(s))ds, (Bv)′(t) = q(v(1))ψ′(t),

(C(u, v))′(t) =

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds.

Evidently, by Lemma 2.4, u ∈ PC1[J,R]∩C4[J ′, R] is the solution of problem (1.1) if
and only if u ∈ PC1[J,R] solves the operator equation u = Au+Bu+C(u, u). From
(L1)-(L3) and Lemma 2.5, we know that A : P → P, B : P → P, C : P × P → P .

Next, the proof will be divided into four steps to check the operators A, B, C
satisfy all the conditions of Lemma 2.1.

Step 1: We prove that C is a mixed monotone operator, A is an increasing
operator, B is a decreasing operator.

In fact, for ui, vi ∈ P, i = 1, 2 with u1 � u2, v1 � v2, we know that u1(t) ≥
u2(t), v1(t) ≤ v2(t), u′1(t) ≥ u′2(t), v′1(t) ≤ v′2(t), t ∈ J . It follows from (L1), (L3)
and Lemma 2.5 that

C(u1, v1)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, u1(s), v′1(s))ds+
∑

0<tk<t

I
k
(u1(tk), v′1(tk))

≥ a

2
+

∫ 1

0

G(t, s)f(s, u2(s), v′2(s))ds+
∑

0<tk<t

I
k
(u2(tk), v′2(tk))

= C(u2, v2)(t).

(3.3)



1646 H. Wang, L. Zhang & X. Wang

(C(u1, v1))′(t) =

∫ 1

0

Gt(t, s)f(s, u1(s), v′1(s))ds

≥
∫ 1

0

Gt(t, s)f(s, u2(s), v′2(s))ds = (C(u2, v2))′(t).

(3.4)

Hence, C(u1, v1) � C(u2, v2), C is a mixed monotone operator. For any u, v ∈ P
with u � v, so we have u(t) ≤ v(t), u′(t) ≤ v′(t), t ∈ J , Similar to the argument
of (3.3) and (3.4), by (L2) and Lemma 2.5, we get Au � Av, A is an increasing
operator. Bu � Bv, B is a decreasing operator.

Step 2: We prove that A is a sub-homogeneous operator, and operator B, C
satisfy (2.1) in Lemma 2.1.

Firstly, for any λ ∈ (0, 1), according to the condition (L4), we have

A(λu)(t)=
a

4
+

∫ 1

0

G(t, s)g(s, λu(s))ds ≥λ
(
a

4
+

∫ 1

0

G(t, s)g(s, u(s))ds

)
=λAu(t),

(A(λu))′(t) =

∫ 1

0

Gt(t, s)g(s, λu(s))ds ≥ λ
∫ 1

0

Gt(t, s)g(s, u(s))ds = (λAu)′(t).

So A(λu) � λAu for λ ∈ (0, 1), u ∈ P . That is A is a sub-homogeneous operator.

Further, for any λ ∈ (0, 1), v ∈ P , from (L4) we know that

B(λ−1v)(t) =
a

4
+ q(λ−1v(1))ψ(t) ≥ a

4
λ+ λq(v(1))ψ(t) = λBv(t),

(B(λ−1v))′(t) = q(λ−1v(1))ψ′(t) ≥ λq(v(1))ψ′(t) = (λBv)′(t).

This means B(λ−1v) � λBv holds for λ ∈ (0, 1), v ∈ P . Also for any λ ∈ (0, 1),
u, v ∈ P , if we set α = max{α1, α2}, together with (L4), we have

C(λu, λ−1v)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, λu(s), λ−1v′(s))ds+
∑

0<tk<t

I
k
(λu(tk), λ−1v′(tk))

≥ a

2
+λα1

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds+λα2

∑
0<tk<t

I
k
(u(tk), v′(tk))

≥ λα
(
a

2
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds+
∑

0<tk<t

I
k
(u(tk), v′(tk))

)
= λαC(u, v)(t),

(C(λu, λ−1v))′(t) =

∫ 1

0

Gt(t, s)f(s, λu(s), λ−1v′(s))ds

≥ λα1

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds

≥ λα
∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds = (λαC(u, v))′(t).

That is, C(λu, λ−1v) � λαC(u, v) for λ ∈ (0, 1), u, v ∈ P . Hence the operator B, C
satisfy (2.1) in Lemma 2.1.
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Step 3: We need to prove Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph. Let h(t) = t2 + 1
2 ,

according to (L2) and Lemma 2.5, for any t ∈ J , we have

Ah(t) =
a

4
+

∫ 1

0

G(t, s)g(s, s2 +
1

2
)ds ≤ a

4
+

∫ 1

0

1

2
st2g(s,

3

2
)ds

≤
(
a

2
+

1

2

∫ 1

0

sg(s,
3

2
)ds

)
· h(t),

Ah(t) ≥ a

4
+

∫ 1

0

1

3
s2t2g(s,

1

2
)ds ≥ min

{
a

2
,

1

3

∫ 1

0

s2g(s,
1

2
)ds

}
· h(t),

(Ah)′(t) =

∫ 1

0

Gt(t, s)g(s, s2 +
1

2
)ds ≤

∫ 1

0

stg(s,
3

2
)ds =

1

2

∫ 1

0

sg(s,
3

2
)ds · h′(t),

(Ah)′(t) ≥
∫ 1

0

1

2
s2tg(s,

1

2
)ds =

1

4

∫ 1

0

s2g(s,
1

2
)ds · h′(t).

Let c1 = min
{
a
2 ,

1
4

∫ 1

0
s2g(s, 12 )ds

}
, c2 = a

2 + 1
2

∫ 1

0
sg(s, 32 )ds.

