AN APPLICATION OF JACK-FUKUI-SAKAGUCHI LEMMA

Mamoru Nunokawa¹, Janusz Sokół^{2,†} and Huo Tang³

Abstract We present some applications of Jack-Fukui-Sakaguchi Lemma which become sufficient criteria for a function to be in the class of strongly starlike, strongly close-to-convex or in the other classes.

Keywords Bazilevič function, close-to-convex functions, convex functions, starlike functions.

MSC(2010) 30C45, 30C80.

1. Introduction

Let \mathcal{A} be the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of all univalent functions in \mathbb{D} . If $f \in \mathcal{A}$ satisfies

$$\Re \left\{\frac{zf'(z)}{f(z)}\right\} > 0, \ z \in \mathbb{D},$$

then f(z) is said to be starlike with respect to the origin in \mathbb{D} and it is denoted by $f(z) \in \mathcal{S}^*$. It is known that $\mathcal{S}^* \subset \mathcal{S}$. For further properties of starlike functions and other functions having a geometric property we refer to [3, 11]. To prove the main results we apply techniques of differential subordinations widely described in the book [10]. We say that an analytic function f(z) is subordinate to an analytic function g(z), univalent or not, and write $f(z) \prec g(z)$, if and only if there exists a function $\omega(z)$, analytic in \mathbb{D} such that $\omega(0) = 0$, $|\omega(z)| < 1$ for |z| < 1 and $f(z) = g(\omega(z))$. If we additionally assume that g(z) is univalent in \mathbb{D} , then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(|z| < 1) \subset g(|z| < 1).$$
 (1.2)

The differential subordinations were deeply developed in the monograph [10] as well as in many of recent papers, see for example in [2, 8, 9, 16, 17]. The following lemma is a generalization of well known Jack lemma, [5].

[†]the corresponding author. Email address:jsokol@ur.edu.pl(J. Sokół)

¹Departmentof Mathematics, University of Gunma, Hoshikuki-cho 798-8,

Chuou-Ward, Chiba, 260-0808, Japan

²College of Natural Sciences, University of Rzeszów, Prof. Pigonia's Street 1, 35-310 Rzeszów, Poland

³School of Mathematics and Statistics, Chifeng University, Chifeng 024000, Inner Mongolia, China

Lemma 1.1 ([4]). Let $w(z) = a_p z^p + a_{p+1} z^{p+1} + \cdots$, $a_p \neq 0$, $1 \leq p$ be analytic in \mathbb{D} . If the maximum of |w(z)| on the circle |z| = r < 1 is attained at $z = z_0$, then $z_0 w'(z_0)/w(z_0)$ is a real number and

$$\frac{z_0 w'(z_0)}{w(z_0)} \ge p.$$

A related boundary behavior of analytic functions is considered also in [14]. In this paper we present some applications of the above Jack-Fukui-Sakaguchi Lemma to obtain several sufficient criteria for a function to be in the class of strongly starlike, strongly close-to-convex or in the other classes. A related Sakaguchi's result was recently considered in [12,13].

2. Main results

Theorem 2.1. Let $q(z) = 1 + c_n z^n + \cdots$ be analytic in \mathbb{D} with $c_n \neq 0$. Assume that for all $z \in \mathbb{D}$ we have $q(z) \neq -1$, $q(z) \neq 0$ and for all $z \in \mathbb{D} \setminus \{0\}$ we have $q(z) \neq 1$. Furthermore, suppose that

$$\left| \frac{zq'(z)}{q(z)} \right| < n, \quad (z \in \mathbb{D}), \tag{2.1}$$

for some positive integer n. Then we have

$$q(z) \prec \frac{1+z^n}{1-z^n}. (2.2)$$

Proof. Let us consider the function w(z) such that

$$w^{n}(z) = \begin{cases} \frac{q(z)-1}{q(z)+1}, & z \neq 0, \\ 0, & z = 0. \end{cases}$$
 (2.3)

Then we have

$$w(z) = \sqrt[n]{\frac{c_n}{2}}z + \cdots,$$

which gives

$$q(z) = \frac{1 + w^n(z)}{1 - w^n(z)},\tag{2.4}$$

then it follows that w(z) is analytic in $\mathbb D$ and to prove (2.2) we need to show |w(z)|<1.

