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STRUCTURAL BIFURCATION OF
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NON-SIMPLE DEGENERATE POINTS WITH
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Abstract In this study, topological features of an incompressible two-dimen-
sional flow far from any boundaries is considered. A rigorous theory has been
developed for degenerate streamline patterns and their bifurcation. The ho-
motopy invariance of the index is used to simplify the differential equations of
fluid flows which are parameter families of divergence-free vector fields. When
the degenerate flow pattern is perturbed slightly, a structural bifurcation for
flows with symmetry is obtained. We give possible flow structures near a bifur-
cation point. A flow pattern is found where a degenerate cusp point appears
on the x-axis. Moreover, we also show that bifurcation of the flow structure
near a non-simple degenerate critical point with double symmetry is generic
away from boundaries. Finally, we give an application of the degenerate flow
patterns emerging when index 0 and -2 in a double lid driven cavity and in
two dimensional peristaltic flow.
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namics, structural bifurcation, singularity classification.
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1. Introduction

The main objective of this article is to determine the degenerate flow structures and
their associated bifurcations of divergence-free vector field on 2D compact Rieman-
nian manifolds with symmetry conditions. For bifurcation near simple-degenerate
critical points away from boundaries, we refer the interested reader to ( [8, 28]). In
this paper we address degenerate critical points near non-simple degenerate critical
points.

Streamline topologies near non-simple degenerate critical points in a two-dimen-
sional flow with symmetry about an axis and double symmetry away from bound-
aries were studied by Deliceoğlu and Gürcan ( [14, 15]). They found degenerate
flow patterns and their bifurcations near a non-simple degenerate critical point via
qualitative properties of steady flows based on polynomial expansions of the stream-
function. They used a series of canonical transformation to find the normal form
of streamfunction. These techniques were first used by Brøns and Hartnack [8]
and by others ( [6, 9, 10, 22]). Also, Brøns et al. [11], Dam et al. [13] and Heil et
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al. [23] have studied flow bifurcations by using time as a parameter. Jiménez-Lozano
and Sen [25] studied streamline topologies of two-dimensional peristaltic flow and
their bifurcations up to codimension two. They found an analytical solution for
the stream-function under a long-wavelength and low-Reynolds number approxi-
mation. They showed that experimental observations of trapping agree with the
theoretical findings. A bifurcation analysis of streamline pattern was also studied
by ( [1–3,5, 16]).

The stability and transitions of the structure of incompressible flows with their
applications to fluid dynamics were studied by Ma and Wang [29]. They presented
a geometric theory for incompressible flows and its application to fluid dynamic-
s. A global structural stability theorem of divergence-free vector fields, providing
necessary and sufficient conditions for structural stability was proved by Ma and
Wang [30]. Topological ideas have been applied in several other studies in the inves-
tigation of structural bifurcation of divergence free-vector fields (see e.g. [19, 24]).

Recently, the structural bifurcation and boundary layer separation for 2-D in-
compressible fluid have been investigated in many studies ( [12, 20, 21, 27, 31–33]).
Ghil et al. [20] studied the detailed process of bifurcation in the flows topological
structure for a two-dimensional (2-D) incompressible flow subject to no-slip bound-
ary conditions and its connection with boundary-layer separation. Luo et al. [27]
considered the solutions of Navier-Stokes equations with Dirichlet boundary condi-
tions governing 2-D incompressible fluid flows. A condition for boundary layer was
obtained. The solutions of Navier-Stokes equations governing 2-D incompressible
flows with the Dirichlet boundary condition have been analyzed by Wang et al. [33].

Hsia et al. [24] studied the structural stability and bifurcation for 2-D incom-
pressible flows with symmetry. They showed that the symmetric divergence-free
velocity field keeps stable if an interior saddle is connected to its symmetric image.
The patterns and bifurcations found theoretically was also demonstrated by a nu-
merical example of a Boussinesq flow induced by a temperature jump. They used a
fourth order finite difference method proposed by Liu et al. [26] and Wang et al. [34]
in the numerical simulation of the physical process.