From (L2), (L5), we have c2 ≥ c1 > 0. As a result,

c1h(t) ≤ Ah(t) ≤ c2h(t), (c1h)′(t) ≤ (Ah)′(t) ≤ (c2h)′(t), t ∈ J.

Consequently, c1h � Ah � c2h. Namely, Ah ∈ Ph.

Similarly, from (L2) and Lemma 2.5, for any t ∈ J , we have

Bh(t) =
a

4
+ q(h(1))ψ(t) ≤ a

4
+ q(

3

2
) · 1

2
t2 ≤ max

{
a

2
,

1

2
q(

3

2
)

}
· h(t),

Bh(t) ≥ a

4
+ q(

3

2
) · 1

3
t2 ≥ min

{
a

2
,

1

3
q(

3

2
)

}
· h(t),

1

4
q(

3

2
) · h′(t) = q(

3

2
) · 1

2
t ≤ (Bh)′(t) = q(h(1))ψ′(t) ≤ q(3

2
) · 2t = q(

3

2
) · h′(t).

Let c3 = min
{
a
2 ,

1
4q(

3
2 )
}
, c4 = max

{
a
2 , q(

3
2 )
}
. From (L2), (L5), we have c4 ≥

c3 > 0, and thus c3h(t) ≤ Bh(t) ≤ c4h(t), (c3h)′(t) ≤ (Bh)′(t) ≤ (c4h)′(t), t ∈ J.
Therefore c3h � Bh � c4h, that is Bh ∈ Ph.

Also, according to (L1), (L3) and Lemma 2.5, for any t ∈ J , we have

C(h, h)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, h(s), h′(s))ds+
∑

0<tk<t

Ik(h(tk), h′(tk))

=
a

2
+

∫ 1

0

G(t, s)f(s, s2 +
1

2
, 2s)ds+

∑
0<tk<t

Ik(t2k +
1

2
, 2tk)

≤ a

2
+

∫ 1

0

1

2
t2sf(s,

3

2
, 0)ds+

m∑
k=1

Ik(
3

2
, 0)

≤

(
a+

1

2

∫ 1

0

sf(s,
3

2
, 0)ds+ 2

m∑
k=1

Ik(
3

2
, 0)

)
· h(t),

C(h, h)(t) ≥ a

2
+

∫ 1

0

1

3
t2s2f(s,

1

2
, 2)ds
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≥ min

(
a,

1

3

∫ 1

0

s2f(s,
1

2
, 2)ds

)
· h(t).

(C(h, h))′(t) =

∫ 1

0

Gt(t, s)f(s, s2 +
1

2
, 2s)ds ≤

∫ 1

0

stf(s,
3

2
, 0)ds

=
1

2

∫ 1

0

sf(s,
3

2
, 0)ds · h′(t),

(C(h, h))′(t) ≥
∫ 1

0

1

2
s2tf(s,

1

2
, 2)ds =

1

4

∫ 1

0

s2f(s,
1

2
, 2)ds · h′(t).

Let c5 = min
{
a, 1

4

∫ 1

0
s2f(s, 12 , 2)ds

}
, c6 = a+ 1

2

∫ 1

0
sf(s, 32 , 0)ds+2

∑m
k=1 Ik( 3

2 , 0).

Applying the conditions (L1), (L3), (L5), we get c6 ≥ c5 > 0. In consequence,

c5h(t) ≤ C(h, h)(t) ≤ c6h(t), (c5h)′(t) ≤ (C(h, h))′(t) ≤ (c6h)′(t), ∀t ∈ J.

Thus, c5h � C(h, h) � c6h. That is C(h, h) ∈ Ph. Hence, the condition (H1) in
Lemma 2.1 is proved.

Step 4: We verify that the operators A,B,C satisfy the condition (H2).
For u, v ∈ P , and any t ∈ J , taking (L1), (L3), (L5) and Lemma 2.5 into

consideration, we get

C(u, v)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds+
∑

0<tk<t

I
k
(u(tk), v′(tk))

≥ a

2
+

1

2

∫ 1

0

G(t, s)δg(s, u(s))ds+
1

2

∫ 1

0

1

3
t2s2f(s, u(s), v′(s))ds

≥ min

{
1,
δ

2

}(
a

4
+

∫ 1

0

G(t, s)g(s, u(s))ds

)
+

1

6
t2
∫ 1

0

s2σds+
a

4

= min

{
1,
δ

2

}
Au(t) +

1

18
σt2 +

a

4
≥ min

{
1,
δ

2

}
Au(t) +

t2

18
q(v(1)) +

a

4

≥ min

{
1,
δ

2

}
Au(t) +

1

9

(
q(v(1))ψ(t) +

a

4

)
= min

{
1,
δ

2

}
Au(t) +

1

9
Bv(t).

(C(u, v))′(t) =

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds

≥ 1

2

∫ 1

0

Gt(t, s)δg(s, u(s))ds+
1

2

∫ 1

0

1

2
ts2f(s, u(s), v′(s))ds

≥ δ

2
(Au)′(t) +

1

4
t

∫ 1

0

s2σds =
δ

2
(Au)′(t) +

1

12
σt

≥ δ

2
(Au)′(t) +

t

12
q(v(1)) ≥ δ

2
(Au)′(t) +

1

24
q(v(1))ψ′(t)

=
δ

2
(Au)′(t) +

1

24
(Bv)′(t).