From Fukui and Sakaguchi's Lemma 1.1, we have that if there exists a point $z_0 \in \mathbb{D}$ such that

$$|w(z)| < |z_0|$$
 for $|z| < |z_0|$

and

$$|w(z_0)| = |z_0| \ w(z_0) = e^{i\theta},$$
 (2.5)

where θ is a real number and $0 < \theta < 2\pi$, then

$$\frac{z_0 w'(z_0)}{w(z_0)} = k \ge 1. (2.6)$$

From (2.3) and (2.4) it follows that $\theta \neq 0$ and $\theta \neq \pi$ and so $w(z_0) \neq \pm 1$. On the other hand, from (2.4), we have

$$\frac{zq'(z)}{q(z)} = \frac{2nzw'(z)w^{n-1}(z)}{1 - w^{2n}(z)}. (2.7)$$

Therefore, by (2.5) and (2.6) the equality (2.7) becomes

$$\left| \frac{z_0 q'(z_0)}{q(z_0)} \right| = \left| \frac{2n z_0 w'(z_0) w^{n-1}(z_0)}{1 - w^{2n}(z_0)} \right| \ge \left| \frac{2n k w^n(z_0)}{1 - w^{2n}(z_0)} \right|$$
$$= 2n k \left| \frac{e^{in\theta}}{1 - e^{2in\theta}} \right| = 2n k \frac{1}{2|\sin n\theta|} \ge n.$$

This contradicts (2.1) and so, it completes the proof.

Notice that in the subordination (2.2) the function $(1+z^n)/(1-z^n)$ is not univalent and it makes the calculations more difficult. Usually in $p(z) \prec q(z)$ it is considered univalent function q(z). Several classes of functions connected with subordination under not-univalent function of the type

$$q(z) \prec \frac{1 + Az^n}{1 + Bz^n},$$

where A, B are some complex numbers, were considered in [6] and [7]. If $q^{\alpha}(z) = zf'(z)/f(z)$, the Theorem 2.1 becomes the following corollary.

Corollary 2.1. Let $(zf'(z)/f(z))^{1/\alpha} = 1 + c_n z^n + \cdots$, $(zf'(z)/f(z))^{1/\alpha} \neq -1$, $zf'(z)/f(z) \neq 0$ be analytic in \mathbb{D} for some positive real α . Suppose also that

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right| < \alpha n , \quad (z \in \mathbb{D}), \tag{2.8}$$

for some positive integer n. Then we have

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z^n}{1-z^n}\right)^{\alpha}.$$
 (2.9)

It is easy to see, that (2.9) implies

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\alpha},\tag{2.10}$$

which means that f(z) is strongly starlike functions of order α . We say that a function $f \in \mathcal{S}^*$ is strongly starlike of order β if and only if

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\pi}{2}\beta, \quad (z \in \mathbb{D}),$$

for some β ($0 < \beta \le 1$), where the function arg is chosen with values in an interval between $-\pi$ and π . Let $\mathcal{SS}^*(\beta)$ denote the class of strongly starlike functions of order β . The class $\mathcal{SS}^*(\beta)$ was introduced independently in [18, 19] and in [1]. Recall also, that if there exists a function $g(z) \in \mathcal{S}^*$ for which the function $f(z) \in \mathcal{A}$ satisfies the condition

$$\left| \arg \left(\frac{zf'(z)}{g(z)} \right) \right| < \frac{\pi}{2} \alpha, \quad (z \in \mathbb{D}),$$

then we say that f(z) is strongly close-to-convex of order α , $0 < \alpha \le 1$. For some recent results on strongly starlike functions we refer to [15]. Putting $q^{\alpha}(z) = zf'(z)/g(z)$ in Theorem 2.1 we get the following sufficient condition for f(z) to be strongly close-to-convex of order α .