Ma and Wang [29] showed that a homoclinic orbit, i.e., one center interior sepa-
ration, is generic in the interior structural bifurcation. Recently in [7], the authors
study interior structural bifurcation of two-dimensional symmetric incompressible
flows. They obtained the two structural bifurcation scenarios are indeed generic for
flows near simple-degenerate critical points with certain symmetries. In this paper,
our aim is to obtain new structural bifurcation scenarios and to determine which of
them are generic in the flow near the non-simple degenerate critical points.

The scope of the present paper is to make connections between the index of a
divergence-free vector field u(., t) near a non-simple degenerate critical point and
its Taylor expansion. The number of free parameters in the Taylor expansion of a
divergence-free vector field is reduced by using the homotopy invariance of the index.
This method significantly reduces the computational cost of finding a normal form
of streamfunction preserving the flow structure under the transformation. This
method was also used by the authors ( [19, 28, 30]). In this study, the works by
Deliceoğlu and Gürcan ( [14,15]) will be revisited through the index theory, as will
be seen, structural classification of divergence-free vector fields near the non-simple
critical points is simplified significantly.

The main goal of this paper is

(i) to investigate structural bifurcation of u(., t) at t0 near a non-simple degenerate
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point and its evolution in time,

(ii) to obtain some theorems characterizing degenerate singular point with zero
Jacobian, and

(iii) to give kinematic conditions which orbit structures appears inside viscous fluid
flows near non-simple degenerate critical points,

(iv) to show that the structural bifurcation scenarios near the non-simple degen-
erate critical point with double symmetry are generic in the flow.

2. Preliminaries

We first introduce some basic definitions, lemmas and theorems which are useful
for structural stability and bifurcation of divergence-free vector fields. Let M ⊂ R2

be a closed and bounded domain with Cr (r ≥ 1) boundary ∂M . Let TM be
the tangent bundle of M , and Cr(TM) be the space of all Cr vector fields on M .
Denote

Crn(TM) = {u ∈ Cr(TM) | un|∂M = 0} ,

Dr(TM) = {u ∈Cr(TM)| un|∂M = 0, ∇.u = 0} ,

where un = u.n, while n is the normal vector on ∂M .

Definition 2.1 ( [28]). Two vector fields u,v ∈Dr(TM) are called topologically
equivalent in Dr(TM) if there exists a homomorphism of ϕ : M →M , which maps
orbits of u to orbits of v and preserves their orientation.

Definition 2.2 ( [28]). A vector field u ∈Dr(TM) is called structurally stable in
Dr(TM) if there exists a neighborhood O ⊂ Dr(TM) of u such that for any v ∈O,
v and u are topologically equivalent.

Definition 2.3 ( [28]). Let u ∈C1 ([0, T ] , Dr(TM)) . We say that u(x, t) has a
bifurcation in its local structure in a neighborhood U ⊂M of x0 at t0(0 < t0 < T )
if, for any t− < t0 and t0 < t+ with t− and t+ sufficiently close to t0, the vector
fields u(·, t−) and u(·, t+) are not topologically equivalent locally in U ⊂ M , and
we say that u(·, t) has a bifurcation at t0 in its global structure if U = M .

A point p is called a singular point of u ∈ Dr(TM) if u(p) = 0; a singular point
p of u is called non-degenerate if the Jacobian matrix Du(p) is invertible; u is
called regular if all singular points are non-degenerate; an interior non-degenerate
singular point of u can be either a center or a saddle, and a non-degenerate boundary
singularity must be saddle; u is structurally stable near each non-degenerate singular
point of u. For more details and discussions, see Ref. [28].

Theorem 2.1 ( [30]). A divergence-free vector field u ∈ Dr(TM)(r ≥ 1) is struc-
turally stable in Dr(TM) if and only if

(1) u is regular;
(2) all interior saddle points of u are self-connected; and
(3) each saddle points of u on ∂M is connected only to saddle points on the

same connected component of ∂M.