Let δ0 = min{ δ2 ,
1
24}. Then

C(u, v)(t) ≥ δ0[Au(t) +Bv(t)], (C(u, v))′(t) ≥ δ0[(Au)′(t) + (Bv)′(t)], ∀t ∈ J.
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In other words, C(u, v) � δ0(Au+Bv) for u, v ∈ P .
Therefore, the operators A,B,C satisfy all the conditions of Lemma 2.1, by

application of Lemma 2.1, we have the operator equation Au + Bu + C(u, u) = u
has a unique positive solution u∗ in Ph. Consequently, problem (1.1) has a unique
positive solution u∗(t) ∈ Ph, where h(t) = t2 + 1

2 . And for any x0, y0 ∈ Ph, t ∈ J ,
constructing successively the sequences (3.1) and (3.2), we have xn(t)→ u∗(t) and
yn(t)→ u∗(t) in PC1[J,R] as n→∞.

When the variable x ≡ 0 or y ≡ 0 in impulsive term Ik(x, y), that is to say,
Ik(x, y) = Ik(y), or Ik(x, y) = Ik(x), by using the Lemma 2.2 and Lemma 2.3, we
can obtain the following results.

Theorem 3.2. Let f , g, q satisfy the assumptions (L1)-(L2) and

(L6) For any k = 1, 2, ...,m, Ik ∈ C([0,+∞), [0,+∞)), and Ik(y) is nonincreasing
in y ∈ [0,+∞) .

(L7) f(t, λx, λ−1y) ≥ λf(t, x, y), ∀t ∈ J, λ ∈ (0, 1), x, y ∈ [0,+∞); g(t, λx) ≥
λg(t, x) for λ ∈ (0, 1), t ∈ J, x ∈ [0,+∞). Besides, there exist constants
α1, α2 ∈ (0, 1), for λ ∈ (0, 1), y ∈ [0,+∞), such that

q(λ−1y) ≥ λα1q(y), Ik(λ−1y) ≥ λα2Ik(y), k = 1, 2, ...,m.

(L8) There exist constant δ′ > 0, such that f(t, x, y) + g(t, x) ≤ δ′ ≤ q(y), and
f(t, 12 , 2) 6≡ 0, g(t, 12 ) 6≡ 0.

Then:

(1) the fourth-order impulsive differential equations (1.2) has a unique positive
solution u∗ in Ph, where h(t) = t2 + 1

2 , t ∈ J ;

(2) for any initial values x0, y0 ∈ Ph, t ∈ J , the sequences {xn}, {yn} of successive
approximations defined

xn(t) =a+

∫ 1

0

G(t, s)[f(s, xn−1(s), y′n−1(s)) + g(s, xn−1(s))]ds

+ q(yn−1(1))ψ(t) +
∑

0<t<tk

Ik(y′n−1(tk)), n = 1, 2, . . . , (3.5)

yn(t) =a+

∫ 1

0

G(t, s)[f(s, yn−1(s), x′n−1(s)) + g(s, yn−1(s))]ds

+ q(xn−1(1))ψ(t) +
∑

0<t<tk

Ik(x′n−1(tk)), n = 1, 2, . . . , (3.6)

both converge uniformly to u∗(t) in PC1[J,R] as n→∞.

Proof. At first, we define three operators A : P → X, B : P → X, C : P×P → X
by

Au(t) =
a

4
+

∫ 1

0

G(t, s)g(s, u(s))ds, Bv(t) =
a

2
+q(v(1))ψ(t)+

∑
0<tk<t

I
k
(v′(tk)),

C(u, v)(t) =
a

4
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds, ∀u, v ∈ P.



1650 H. Wang, L. Zhang & X. Wang

Then

(Au)′(t) =

∫ 1

0

Gt(t, s)g(s, u(s))ds, (Bv)′(t) = q(v(1))ψ′(t),

(C(u, v))′(t) =

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds, ∀u, v ∈ P.

Definitely, by Lemma 2.4, u ∈ PC1[J,R]∩C4[J ′, R] is the solution of problem (1.2)
if and only if u ∈ PC1[J,R] solves the operator equation u = Au + Bu + C(u, u).
Similar to the proof of Theorem 3.1, from (L1)-(L2), (L6)-(L7) and Lemma 2.5, we
obtain that A : P → P is an increasing sub-homogeneous operator, B : P → P is a
decreasing operator, C : P × P → P is a mixed monotone operator, and operators
B, C satisfy (2.2).

Next, we will prove Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph. Let h(t) = t2 + 1
2 , by

(L1), (L2), (L6) and Lemma 2.5, for any t ∈ J , analysis similar to that in the proof
of Theorem 3.1 shows that

min

{
a

2
,

1

3

∫ 1

0

s2g(s,
1

2
)ds

}
· h(t) ≤Ah(t) ≤

(
a

2
+

1

2

∫ 1

0

sg(s,
3

2
)ds

)
· h(t),

1

4

∫ 1

0

s2g(s,
1

2
)ds · h′(t) ≤(Ah)′(t) ≤ 1

2

∫ 1

0

sg(s,
3

2
)ds · h′(t),

min

{
a,

1

3
q(

3

2
)

}
· h(t) ≤Bh(t) ≤

(
a+

1

2
q(

3

2
) + 2

m∑
k=1

Ik(0)

)
· h(t),

1

4
q(

3

2
) · h′(t) ≤(Bh)′(t) ≤ q(3

2
) · h′(t),

min

{
a

2
,

1

3

∫ 1

0

s2f(s,
1

2
, 2)ds

}
· h(t) ≤C(h, h)(t) ≤

(
a

2
+

1

2

∫ 1

0

sf(s,
3

2
, 0)ds

)
· h(t),

1

4

∫ 1

0

s2f(s,
1

2
, 2)ds · h′(t) ≤(C(h, h))′(t) ≤ 1

2

∫ 1

0

sf(s,
3

2
, 0)ds · h′(t),

where we have set

c1 = min

{
a

2
,

1

4

∫ 1

0

s2g(s,
1

2
)ds

}
, c2 =

a

2
+

1

2

∫ 1

0

sg(s,
3

2
)ds.