Corollary 2.2. Assume that $f(z) \in \mathcal{A}$, $g(z) \in \mathcal{S}^*$ and that for some positive real α , $0 < \alpha \leq 1$ the function $(zf'(z)/g(z))^{1/\alpha} = 1 + c_n z^n + \cdots$ is analytic in \mathbb{D} with $(zf'(z)/g(z))^{1/\alpha} \neq -1$, $zf'(z)/g(z) \neq 0$. Furthermore, suppose that

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right| < \alpha n, \quad (z \in \mathbb{D}), \tag{2.11}$$

for some positive integer n. Then we have

$$\frac{zf'(z)}{g(z)} \prec \left(\frac{1+z^n}{1-z^n}\right)^{\alpha},\tag{2.12}$$

which follows that f(z) is strongly close-to-convex of order α .

Moreover, if there exists a function $g(z) \in \mathcal{S}^*$ such that $f(z) \in \mathcal{A}$ satisfies the condition

 $\left| \arg \left(\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} \right) \right| < \frac{\pi}{2}\alpha, \quad (z \in \mathbb{D}),$

then we call that f(z) is strongly Bazilevič function of type β , $0 < \beta$ and of order α , $0 < \alpha \le 1$.

Corollary 2.3. Assume that $f(z) \in \mathcal{A}$, $g(z) \in \mathcal{S}^*$ and that for some positive real α , β , $0 < \alpha \le 1$ the function $(zf'(z)/f^{1-\beta}(z)g^{\beta}(z))^{1/\alpha} = 1 + c_n z^n + \cdots$ is analytic in \mathbb{D} with $(zf'(z)/f^{1-\beta}(z)g^{\beta}(z))^{1/\alpha} \ne -1$, $zf'(z)/f^{1-\beta}(z)g^{\beta}(z) \ne 0$. Furthermore, suppose that

$$\left| 1 + \frac{zf''(z)}{f'(z)} - (1 - \beta) \frac{zf'(z)}{f(z)} - \beta \frac{zg'(z)}{g(z)} \right| < \alpha n, \quad (z \in \mathbb{D}),$$
 (2.13)

for some positive integer n. Then we have

$$\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} \prec \left(\frac{1+z^n}{1-z^n}\right)^{\alpha},\tag{2.14}$$

which follows that f(z) is strongly Bazilevič function of type β , $0 < \beta$ and of order α .

If q(z) is of the form $q(z) = (p(z))^{1/\alpha}$, then Theorem 2.1 becomes the following corollary.

Corollary 2.4. Let $(p(z))^{1/\alpha} = 1 + c_n z^n + \cdots$, $(p(z))^{1/\alpha} \neq -1$, $p(z) \neq 0$ be analytic in \mathbb{D} , and suppose that

$$\left| \frac{zp'(z)}{p(z)} \right| < \alpha n, \quad (z \in \mathbb{D}), \tag{2.15}$$

for some positive real α and for some positive integer n. Then we have

$$p(z) \prec \left(\frac{1+z^n}{1-z^n}\right)^{\alpha}. \tag{2.16}$$

Theorem 2.2. Let $(\log\{p(z)\})^{1/\alpha} = 1 + c_1 z + \cdots$, $\log\{p(z)\} \neq 0$, $(\log\{p(z)\})^{1/\alpha} \neq -1$, be analytic in $\mathbb D$ and suppose that

$$\left| \frac{zp'(z)}{p(z)} \right| < \frac{\alpha}{2\left(\frac{1+\alpha}{2}\right)^{(1+\alpha)/2} + \left(\frac{1-\alpha}{2}\right)^{(1-\alpha)/2}}, \quad (z \in \mathbb{D}), \tag{2.17}$$

for some positive real $\alpha < 1$. Then we have $p(z) = e + d_1z + \cdots$ and

$$p(z) \prec e^{\left(\frac{1+z}{1+z}\right)^{\alpha}}, \quad (z \in \mathbb{D}).$$
 (2.18)