Theorem 2.2 ( [19]). Let p ∈M be an isolated singular point of u ∈Dr(TM)(r ≥
1). Then p is connected only to a finite number of orbits and the stable and unstable
orbits connected to p alternate when tracing a closed curve around p. Furthermore,
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(1) when p ∈
◦
M , p has 2n(n ≥ 0) orbits, n of which are stable, and other n

unstable, while the index of p is

ind(u,p) = 1− n,

(2) when p ∈ ∂M , p has n+ 2(n ≥ 2) orbits, two of which are on the boundary
∂M , and the index of p is

ind(u,p) = −n
2
.

Let the divergence-free vector field u be anti-symmetric with respect to the
origin point O(0, 0). The vector field u(x, y) satisfies

u(− x,−y) = −u(x, y),

and we denote

Rr(TM) = {u ∈ Dr(TM)| u(− x,−y) = −u(x, y)} .

We say that P
′

is the symmetric image of a point P if P
′

= −P . Similarly,
the symmetric image of a set N is represented as N

′
= {−P | P ∈ N}. Then

the following theorem provides necessary and sufficient conditions for structural
stability of a divergence-free vector fields in Rr(TM).

Theorem 2.3 ( [24]). Let u ∈ Rr(TM)(r ≥ 2). Then u is structurally stable in
Rr(TM) if and only if

(1) u is regular;
(2) any interior saddle point P of u is either self-connected or connected to its

symmetric image P
′
; and

(3) each boundary saddle point P (with symmetric image P
′
)∈ N ⊂M , N being

a connected component of ∂M with symmetric image N
′ ⊂ M , is connected to a

∂−saddle Q∈ N ∪N ′\
{
P, P

′
}
.

Lemma 2.1 ( [28]). Let u ∈ Dr(TM) (r ≥ 1), and x0 ∈
◦
M be an isolated singular

point of u. If the index ind(u, x0) 6= 1, 0,−1, then the Jacobian matrix

Du(x0) = 0.

Lemma 2.2 ( [28]). Let u ∈ Dr(TM) (r ≥ 1), and x0 ∈
◦
M be an isolated singular

point of u. If the index ind(u, x0) = 0, and the angle θ between the two orbits
connected to x0 is different from 0, then Du(x0) = 0 holds true.

3. Interior Degenerate Singularities of Divergence-
Free Vector Field with Symmetry

3.1. Degenerate singularities of divergence-free vector field
with symmetry about an axis

In this section we will derive some relations between the coefficients of the Tay-
lor expansion of u(x, y, t0) = u0(x, y) near a non-simple-degenerate point x0 with
symmetry about an axis. We suppose that the divergence free vector field u0(x, y)
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is symmetric about y axis, that is, for u0(x, y)= (u1(x, y), u2(x, y)) the vector field
u0(x, y) satisfies the symmetry condition

u1(x, y) = u1(−x, y), u2(x, y) = −u2(−x, y). (3.1)

We define the set of all such vector fields as follows:

Er(TM) =
{
u0 ∈Dr(TM)| u1(x, y) = u1(−x, y), u2(x, y) = −u2(−x, y)

}
.

Let x0(0, 0) ∈
◦
M be an isolated non-simple degenerate singular point of u0. Then

the Jacobian matrix of u0 can be written as follows:

Du0(x0) = Du0(0)=

 0 0

0 0

 . (3.2)

We also assume the following conditions:

∂2
(
u0(x0) · e1

)
∂e2

1

6= 0, (3.3)

∂m
(
u0(x0) · e1

)
∂em2

= 0, 2 ≤ m < n,

6= 0, m = n.
(3.4)

Here e1 and e2 are unit vectors of the Cartesian coordinate system. Under the
condition (3.2), (3.3) and (3.4), u0 is given by

u0(x, y) =

αx2 + βyn + o
(
x2, |y|n

)
,

−2αxy + o
(
x2, y2

)
,

(3.5)

where α,β 6= 0 and n ≥ 2.
The following lemma is useful in determining the index of flow structure near

the degenerate critical points.