Furthermore, we set

c7 = min

{
a,

1

4
q(

3

2
)

}
, c8 = a+ q(

3

2
) + 2

m∑
k=1

Ik(0),

c9 = min

{
a

2
,

1

4

∫ 1

0

s2f(s,
1

2
, 2)ds

}
, c10 =

a

2
+

1

2

∫ 1

0

sf(s,
3

2
, 0)ds.

From (L1), (L2), (L6) and (L8), we have c2 ≥ c1 > 0, c8 ≥ c7 > 0, c10 ≥ c9 > 0.
Therefore, we can easily deduce that c1h � Ah � c2h, c7h � Bh � c8h, c9h �
C(h, h) � c10h, that is Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph.
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At last, we show that the operators A,B,C satisfy the condition (H ′2) in Lemma
2.2. For u, v ∈ P , and any t ∈ J , from (L8) and Lemma 2.5, we have that

C(u, v)(t) +Au(t) =
a

2
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds+

∫ 1

0

G(t, s)g(s, u(s))ds

≤ a

2
+

∫ 1

0

1

2
st2δ′ds =

a

2
+

1

4
t2δ′ ≤ a

2
+

1

4
t2q(v(1))

≤ a

2
+ q(v(1))ψ(t) +

∑
0<tk<t

I
k
(v′(tk)) = Bv(t).

(C(u, v))′(t) + (Au)′(t) =

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds+

∫ 1

0

Gt(t, s)g(s, u(s))ds

≤
∫ 1

0

Gt(t, s)δ
′ds ≤

∫ 1

0

stδ′ds =
1

2
tδ′

≤ 1

2
tq(v(1)) ≤ ψ′(t)q(v(1)) = (Bv)′(t).

Let δ0 = 1. Then

C(u, v)(t) +Au(t) ≤ δ0Bv(t), (C(u, v))′(t) + (Au)′(t) ≤ δ0(Bv)′(t), t ∈ J.

As a result, C(u, v) + Au � δ0Bv for u, v ∈ P . Finally, an application of Lemma
2.2 implies u∗ is a positive solution of problem (3.4), Besides, we also construct
the convergence of the sequences {xn} and {yn} as show in (3.5), (3.6) to u∗ in
PC1[J,R]. This makes end to the proof.

Theorem 3.3. Suppose f , g, q satisfy the assumptions (L1)-(L2) and

(L9) For any k = 1, 2, ...,m, Ik ∈ C([0,+∞), [0,+∞)), and Ik(x) is nondecreasing
in x ∈ [0,+∞) .

(L10) f(t, λx, λ−1y) ≥ λf(t, x, y), ∀t ∈ J, λ ∈ (0, 1), x, y ∈ [0,+∞); q(λ−1y) ≥
λq(y) for λ ∈ (0, 1), t ∈ J, y ∈ [0,+∞). There also exist a constant α1, α2 ∈
(0, 1), for λ ∈ (0, 1), x ∈ [0,+∞), such that

g(t, λx) ≥ λα1g(t, x), Ik(λx) ≥ λα2Ik(x), k = 1, 2, ...,m.

(L11) There exist two constants δ1, δ2 > 0, such that f(t, x, y) ≤ δ1g(t, x), q(y) ≤
δ2 ≤ g(t, x) and f(t, 12 , 2) 6≡ 0, g(t, 12 ) 6≡ 0, q( 3

2 ) 6≡ 0.

Then:

(1) the problem (1.3) has a unique positive solution u∗ in Ph, where h(t) = t2 +
1
2 , t ∈ J ;

(2) for any x0, y0 ∈ Ph, t ∈ J , constructing successively the sequences

xn(t) = a+

∫ 1

0

G(t, s)[f(s, xn−1(s), y′n−1(s)) + g(s, xn−1(s))]ds

+ q(yn−1(1))ψ(t) +
∑

0<t<tk

Ik(xn−1(tk)), n = 1, 2, . . . , (3.7)
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yn(t) = a+

∫ 1

0

G(t, s)[f(s, yn−1(s), x′n−1(s)) + g(s, yn−1(s))]ds

+ q(xn−1(1))ψ(t) +
∑

0<t<tk

Ik(yn−1(tk)), n = 1, 2, . . . , (3.8)

we have xn(t)→ u∗(t) and yn(t)→ u∗(t) in PC1[J,R] as n→∞.

Proof. We first define three operators A : P → X, B : P → X, C : P × P → X
by

Au(t) =
a

2
+

∫ 1

0

G(t, s)g(s, u(s))ds+
∑

0<tk<t

I
k
(u(tk)), Bv(t) =

a

4
+q(v(1))ψ(t),

C(u, v)(t) =
a

4
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds, ∀u, v ∈ P.

Then

(Au)′(t) =

∫ 1

0

Gt(t, s)g(s, u(s))ds, (Bv)′(t) = q(v(1))ψ′(t),

(C(u, v))′(t) =

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds, ∀u, v ∈ P.

Clearly, by Lemma 2.4, u ∈ PC1[J,R] ∩ C4[J ′, R] is the solution of problem (1.3)
if and only if u ∈ PC1[J,R] solves the operator equation u = Au + Bu + C(u, u).
we can now proceed analogously to the proof of Theorem 3.1 and obtain that A :
P → P is an increasing α− concave operator, B : P → P is a decreasing operator,
C : P × P → P is a mixed monotone operator, and operators B, C satisfy (2.3).