Proof. Let us put

$$w(z) = \frac{(\log\{p(z)\})^{1/\alpha} - 1}{(\log\{p(z)\})^{1/\alpha} + 1}, \quad w(0) = 0$$
 (2.19)

or

$$p(z) = e^{\left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha}},\tag{2.20}$$

then it follows that w(z) is analytic in \mathbb{D} , w(0) = 0 and

$$\frac{zp'(z)}{p(z)} = \alpha z \left(\frac{1+w(z)}{1-w(z)}\right)' \left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha-1}$$

$$= \frac{2\alpha z w'(z)}{(1-w(z))^2} \left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha-1}$$

$$= \frac{2\alpha z w'(z)}{1-w^2(z)} \left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha}.$$

To prove (2.18) we need |w(z)| < 1 in \mathbb{D} . If there exists a point $z_0 \in \mathbb{D}$ such that

$$|w(z)| < 1$$
 for $|z| < |z_0|$

and

$$|w(z_0)| = 1, \quad w(z_0) = e^{i\theta},$$
 (2.21)

for some real θ , $\theta \in [0, 2\pi) \setminus \{0, \pi\}$ because from the hypothesis and from (2.19) it follows that $w(z_0) \neq \pm 1$. Then from Jack [5] and Fukui and Sakaguchi's [4] Lemma 1.1, we have that

$$\frac{z_0 w'(z_0)}{w(z_0)} = k \ge 1.$$

Then it follows that

$$\frac{z_0p'(z_0)}{p(z_0)} = \frac{2\alpha z_0w'(z_0)}{1-w^2(z_0)} \left(\frac{1+w(z_0)}{1-w(z_0)}\right)^{\alpha} = 2\alpha k \frac{w(z_0)}{1-w^2(z_0)} \left(\frac{1+w(z_0)}{1-w(z_0)}\right)^{\alpha}$$

and for $\theta \in (0, 2\pi) \setminus \{\pi\}$

$$\frac{w(z_0)}{1 - w^2(z_0)} = \frac{e^{i\theta}}{1 - e^{2i\theta}} = \frac{i}{2\sin\theta},$$
$$\frac{1 + w(z_0)}{1 - w(z_0)} = \frac{2i\sin\theta}{2(1 - \cos\theta)} = i\frac{\cos(\theta/2)}{\sin(\theta/2)}.$$

Therefore, we have

$$\left| \frac{2z_0 w'(z_0)}{1 - w^2(z_0)} \left(\frac{1 + w(z_0)}{1 - w(z_0)} \right)^{\alpha} \right| = \left| \frac{i}{2 \sin \theta} \right| \left| i \frac{\cos(\theta/2)}{\sin(\theta/2)} \right|^{\alpha}
= \frac{1}{2} \left| \frac{1}{(\sin(\theta/2))(\cos(\theta/2))} \right| \left| \frac{\cos(\theta/2)}{\sin(\theta/2)} \right|^{\alpha}
= \frac{1}{2} \frac{1}{(|\sin(\theta/2)|^{1+\alpha}|\cos(\theta/2)|^{1-\alpha}}.$$

Putting

$$g(x) = (\sin x)^{1+\alpha} (\cos x)^{1-\alpha}, \quad 0 < x < \pi/2$$

$$h(x) = (\sin x)^{1+\alpha} (-\cos x)^{1-\alpha}, \quad \pi/2 < x < \pi$$

shows that

$$g'(x) = (1+\alpha) \left(\frac{\sin x}{\cos x}\right)^{\alpha} \left\{\cos^2 x - \frac{1-\alpha}{1+\alpha}\sin^2 x\right\}$$
$$= (1+\alpha) \left(\frac{\sin x}{\cos x}\right)^{\alpha} \left\{1 - \frac{2}{1+\alpha}\sin^2 x\right\}.$$

Therefore, for $0 \le x < \pi/2$ we have

$$g'(x) = 0 \Leftrightarrow \left(\sin x = 0 \lor \sin x = \sqrt{\frac{1+\alpha}{2}}\right)$$

which gives

$$g'(x) = 0 \Leftrightarrow \left(x = 0 \lor x = \sin^{-1} \sqrt{\frac{1+\alpha}{2}}\right).$$