Lemma 3.1. Let x0 ∈
◦
M be an isolated degenerate singular point of u0 satisfying

(3.5). In a small neighborhood of x0, the index of u0 is stated as follows:

ind
(
u0,x0

)
=


−2, as n = even, n ≥ 2 and αβ < 0,

0, as n = even, n ≥ 2 and αβ > 0,

−1, as n = odd and n ≥ 3.

(3.6)

Proof. Let

u0
t (x, y) =

αx2 + βyn + t
(
o
(
x2, |y|n

))
,

−2αxy + t
(
o
(
x2, y2

))
,

where 0 ≤ t ≤ 1 and n ≥ 2. There exists a neighborhood G ⊂ M of x0(= 0), such
that u0

t (x, y) has the unique singular point x = (0, 0) in G for all t ∈ [0, 1]. By the
homotopy invariance of the index, we derive that

ind(u0
0, x0) = ind(u0

1, x0) = ind(u0, x0).
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In a small neighborhood of x0, orbits of u0
0 =

(
αx2 + βyn,−2αxy

)
are given by

the following equations:

β

n+ 1
yn+1 + αx2y = C, 0 ≤ |C| < δ. (3.7)

Figure 1. Index of u0 given by (3.5) about a point x0 with symmetry about an axis. (a) A degenerate

saddle point with ind(u0, x0) = −2 for the case where n = 2 and αβ < 0; (b) A degenerate point on
the x-axis with ind(u0, x0) = 0 for the case where n is even and n ≥ 2, αβ > 0; (c) A degenerate saddle
point with ind(u0, x0) = −2 for the case where n is even and n ≥ 4, αβ < 0; (d-e) A degenerate cusp
point on the x-axis with ind(u0, x0) = −1 for the case where n is odd and n ≥ 3.

(i) When n is even and n ≥ 2, (3.7) becomes

y = 0,
β

n+ 1
yn + αx2 = C. (3.8)

For αβ < 0 and n = 2, the orbits of u0
0 in a small neighborhood of x0 has six

separatrices from a single saddle point and this case is denoted a topological
saddle with index -2, see Fig. 1(a). When αβ > 0, there are two orbits, one
of which is stable, and the other is unstable and the index of x0 is 0, see Fig.
1(b). When n ≥ 4 and αβ < 0, the index of the orbit is -2 (see Fig. 1(c)).

(ii) If n is odd and n ≥ 3. Then equation (3.7) becomes

y = 0,
β

n+ 1
yn + αx2 = C. (3.9)

By using (3.9), we obtain flow pattern with index -1, where a degenerate cusp point
is located on the x-axis, see Fig. 1(d) and Fig. 1(e). This completes the proof.

3.2. Degenerate Singularities of Divergence-Free Vector Field
with Double Symmetry

We now give the Taylor expansion of a divergence-free vector field u0 near x0 with
double symmetry together with its connection to the index of the underlying flow
patterns. For this purpose we consider the degenerate structures of divergence free
vector field u0 ∈Dr(TM) with double-symmetry. Let the vector field u0 ∈Dr(TM)
be double-symmetric with respect to both the x and the y-axis, that is, u0 satisfies,

u1(x, y) = u1(−x, y) and u1(x, y) = u1(x,−y), (3.10)

u2(x, y) = −u2(−x, y) and u2(x, y) = −u2(x,−y). (3.11)
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We denote the set of these vector fields as follows:

F r(TM) =
{
u0 ∈Dr(TM)| u0 satisfies (3.10) and (3.11)

}
.

Let x0(0, 0) ∈
◦
M be an isolated degenerate singular point of u0. Then the

Jacobian matrix of u0 can be written as follows:

Du0(x0) = Du0(0)=

 0 0

0 0

 . (3.12)

Assume further that
∂2
(
u0(x0) · e1

)
∂e2

2

6= 0, (3.13)

∂m
(
u0(x0) · e1

)
∂em1

= 0, 2 ≤ m < 2k,

6= 0, m = 2k.
(3.14)

Under the conditions (3.12), (3.13) and (3.14), the vector field u0 is written as

u0(x, y) =

αy2 + βx2k + o(y2, x2k),

−2kβx2k−1y − o(y, x2k−1)
(3.15)

where α,β 6= 0 and k = (1, 2, ...) .