Next, we will prove Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph. This follows by the same
method as in Theorem 3.1. Let h(t) = t2 + 1

2 , by (L1), (L2), (L9) and Lemma 2.5,
for any t ∈ J , we have

min

{
a,

1

3

∫ 1

0

s2g(s,
1

2
)ds

}
· h(t) ≤Ah(t)≤

(
a+

1

2

∫ 1

0

sg(s,
3

2
)ds+2

m∑
k=1

Ik(
3

2
)

)
·h(t),

1

4

∫ 1

0

s2g(s,
1

2
)ds · h′(t) ≤(Ah)′(t) ≤ 1

2

∫ 1

0

sg(s,
3

2
)ds · h′(t),

min

{
a

2
,

1

3
q(

3

2
)

}
· h(t) ≤Bh(t) ≤ max

{
a

2
,

1

2
q(

3

2
)

}
· h(t),

1

4
q(

3

2
) · h′(t) ≤(Bh)′(t) ≤ q(3

2
) · h′(t),

min

{
a

2
,

1

3

∫ 1

0

s2f(s,
1

2
, 2)ds

}
· h(t) ≤C(h, h)(t) ≤

(
a

2
+

1

2

∫ 1

0

sf(s,
3

2
, 0)ds

)
· h(t),

1

4

∫ 1

0

s2f(s,
1

2
, 2)ds · h′(t) ≤(C(h, h))′(t) ≤ 1

2

∫ 1

0

sf(s,
3

2
, 0)ds · h′(t).

If we set c11 = min
{
a, 14

∫ 1

0
s2g(s, 12 )ds

}
, c12 = a+ 1

2

∫ 1

0
sg(s, 32 )ds+2

∑m
k=1 Ik( 3

2 ),

combining c3, c4, c9, c10 and (L1), (L2), (L9), (L11), we get c4 ≥ c3 > 0, c10 ≥
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c9 > 0, c12 ≥ c11 > 0. Therefore, we can easily deduce that c11h � Ah � c12h,
c3h � Bh � c4h, c9h � C(h, h) � c10h, that is Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph.

At last, we show that the operators A,B,C satisfy the condition (H ′′2 ) in Lemma
2.3. For u, v ∈ P , and any t ∈ J , from (L11) and Lemma 2.5, we have that

C(u, v)(t) +Bv(t) =
a

2
+ q(v(1))ψ(t) +

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds

≤ a

2
+

1

2
t2δ2 + δ1

∫ 1

0

G(t, s)g(t, u(s))ds

=
a

2
+

9

2

∫ 1

0

1

3
t2s2δ2ds+ δ1

∫ 1

0

G(t, s)g(t, u(s))ds

≤ a

2
+

9

2

∫ 1

0

G(t, s)g(t, u(s))ds+ δ1

∫ 1

0

G(t, s)g(t, u(s))ds

≤ a

2
+

(
9

2
+ δ1

)∫ 1

0

G(t, s)g(t, u(s))ds+
∑

0<tk<t

I
k
(u(tk))

≤
(

9

2
+δ1

)(
a

2
+

∫ 1

0

G(t, s)g(t, u(s))ds+
∑

0<tk<t

I
k
(u(tk))

)

=

(
9

2
+ δ1

)
Au(t),

(C(u, v))′(t) + (Bv)′(t) = q(v(1))ψ′(t) +

∫ 1

0

Gt(t, s)f(s, u(s), v′(s))ds

≤ 2tδ2 + δ1

∫ 1

0

Gt(t, s)g(s, u(s))ds

= 12

∫ 1

0

1

2
s2tδ2ds+ δ1

∫ 1

0

Gt(t, s)g(s, u(s))ds

≤ 12

∫ 1

0

Gt(t, s)g(s, u(s))ds+ δ1

∫ 1

0

Gt(t, s)g(s, u(s))ds

≤ (12 + δ1)

∫ 1

0

Gt(t, s)g(s, u(s))ds = (12 + δ1)(Au)′(t).

Let δ0 = 12 + δ1. Then

C(u, v)(t) +Bv(t) ≤ δ0Au(t), (C(u, v))′(t) + (Bv)′(t) ≤ δ0(Au)′(t), t ∈ J.

As a result, C(u, v) + Bv � δ0Au for u, v ∈ P . Finally, an application of Lemma
2.3 implies u∗ is a positive solution of problem (1.3), Besides, we also construct the
convergence of the sequences {xn} and {yn} to u∗ in PC1[J,R]. This makes end to
the proof.

If we take g(t, u) ≡ 0 in problem (1.1) and problem (1.3), from Remark 2.1, we
obtain the following corollaries.

Corollary 3.1. Let assumptions (L1), (L3) hold, and

(L′2) q : [0,+∞)→ [0,+∞) is continuous, q(x) is increasing in x ∈ [0,+∞);
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(L′4) q(λx) ≥ λq(x) for λ ∈ (0, 1), x ∈ [0,+∞), and there exist constants α1, α2 ∈
(0, 1), ∀t ∈ [0, 1], λ ∈ (0, 1), x, y ∈ [0,+∞), such that

f(t, λx, λ−1y) ≥ λα1f(t, x, y), Ik(λx, λ−1y) ≥ λα2Ik(x, y), k = 1, 2, ...,m.

(L′5) There exist constant σ > 0, such that f(t, x, y) ≥ σ ≥ q(x) > 0,∀t ∈ J, x, y ∈
[0,+∞).

