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STATISTICALLY LOCALIZED SEQUENCES IN
METRIC SPACES
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Abstract In this paper we have introduced the statistically localized se-
quences in metric spaces and investigate basic properties of the statistically
localized sequences. Also we have obtained some necessary and sufficient con-
ditions for a localized sequence to be a statistically Cauchy sequence. It is
also defined uniformly statistically localized sequences on metric spaces and
its relation with statistically Cauchy sequences has been investigated.
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1. Introduction and preliminaries

The notation of a localized sequence introduced in [11] can be treated as a general-
ization of a Cauchy sequence in metric spaces. Introducing the concept of localized
sequence and the locator of a sequence, the paper [11] studied the basic properties of
localized sequences and obtained some results for the closure operators in a metric
space. Let X is a metric space with a metric d(·, ·) and (xn) is a sequence of points
in X. If the real number sequence αn = d (xn, x) converges for all x ∈M ⊂ X then
the sequence (xn) is called a localized sequence on the subset M. The maximal sub-
set on which (xn) is a localized sequence is called the locator of the sequence (xn).
If (xn) is a localized sequence on X then (xn) is called localized everywhere. If the
locator of a sequence (xn) contains all members of this sequence, expect of a finite
number of them, then (xn) is called localized in itself [11]. It is important to note
that, every Cauchy sequence in X is localized everywhere. It is also an interesting
fact that if A : X → X is a mapping with the condition d(Ax,Ay) ≤ d(x, y) for all
x, y ∈ X then for every x ∈ X the sequence (Anx) is localized at every fixed point
of the mapping A. This means that fixed points of the mapping A is contained in
the locator of the sequence (Anx). Motivating the above facts and the fact that the
locator of a sequence can be extended by changing the usual limit to the statistical
limit of a sequence (see [8]), we introduce the concepts of a statistically localized
sequence and the statistical locator of a sequence in metric spaces. Recall that if
(xn) is a sequence of points in a metric space X we say that
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(a) (xn) is statistically convergent to the point l ∈ X (we write xn
st→ l or

st-limn→∞ d (xn, l) = 0) if for each ε > 0,

δ {k : d(xk, l) ≥ ε} = 0 and

(b) (xn) is statistically Cauchy sequence if for each ε > 0 there is a positive
integer N = N (ε) such that

δ { k : d(xN , xk) ≥ ε} = 0,

where
δ {A} := lim

n
n−1 {the number of k ≤ n such that k ∈ A}

is a natural density of the set A ⊂ N (see [7, 8]).
Note that the statistical convergence of a sequence was introduced by Fast [6]

and Steinhaus [14]. Later, this concept has been generalized in many directions.
More details on statistical convergence and on applications of this concept can be
found in Fridy [8], Connor [4], Erdös and Tenenbaum [5], Freedman and Sember [7]
and Maio and Kocinac [12], Braha et al. [2], Nuray et al. [13], Yegül and Dündar [15],
Baliarsingh et al. [1], Kadak and Mohiuddine [9].

In this paper, we investigate basic properties of statistically localized sequences
and obtain some necessary and sufficient conditions for a localized sequence to be a
statistically Cauchy sequence. We prove that every statistically bounded sequence
has everywhere statistically localized subsequence. It is also defined uniformly s-
tatistically localized sequences on metric spaces and its relation with statistically
Cauchy sequences has been investigated.

2. Definitions and notations

In this part of the paper we shall introduce some basic definitions and notations.
Let X be a metric space with metric d (x, y).

Definition 2.1. (a) A sequence (xn) in X is called statistically localized in the
subset M ⊂ X if the number sequence d (xn, x) is statistically converges for all
x ∈M .

(b) the maximal set on which a sequence is statistically localized is called a
statistical locator of the sequence. The statistically locator of a sequence (xn) will
be denoted by locst (xn).

(c) A sequence (xn) is called statistically localized everywhere if the statistical
locator of (xn) coincides with X.

(d) A sequence (xn) is called statistically localized in itself if the statistically
locator contains xn for almost all n, i.e.

δ {n : xn /∈ locst (xn)} = 0 or δ {n : xn ∈ locst (xn)} = 1.

(e) A sequence (xn) is called statistically localized if locst (xn) is not empty.

Definition 2.2. A sequence (xn) ∈ X is called a statistically Cauchy sequence if
for any ε > 0 there exist kε ∈ N such that

δ {n ∈ N : d (xn, xkε) > ε} = 0.
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From the above definitions it is clear that every statistically Cauchy sequence
in a metric space X is statistically localized everywhere in X. Indeed, since

|d (xn, x)− d (x, xkε
)| 6 d

(
xn, xkε

)
we have {

n ∈ N : d
(
xn, xkε

)
> ε
}
⊃
{
n ∈ N :

∣∣d (xn, x)− d
(
x

kε
, x
)∣∣ > ε

}
.