Figure 2. Index of non-simple degenerate singular points of u0 given by (3.15) with double symmetry.

(a) A degenerate saddle point with ind(u0, x0) = −2 for the case k = 1 and αβ < 0; (b) A degenerate
point on the x-axis with ind(u0, x0) = 0 for the case αβ > 0; (c) A degenerate saddle point with
ind(u0, x0) = −2 for the case k > 1 and αβ < 0.

Lemma 3.2. Let x0 ∈
◦
M be an isolated degenerate singular point of u0 satisfying

(3.15). In a small neighborhood of x0, the index of u0 is stated as follows:

ind
(
u0,x0

)
=

−2, as αβ < 0,

0, as αβ > 0.
(3.16)

Proof. Consider the vector field

u0
t (x, y) =

αy2 + βx2k + t
(
o(y2, x2k)

)
,

−2kβx2k−1y + t
(
o(y, x2k−1)

)
,
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where 0 ≤ t ≤ 1. As in section 3.1, we may find flow topology in the neighborhood
of non-simple degenerate critical points. There exist a neighborhood G ⊂ M of
x0(= 0), such that u0

t (x, y) has a unique singular point x = (0, 0) in G for all
t ∈ [0, 1]. By the homotopy invariance of the index, we derive that

ind(u0
0, x0) = ind(u0

1, x0) = ind(u0,x0).

In a small neighborhood of x0, we obtain from u0
0 =

(
αy2 + βx2k,−2kβx2k−1y

)
,

α

3
y3 + βx2ky = C, 0 ≤ |C| < δ. (3.17)

From (3.17), it easy to see that

y = 0,
α

3
y2 + βx2 = C for k = 1. (3.18)

This means that if αβ < 0 (respectively, αβ > 0), the non-simple degenerate point
has a index -2, see Fig. 2(a) (respectively, as shown in Fig. 2(b)). If k > 1 in (3.17),
then

y = 0,
α

3
y2 + βx2k = C. (3.19)

In this case, we can see apparently from (3.19) if αβ < 0, the orbits of u0 in a
small neighborhood of x0 = (0, 0) is as illustrated in Fig. 2(c).

Now we assume that x0(0, 0) ∈
◦
M is an isolated non-simple degenerate singular

point of u0 ∈ F r(TM) satisfying the following conditions:

∂2
(
u0(x0) · e1

)
∂e2

1

6= 0, (3.20)

∂m
(
u0(x0) · e1

)
∂em2

= 0, 2 ≤ m < 2n,

6= 0, m = 2n.
(3.21)

Under the conditions (3.20) and (3.21), the vector field u0 is given by

u0(x, y) =

βx2 + αy2n + o(x2, |y|2n),

−2βxy + o(x, y),
(3.22)

where α,β 6= 0 and n ≥ 1.

Lemma 3.3. Let x0 ∈
◦
M be an isolated degenerate singular point of u0 satisfying

(3.22). In a small neighborhood of x0, the index of u0 is stated as follows:

ind
(
u0,x0

)
=


−2, as n = 1 and αβ < 0,

0, as n = 1 and αβ > 0,

−2, as n > 1, and αβ < 0.

(3.23)

Proof. The process of proof is similar to the proof of Lemma 3.2. Here we omit
the details.
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Figure 3. Index of non-simple degenerate singular points of u0 given by (3.22) with double symmetry.

(a) A degenerate saddle point with ind(u0, x0) = −2 for the case n = 1 and αβ < 0; (b) A degenerate
point on the x-axis with ind(u0, x0) = 0 for the case αβ > 0; (c) A degenerate saddle point with
ind(u0, x0) = −2 for the case n > 1 and αβ < 0.