Then the problem
u(4)(t) = f(t, u(t), u′(t)), t ∈ J ′;
∆u|t=tk = Ik((u(tk), u′(tk)), k = 1, 2, ...m,

u(0) = a, u′(0) = u′′(1) = 0, u′′′(1) = −q(u(1)),

(3.9)

has a unique positive solution u∗ ∈ Ph, where h(t) = t2 + 1
2 . Moreover, for any

x0, y0 ∈ Ph, t ∈ J , constructing successively the sequences

xn(t) = a+

∫ 1

0

G(t, s)f(s, xn−1(s), y′n−1(s))ds+ q(xn−1(1))ψ(t)

+
∑

0<t<tk

Ik(xn−1(tk), y′n−1(tk)),

yn(t) = a+

∫ 1

0

G(t, s)f(s, yn−1(s), x′n−1(s))ds+ q(yn−1(1))ψ(t)

+
∑

0<t<tk

Ik(yn−1(tk), x′n−1(tk)),

we have ||xn − u∗|| → 0 and ||yn − u∗|| → 0 in PC1[J,R] as n→∞.
Proof. ∀u, v ∈ P , we define two operators A : P → X, C : P × P → X by

Au(t) =
a

2
+ q(u(1))ψ(t),

C(u, v)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds+
∑

0<tk<t

I
k
(u(tk), v′(tk)).

Then (Au)′(t) = q(u(1))ψ′(t), (C(u, v))′(t) =
∫ 1

0
Gt(t, s)f(s, u(s), v′(s))ds.

Clearly, u ∈ PC1[J,R] ∩ C4[J ′, R] is the solution of problem (3.9) if and only if
u ∈ PC1[J,R] solves the operator equation u = Au + C(u, u). Next, according to
Remark 2.1, similar to the proof of Theorem 3.1-Theorem 3.3, we can easily obtain
the results. Here we omit this proof.

Corollary 3.2. Let assumptions (L1), (L9), (L′2) hold, and

(L′′4) f(t, λx, λ−1y) ≥ λf(t, x, y) for λ ∈ (0, 1), x, y ∈ [0,+∞), and there exist
constants α1, α2 ∈ (0, 1), ∀t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,+∞), such that

q(λx) ≥ λα1q(x), Ik(λx) ≥ λα2Ik(x), k = 1, 2, ...,m.

(L′′5) There exist constant σ > 0, such that f(t, x, y) ≤ σ ≤ q(x),∀t ∈ J, x, y ∈
[0,+∞), and f(t, 12 , 2) 6≡ 0.
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Then the problem
u(4)(t) = f(t, u(t), u′(t)), t ∈ J ′;
∆u|t=tk = Ik((u(tk)), k = 1, 2, ...m,

u(0) = a, u′(0) = u′′(1) = 0, u′′′(1) = −q(u(1)),

(3.10)

has a unique positive solution u∗ ∈ Ph, where h(t) = t2 + 1
2 . Moreover, for any

x0, y0 ∈ Ph, t ∈ J , constructing successively the sequences

xn(t) = a+

∫ 1

0

G(t, s)f(s, xn−1(s), y′n−1(s))ds+q(xn−1(1))ψ(t)+
∑

0<t<tk

Ik(xn−1(tk)),

yn(t) = a+

∫ 1

0

G(t, s)f(s, yn−1(s), x′n−1(s))ds+q(yn−1(1))ψ(t)+
∑

0<t<tk

Ik(yn−1(tk)),

we have ||xn − u∗|| → 0 and ||yn − u∗|| → 0 in PC1[J,R] as n→∞.

Proof. ∀u, v ∈ P , we define two operators A : P → X, C : P × P → X by

Au(t) =
a

2
+ q(u(1))ψ(t) +

∑
0<tk<t

I
k
(u(tk)),

C(u, v)(t) =
a

2
+

∫ 1

0

G(t, s)f(s, u(s), v′(s))ds.

Then (Au)′(t) = q(u(1))ψ′(t), (C(u, v))′(t) =
∫ 1

0
Gt(t, s)f(s, u(s), v′(s))ds.

Obviously, u ∈ PC1[J,R]∩C4[J ′, R] is the solution of problem (3.10) if and only if
u ∈ PC1[J,R] solves the operator equation u = Au+ C(u, u). Similarly, according
to Remark 2.1, and the proof of Theorem 3.1-Theorem 3.3, we can easily obtain the
results. Here we omit the proof.

Remark 3.1. If Ik ≡ 0, a = 0 in Corollaries 3.1 and 3.2. From Remark 2.1, the
same result has been obtained independently by Li and Zhai in [18]. In this sense,
our results extends and supplements that of [18].

4. Numerical methods and examples

In this section, we will present the numerical methods for solving the fourth-order
impulsive differential equations and apply the methods to some examples.

Numerical methods. Theorem 3.1 gives an iterative methods to calculate the
solution u∗. Starting from any x0, y0 ∈ Ph, by the iterative process given by equa-
tion (3.1) and (3.2), we have xn, yn → u∗. Note that initially, we can set x0 = y0,
so the process can be simplified as following

xn(t) =a+

∫ 1

0

G(t, s)[f(s, xn−1(s), x′n−1(s)) + g(s, xn−1(s))]ds+ q(xn−1(1))ψ(t)

+
∑

0<t<tk

Ik(xn−1(tk), x′n−1(tk)), n = 1, 2, · · · .