It follows that

$$\max_{0 < x < \pi/2} |g(x)| = \left(\frac{1+\alpha}{2}\right)^{(1+\alpha)/2} + \left(\frac{1-\alpha}{2}\right)^{(1-\alpha)/2}.$$

Also

$$\max_{\pi/2 < x < \pi} |h(x)| = \left(\frac{1+\alpha}{2}\right)^{(1+\alpha)/2} + \left(\frac{1-\alpha}{2}\right)^{(1-\alpha)/2}.$$

Therefore, we have

$$\left|\frac{z_0p'(z_0)}{p(z_0)}\right| \ge \frac{\alpha k}{2\left(\frac{1+\alpha}{2}\right)^{(1+\alpha)/2}\left(\frac{1-\alpha}{2}\right)^{(1-\alpha)/2}} \ge \frac{\alpha}{2\left(\frac{1+\alpha}{2}\right)^{(1+\alpha)/2}\left(\frac{1-\alpha}{2}\right)^{(1-\alpha)/2}}.$$

This contradicts (2.17) and so, we have (2.18).

References

[1] D. A. Brannan, W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc., 1969, 1(2), 431–443.

- [2] S. Z. H. Bukhari, T. Bulboaca, M. S. Shabbir, Subordination and superordination results for analytic functions with respect to symmetrical points, Quaestiones Mathematicae, 2017, 41(1), 1–15.
- [3] A. W. Goodman, *Univalent Functions*, Vols. I and II, Mariner Publishing Co.: Tampa, Florida, 1983.
- [4] S. Fukui, K. Sakaguchi, An extension of a theorem of S. Ruscheweyh, Bull. Fac. Edu. Wakayama Univ. Nat. Sci., 1980, 29, 1–3.
- [5] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc., 1971, 3, 469–474.
- [6] R. Jurasinńska, J. Stankiewicz, Coefficients in some classes defined by subordination to multivalent majorants, Ann. Polon. Math., 2003, 80, 163–170.
- [7] R. Jurasinńska, J. Sokół, Some problems for certain family of starlike functions, Math. Comp. Modell., 2012, 55, 2134–2140.
- [8] R. Kargar, N. Pascu, A. Ebadian, Locally univalent approximations of analytic functions, J. Math. Anal. Appl., 2017. DOI: 10.1016/j.jmaa.2017.04.054.
- [9] R. Kargar, A. Ebadian, L. Trojnar-Spelina, Further Results for Starlike Functions Related with Booth Lemniscate, Iranian J. Science and Tech., Transaction A, Science, 2019, 43(3), 1235–1238.
- [10] S. S. Miller, P. T. Mocanu, Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel, 2000.
- [11] K. I. Noor, N. Khan, Q. Zahoor, Some properties of multivalent spiral-like functions Maejo Int. J. Sci. Technol., 2018, 12(2), 139–151.
- [12] M. Nunokawa, S. Owa, K. Kuroki, J. Sokół, Some generalization properties of analytic functions concerned with Sakaguchi result, Tamkang J. Math., 2015, 46(2), 143–150.
- [13] M. Nunokawa, J. Sokół, On an extension of Sakaguchi's result, J. Math. Ineq., 2015, 9(3), 683–697.
- [14] M. Nunokawa, J. Sokół, On a boundary property of analytic functions, J. Ineq. Appl., 2017, 2017:298.
- [15] M. Nunokawa, J. Sokół, New conditions for starlikeness and strongly starlikeness of order alpha, Houston J. Math., 2017, 43(2), 333–344.
- [16] S. Rahrovi, J. Sokół, Differential sandwich theorems for some subclasses of p-valent functions, Acta Univ. Apulensis Math. Inform., 2016, 47, 117–132.
- [17] H. M. Srivastava, S. Hussein, M. Raza, The Fekete-Szegö Functional for a Subclass of Analytic Functions Associated with Quasi-Subordination, Carpathian J. Math., 2018, 34(1), 103–113.
- [18] J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions α -angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 1965, 20, 59–75.
- [19] J. Stankiewicz, On a family of starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 1968/70, 22–24, 175–181.