Therefore the number sequence d (xn, x) is a statistically Cauchy sequence, then
d (xn, x) is statistically convergent for all x ∈ X. Hence (xn) is statistically localized
everywhere.

3. Basic properties of statistically localized sequences

Proposition 3.1. Every statistically localized sequence is statistically bounded.

Proof. Let (xn) is statistically localized sequence. Then, d (xn, x) is statistically
converges for some x ∈ X. Hence, the sequence d (xn, x) is a statistically bounded.
This implies that δ ({n ∈ N : d (xn, x) > K}) = 0 for some K > 0. Consequently,
the sequence (xn) is statistically bounded because almost all elements of (xn) are
located in the open ball B (x,K).

Proposition 3.2. Let L = locst (xn) and the point z ∈ X be such that for any
ε > 0 there exists x ∈ L satisfying

δ {n ∈ N : |d (x, xn)− d (z, xn)| > ε} = 0. (3.1)

Then z ∈ L.

Proof. It is enough to prove that the number sequence αn = d (xn, z) satisfies the
statistically Cauchy criteria. Let be ε > 0 and x ∈ L = locst (xn) is a point with the
property (3.1). Since the sequence d (xn, x) is statistically Cauchy sequence with
the property (3.1), then there exist a subsequence K = (kn) of N with δ (K) = 1
such that

|d (x, xkn
)− d (z, xkn

)| → 0 and

|d (xkn , x)− d (xkm , x)| → 0 as m,n→∞

(see [8]). Obviously, for any ε > 0 there exist n0 ∈ N such that for all n ≥ n0,
m ≥ m0 we have

|d (x, xkn
)− d (z, xkn

)| < ε

3
, (3.2)

|d (x, xkn
)− d (x, xkm

)| < ε

3
. (3.3)

Now, combining (3.2) and (3.3) together with the following estimation

|d (z, xkn
)− d (z, xkm

)| ≤ |d (z, xkn
)− d (x, xkn

)|+ |d (x, xkn
)− d (x, xkm

)|+
+ |d (x, xkm

)− d (z, xkm
)| (3.4)

we find that
|d (z, xkn

)− d (z, xkm
)| < ε (3.5)
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for all n ≥ n0, m ≥ n0. That is

|d (z, xkn
)− d (z, xkm

)| → 0 as m,n→∞

for the subset K = (kn) ⊂ N with δ (K) = 1. This implies that the number sequence
d (z, xn) is a Cauchy sequence. The proof is completed.

Proposition 3.3. Statistically locator of any sequence is a closed subset of the
metric space X.

Proof. Let be z ∈ locst (xn). Then, for any ε > 0 the ball B (z, ε) will contain a
point x ∈ locst (xn). Therefore,

δ {n ∈ N : |d (x, xn)− d (z, xn)| > ε} = 0

for any ε > 0, since for almost all n we have

|d (x, xn)− d (z, xn)| ≤ d (z, xn) < ε.

Consequently, the hypothesis of Proposition 3.2 is satisfied. Then z ∈ locst (xn),
i.e. locst (xn) is closed.

Recall that the point z is a statistical limit point of the sequence (xn) ∈ X if there
is a set K = {k1 < k2 < ...} ⊂ N such that δ (K) 6= 0 and limn→∞ d (xkn

, z) = 0.
Similarly, a point ξ is said to be a statistical cluster point if for each ε > 0

δ {n ∈ N : d (xn, ξ) < ε} 6= 0.

Since |d (xn, y)− d (z, y)| ≤ d (xn, z), we have the following proposition.

Proposition 3.4. If z ∈ X is a statistical limit point (a statistical cluster point) of
a sequence (xn) ∈ X, then for each y ∈ X the number d (z, y) is a statistical limit
point (a statistical cluster point) of the sequence {d (xn, y)}.

Proposition 3.5. All statistical limit points (statistical cluster points) of the sta-
tistically localized sequence (xn) have the same distance from each point x of the
statistical locator locst (xn).

Proof. Indeed, if z1 and z2 are two statistical limit points (statistical cluster
points) of the sequence (xn), then the numbers d (z1, x) and d (z2, x) are statis-
tical limit points of the statistically convergent sequence d (x, xn). Consequently,
d (z1, x) = d (z2, x).

Proposition 3.6. locst (xn) does not contain more than one statistical limit (clus-
ter) point of the sequence (xn). Particularly, everywhere localized sequence has not
more than one statistical limit (cluster) point.