Numerically, we can divide the intervals [0, t1], ..., [tk, tk+1], ... each into some
equal spaced subintervals. For example, use a0 = tk, a1 = a0 + h, ..., aN = tk+1 for
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interval [tk, tk+1], where h = (tk+1−tk)/N . We can use the Trapozoidal rule for the
numerical integration on each intervals. As for the only first order derivative x′(s),
we can use the central difference. x′(ai) = (x(ai+1)−x(ai−1))/2h, for i = 1, ..., N −
1. As for the ending points, if unknown, we can simply set x′(aN ) = x′(aN−1)
and x′(a0) = x′(a1). In the following, we will first use an example to verify the
convergence of our numerical methods. Then we will apply it to some practical
problems.

Example 4.1. Consider the following boundary value problem of fourth-order im-
pulsive differential equation:

u(4)(t) = π4

16

√
1− 4

π2 (u′(t))2,

∆u|t= 1
2

= 1,

u(0) = 1, u′(0) = u′′(1) = 0,

u′′′(1) = −π
3

8 u(1).

(4.1)

Where J = [0, 1], t1 = 1
2 , constant a = 1. The exact solution of this equation is

u(t) =

{
cos(π2 t) for 0 ≤ t ≤ 1

2 ,

1 + cos(π2 t) for 1
2 < t ≤ 1.

Let

f(t, x, y) =
π4

16

√
1− 4

π2
y2, I1(x, y) = 1, g(t, x) = 0, q(y) = −π

3

8
y.

Note that if 1 − 4
π2 y

2 < 0, set f(t, x, y) = 0. It is easy to see that f(t, x, y) is
decreasing in y, q(y) is decreasing in y.

Numerical experiment shows that the iteration (4.1) converges fast. Figure 1
shows the numerical solution compared with exact solution. In this example, we
used 40 sample points. And 20 iterations are used. As for the initial x0(t), we simply
set x0(t) = a as a constant function. This example shows that our numerical method
is correct. And in the following we will apply our methods to a series problems.

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

 

 
Numerical − first half
Numerical − second half
Exact solution

Figure 1. Numerical solution compared with exact solution.
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Example 4.2. Consider the following boundary value problem of fourth-order im-
pulsive differential equation:

u(4)(t) = u
1
3 (t) + (u′(t) + 1)−

1
3 + t2 + 3 + u(t)

1+u(t)e
t, t ∈ J, t 6= 1

2 ,

∆u|t= 1
2

= u
1
2 ( 1

2 ) + (u′( 1
2 ) + 1)−

1
3 ,

u(0) = 2, u′(0) = u′′(1) = 0,

u′′′(1) = − 1
u(1)+1 ,

(4.2)

where J = [0, 1], t1 = 1
2 , constant a = 2.

Obviously, problem (4.2) fits the framework of problem (1.1). Let

f(t, x, y) = x
1
3 + (y + 1)−

1
3 + t2 + 2, I1(x, y) = x

1
2 + (y + 1)−

1
3 ,

g(t, x) =
x

1 + x
et + 1, q(y) =

1

y + 1
.

Then, f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞), I : [0,+∞) × [0,+∞) → [0,+∞),
g : [0, 1]× [0,+∞)→ [0,+∞) and q : [0,+∞)→ [0,+∞) are continuous. It is easy
to see that f(t, x, y) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1], y ∈ [0,+∞) and
decreasing in y ∈ [0,+∞) for fixed t ∈ [0, 1], x ∈ [0,+∞); I(x, y) is nondecreasing
in x ∈ [0,+∞) for fixed y ∈ [0,+∞) and nonincreasing in y ∈ [0,+∞) for fixed
x ∈ [0,+∞); g(t, x) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1], and q(y) is
decreasing in y ∈ [0,+∞). Moreover, for t ∈ J, x, y ∈ [0,+∞), λ ∈ (0, 1), α1 = 1

3 ,
α2 = 1

2 we can obtain

f(t, λx, λ−1y) = (λx)
1
3 + (λ−1y + 1)−

1
3 + t2 + 2 ≥ λ 1

3 (x
1
3 + (y + λ)−

1
3 + t2 + 2)

≥ λ 1
3 (x

1
3 + (y + 1)−

1
3 + t2 + 2) = λα1f(t, x, y),

I1(λx, λ−1y) = λ
1
2x

1
2 + λ

1
3 (y + λ)−

1
3 ≥ λ 1

2 (x
1
2 + (y + 1)−

1
3 ) = λα2I1(x, y),

g(t, λx) =
λx

1 + λx
et + 1 ≥ λx

1 + x
et + λ = λg(t, x),

q(λ−1y) = (λ−1y + 1)−1 = λ(y + λ)−1 ≥ λ(y + 1)−1 = λq(y).

Besides, let σ = 1, δ ∈
(
0, 1e
]
,

f(t, x, y) = x
1
3 + (y + 1)−

1
3 + t2 + 2 ≥ σ = 1 ≥ 1

y + 1
= q(y) > 0,

g(t, x) =
x

1 + x
et + 1 ≥ σ ≥ q(y) > 0,

f(t, x, y) = x
1
3 + (y + 1)−

1
3 + t2 + 2 ≥ 2 =

1

e
· e+ 1

≥ δ
(

x

1 + x

)
et + δ = δg(t, x).

Therefore, all the conditions of Theorem 3.1 are satisfied. By the application of
Theorem 3.1, we deduce that the problem (4.2) has a unique positive solution
u∗ ∈ Ph. The numerical result is given in Figure 2.
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Figure 2. Numerical solution of Example 4.2.