Proof. If x, y ∈ locst (xn) are two statistical limit or cluster points of the sequence
(xn), then by the Proposition 3.5 d (x, x) = d (x, y). But d (x, x) = 0. This implies
that, d (x, y) = 0 for x 6= y. This is a contradiction.

Proposition 3.7. If the sequence (xn) has a statistical limit point z ∈ locst (xn),

then xn
st→ z.

Proof. The sequence {d (xn, z)} is statistically convergent and some subsequence

of this sequence converges to zero, that is xn
st→ z.
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Definition 3.1. For the given statistically localized sequence (xn), with the sta-
tistically locator L = locst (xn), the number

σ = inf
x∈L

(
st- lim

n→∞
d (x, xn)

)
is called the statistical barrier of (xn).

Theorem 3.1. The statistically localized sequence is statistically Cauchy sequence
if and only if the statistical barrier is equal to zero.

Proof. Let (xn) is a statistically Cauchy sequence in a metric space X. This
means there exit a set K = {k1 < k2 < ... < kn < ...} ⊂ N such that δ (K) = 1 and
limn,m→∞ d (xkn

, xkm
) = 0. Consequently, for each ε > 0 there exist n0 ∈ N such

that
d
(
xkn

, xkn0

)
< ε for all n ≥ n0.

Since a statistically Cauchy sequence is statistically localized everywhere, we have
st-limn→∞ d

(
xn, xkn0

)
≤ ε, i.e. σ ≤ ε. Because ε > 0 is arbitrary, we obtain σ = 0.

Conversely, if σ = 0 then for each ε > 0 there is x ∈ L = locst (xn) such that
d (x) = st-limn→∞ d (x, xn) < ε

2 . In this case

δ
{
n ∈ N : |d (x)− d (x, xn)| ≥ ε

2
− d (x)

}
= 0.

Then δ
{
n ∈ N : d (x, xn) ≥ ε

2

}
= 0, i.e. st-limn→∞ d (x, xn) = 0. Then (xn) is a

statistically Cauchy sequence.
If for some subsequence (xkn

) of the sequence (xn) we have δ(K) = 0, where K =
{k1 < k2 < ... < kn} ⊂ N, then

(
x

kn

)
is called a thin subsequence of (xn) . Other-

wise, i.e. if δ(K) 6= 0,
(
x

kn

)
is called a nonthin subsequence (see [8]).

Theorem 3.2. If (xn) is statistically localized in itself and (xn) contains a nonthin
Cauchy subsequence, then (xn) is a statistically Cauchy sequence itself.

Proof. Let (x′n) is a nonthin Cauchy subsequence of (xn). Not losing of generality,
we can suppose that all members of (x′n) belong to locst (xn). Since (x′n) is a Cauchy
sequence, by Theorem 3.1 infx′

n
limm→∞ d (x′m, x

′
n) = 0. On the other hand, since

(xn) is statistically localized in itself then,

st− lim
m→∞

d (xm, x
′
n) = st− lim

m→∞
d (x′m, x

′
n) = 0.

This implies that,

σ = inf
x∈L

(
st- lim

m→∞
d (xm, x)

)
= 0,

i.e. (xn) is a statistically Cauchy sequence itself.
Let be a ∈ X and r > 0. Recall that the sequence (xn) in a metric space X is

called statistically bounded if there is a subset K = {k1 < k2 < ... < kn ⊂ ...} of N
such that δ (K) = 1 and

(
x

kn

)
⊂ B (a, r), where B (a, r) is the ball with center at

the point a and with radius r. It is clear that,
(
x

kn

)
is a bounded sequence in X

and it has a localized in itself subsequence (see [11]). Consequently, the following
assertion also becames true.

Theorem 3.3. Every statistically bounded sequence in a metric space has a statis-
tically localized in itself subsequence.
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Definition 3.2. We say an infinite subset M ⊂ X is thick relatively to a nonempty
subset Y ⊂ X if for each ε > 0 there is the a point y ∈ Y such that the ball B (y, ε)
has infinitely many points of M . In particular, if the set M is thick relatively to its
subset Y ⊂M then M is called thick in itself.

Proposition 3.8 (see [11]). If the set M is thick relatively to some set Y , then the
set M is thick in itself.

Using the notation thick set the separability of metric spaces can be character-
ized.

Proposition 3.9 (see [11]). The metric space X is separable if and only if each
noncountable subset of X is thick in itself.

Theorem 3.4. The following statements are equivalent:

(i) Every statistically localized in itself sequence in X is a statistically Cauchy
sequence.

(ii) Every bounded subset of X is totally bounded.
(iii) Every bounded infinite set of X is thick in itself.

Proof. Let (i) is satisfied, but (ii) is not true. Then there is a subset M ⊂ X such
that M is not totally bounded. This means that there exists ε > 0 and a sequence
(xn) ⊂M such that d (xn, xm) > ε for any n 6= m.

Since (xn) is statistically bounded by Theorem 3.3 it has a statistically localized
in itself sequence (x′n). Since d (x′n, x

′
m) > ε for any n 6= m the subsequence is not

a statistically Cauchy sequence. This contradicts (i). Hence, (i) implies (ii) .
It is elementary to obtain that (ii) implies (iii) (see [11]).
Now let show that (iii) implies (i). Let (xn) ⊂ X is a statistically localized in

itself. Then (xn) is statistically bounded sequence in X. Then here is an infinite
set M of points of (xn) such that M is a bounded subset of X.

By the assumption the set M is thick in itself. Then for every ε > 0 we can
choose xk ∈ M such that the ball B (xk, ε) contains infinitely many points of X,
say x′1, ..., x

′
n, .... For the sequence (x′n) the sequence d (x′n, xk)

∞
n=1 is statistically

converges and st- lim
n→∞

d (x′n, xK) ≤ ε. Hence, the statistically barrier of (xn) is equal

to zero. That is (xn) is a Cauchy sequence. Proof is completed.
From Theorem 3.2 and 3.3 we obtain the property (i) is equivalent to
(iv) every statistically bounded sequence has a statistically Cauchy subsequence.
In separable metric spaces the property (iv) can be weakened as
(v) every statistically bounded sequence has everywhere statistically localized

sequence.
There is nonseparable metric spaces on which the property (v) is also satisfied.

Example 3.1. Let `p (x) is the set of real valued functions defined on a set X with

‖f‖p = sup
Y⊂X

∑
y∈Y
|f (y)|p ,

where Y is an arbitrary finite subset of X, p > 1 fixed real number. Then `p (x) is
a vector space, and the map f → ‖f‖ is a norm on it.

Let {fn} is a statistically bounded with respect to this norm sequence in `p (x) .
Obviously, there is finite or accountable set (xn) ⊂ X such that at most one

of the functions fn has nonzero values on the sequence (xn). Let fxm
(x) =
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0, x 6= xm
and H = span {fxn

}. Then (fn) ⊂ H and therefore H is separable, i.e.

H is isomorphic to ordinary sequence space `p or its finite subspace. Consequently,
the sequence {fn} has a subsequence {f ′n} with statistically locator containing in
H.

It is true that the subsequence {f ′n} is statistically localized everywhere in `p (x).
If f ∈ lp (x), then f = f ′ + f ′′, f ′ ∈ H, f ′′ satisfies

δ {n ∈ N : f ′′ (xn = 0)} = 0.

Since ‖f ′n − f‖
p

= ‖f ′n − f ′‖
p

+ ‖f ′′‖p and st- lim
n→∞

‖f ′n − f ′‖ exists we have st-

lim
n→∞

‖f ′n − f‖ is also exist, i.e. (fn) is statistically localized everywhere.

Note that in the space `st∞, of all statistically bounded number sequence the
property (v) is not valid. For example, the sequence (en) having unit e at n th co-
ordinate for the element en and zero other coordinates, doesn’t contain statistically
localized everywhere subsequence.

Definition 3.3. A sequence (xn) in metric space X is called uniformly statistically
localized on the subset M of X if the sequence {d (x, xn)} uniformly statistically
converges for all x ∈M .

Proposition 3.10. Let (xn) is uniformly statistically localized on the set M ⊂ X
and z ∈ Y is such that for every ε > 0, there is y ∈M with the property

δ {n ∈ N : |d (z, xn)− d (y, xn)| > ε} = 0.

Then, z ∈ locst (xn) and (xn) is uniformly statistically localized on a set containing
such points z.

The proof of the Proposition 3.10 is analogously to the Proposition 3.2.

Remark 3.1. The function dM (x, z) = sup
y∈M
|d (x, y)− d (y, z)| , x, z ∈ Y is called

a pseudo metric on the set Y .

The following result is proved by the standard manner (see [3, 10]).

Proposition 3.11. (xn) is uniformly statistically localized on the set M ⊂ X if
and only if the sequence (xn) is statistically Cauchy on the pseudo metric dM .

Theorem 3.5. Every uniformly statistically localized in itself sequence is a statis-
tically Cauchy sequence.

Proof. Let δ {n ∈ N : xn /∈M} = 0 for the uniformly statistically localized in
itself sequence (xn). From the definition of dM we get that if at most one of the
points x, z belongs to M , then dM (x, z) = d (x, z). In particular, there is n0 ∈ N
such that δ {n ∈ N : dM (xn, xn0) 6= d (xn, xn0)} = 0. Now the assertion is obtained
from the Proposition 3.11.
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