Example 4.3. Consider the following fourth-order impulsive differential equations:
u(4)(t) = u(t)

1+u(t) + 1
1+u′(t) + cos2 t+ t(u(t)+1)

1+tu(t) t ∈ J, t 6= 1
2 ,

∆u|t= 1
3

= (u′( 1
3 ) + 1)−

1
2 ,

u(0) = 4, u′(0) = 0,

u′′(1) = 0, u′′′(1) = − 1
3
√
u(1)+1

− 4.

(4.3)

Let

f(t, x, y) = cos2 t+
x

1 + x
+

1

1 + y
, I1(y) = (y + 1)−

1
2 ,

g(t, x) =
t(x+ 1)

1 + tx
, q(y) = (y + 1)−

1
3 + 4.

It is easy to see that f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞), g : [0, 1]× [0,+∞)→
[0,+∞), q : [0,+∞) → [0,+∞) and I : [0,+∞) → [0,+∞) are continuous with
f(t, 12 , 2) 6≡ 0, g(t, 12 ) 6≡ 0, and f(t, x, y) is increasing in x ∈ [0,+∞) for fixed
t ∈ [0, 1], y ∈ [0,+∞) and decreasing in y ∈ [0,+∞) for fixed t ∈ [0, 1],x ∈ [0,+∞);
I(y) is nonincreasing in y ∈ [0,+∞); g(t, x) is increasing in x ∈ [0,+∞) for fixed
t ∈ [0, 1], q(y) is decreasing in y ∈ [0,+∞). Besides, for t ∈ [0, 1], x, y ∈ [0,+∞),
α1 = 1

3 , α2 = 1
2 , we have

f(t, λx, λ−1y) = cos2 t+
λx

1+λx
+

1

1+λ−1y
≥cos2 t+

λx

1+λx
+

λ

1+y
≥ λf(t, x, y),

g(t, λx) =
t(λx+ 1)

1 + λtx
≥ λt(x+ 1)

1 + tx
= λg(t, x),

q(λ−1y) = λ
1
3 (λ+y)−

1
3 +4 ≥ λ 1

3 [(λ+y)−
1
3 +4]≥λ 1

3 [(1+y)−
1
3 + 4]=λ

1
3 q(y),

I1(λ−1y) = λ
1
2 (λ+ y)−

1
2 ≥ λ 1

2 (1 + y)−
1
2 = λ

1
2 I1(y).

Moreover, Let δ′ = 4

f(t, x, y)+g(t, x) = cos2 t+
x

1 + x
+

1

1 + y
+
t(x+ 1)

1 + tx
≤ 4 = δ′ ≤ (y+1)−

1
3 +4 = q(y).

As a result, problem (4.3) fits the framework of problem (1.2), and we have proved
all the conditions of Theorem 3.2. By the application of Theorem 3.2, we can obtain
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Figure 3. Numerical solution of Example 4.3.

the problem (4.3) has a unique positive solution u∗ ∈ Ph. The numerical result is
given in Figure 3.

Example 4.4. Consider the following fourth-order impulsive boundary value prob-
lem: 

u(4)(t) = 2tu
1
4 (t) + 1

1+u′(t) + t3 + 2, t ∈ J, t 6= 1
2 ,

∆u|t= 1
4

=

√
u( 1

4 )

1+
√
u( 1

4 )
,

u(0) = 3, u′(0) = 0,

u′′(1) = 0, u′′′(1) = − 1

1+
√
u(1)

.

(4.4)

Let

f(t, x, y) = t3+tx
1
4 +

1

1 + y
, I1(x) =

√
x

1 +
√
x
, g(t, x) = 2+tx

1
4 , q(y) =

1

1 +
√
y
.

It is easy to see that f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞), g : [0, 1]× [0,+∞)→
[0,+∞), q : [0,+∞) → [0,+∞) and I : [0,+∞) → [0,+∞) are continuous with
f(t, 12 , 2) 6≡ 0, g(t, 12 ) 6≡ 0, q( 3

2 ) 6≡ 0 and f(t, x, y) is increasing in x ∈ [0,+∞) for
fixed t ∈ [0, 1], y ∈ [0,+∞) and decreasing in y ∈ [0,+∞) for fixed t ∈ [0, 1], x ∈
[0,+∞); I(x) is nondecreasing in y ∈ [0,+∞); g(t, x) is increasing in x ∈ [0,+∞)
for fixed t ∈ [0, 1]; q(y) is decreasing in y ∈ [0,+∞). Besides, for t ∈ [0, 1], x, y ∈
[0,+∞), α1 = 1

3 , α2 = 1
2 , we have

f(t, λx, λ−1y) = t3 + t(λx)
1
4 +

1

1 + λ−1y
≥ λ(t3 + tx

1
4 +

1

1 + y
) = λf(t, x, y),

q(λ−1y) =
1

1 +
√
λ−1y

=

√
λ√

λ+
√
y
≥ λ

1 +
√
y

= λq(y),

g(t, λx) = 2 + t(λx)
1
4 ≥ λ 1

4 2 + λ
1
4 tx

1
4 = λ

1
4 g(t, x),

I1(λx) =

√
λx

1 +
√
λx
≥ λ

1
2
√
x

1 +
√
x

= λ
1
2 I1(x).

Furthermore, Let δ1 = 1, δ2 = 2,

f(t, x, y)= t3+tx
1
4 +

1

1+y
≤2+tx

1
4 =δ1g(t, x), q(y)=

1

1+
√
y
≤δ2≤2+tx

1
4 =g(t, x).
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In consequence, an application of Theorem 3.3 means that the problem (4.4) has a
unique positive solution u∗ ∈ Ph. The numerical result is given in Figure 4.

0 0.2 0.4 0.6 0.8 1
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3.5
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4.5

Figure 4. Numerical solution of Example 4.4.
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