4. Structural Bifurcation Near Non-Simple Degen-
erate Singular Point

In this section we consider the transitions in the topological structure of a divergence
free vector field near a non-simple degenerate interior point with symmetry about an
axis. Let u ∈ C1 ([0, T ] , Er (TM)) (r ≥ 1) be a one parameter family of divergence-
free vector fields. We consider the Taylor expansion of u(x, t) at t0 (0 < t0 < T ),

u(x, t)= u0(x) + (t− t0) u1(x) + o (| t− t0|) ,

u0(x) = u(x, t0),

u1(x) = ∂
∂tu(x, t0).

(4.1)

We start with the following assumptions for the structural bifurcations.

Assumption (1): Let x0 ∈
◦
M be an isolated degenerate singular point of u0(x)

satisfying the condition of Lemma 3.1. Suppose that

ind(u0, x0) = 0, (4.2)

Du0(x0) = 0, (4.3)

u1(x0) · e1 6= 0, (4.4)

where e1 is the unit vector and we also assume that u0 ∈ Cn near x0 ∈
◦
M for some

m ≥ 1, and

∂m
(
u0(x0) · e1

)
∂em2

= 0, 1 ≤ m < 2,

6= 0, m = 2n.
(4.5)

Assumption (2): Let x0 ∈
◦
M be an isolated degenerate singular point of u0(x)

satisfying the condition of Lemma 3.1. Suppose that

ind(u0, x0) = −2, (4.6)

Du0(x0) = 0, (4.7)

u1(x0) · e1 6= 0, (4.8)
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where e1 is the unit vector and we also assume that u0 ∈ Cn near x0 ∈
◦
M for some

m ≥ 1, and

∂m
(
u0(x0) · e1

)
∂em2

= 0, 1 ≤ m < 2,

6= 0, m = 2.
(4.9)

Assumption (3): Let x0 ∈
◦
M be an isolated degenerate singular point of u0(x)

satisfying the condition of Lemma 3.1. Suppose that

ind(u0, x0) = −2, (4.10)

Du0(x0) = 0, (4.11)

u1(x0) · e1 6= 0, (4.12)

where e1 is the unit vector and we also assume that u0 ∈ Cn near x0 ∈
◦
M for some

m ≥ 1, and

∂m
(
u0(x0) · e1

)
∂em2

= 0, 1 ≤ m < 4,

6= 0, m ≥ 4.
(4.13)

Assumption (4): Let x0 ∈
◦
M be an isolated degenerate singular point of u0(x)

satisfying the condition of Lemma 3.1. Suppose that

ind(u0, x0) = −1, (4.14)

Du0(x0) = 0, (4.15)

u1(x0) · e1 6= 0, (4.16)

where e1 is the unit vector and we also assume that u0 ∈ Cn near x0 ∈
◦
M for some

odd m ≥ 1, and

∂m
(
u0(x0) · e1

)
∂em2

= 0, 1 ≤ m < 3,

6= 0, m ≥ 3.
(4.17)

Theorem 4.1. Let u ∈ C1 ([0, T ] , Er(TM)) (r ≥ 1) satisfy all conditions of As-
sumption (1). Then, the unfolding of codimension-one of u(x, t) bifurcates from
(x0, t0) exactly four non-degenerate singular points in a small neighborhood of x0

for any t < t0 (or t > t0), two of which are saddle points and the rest are center
points. u(x, t) has no singular point in a small neighborhood of x0 for any t > t0 (or
t < t0).

Proof. From Assumption (1) and Lemma 3.1 the vector field u0(x, y) has the
Taylor expansion at x0 = 0 as follows:

u0(x, y) =

αx2 + βy2n + o
(
x2, y2n

)
,

−2αxy + o(x2, y2),
(4.18)

where α 6= 0, β 6= 0, α · β > 0 and n ≥ 1.
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By the condition (4.4) and since the orbit of u(x, y) is symmetric with respect
to the y axis, we have

u1(x, y) =

λ+O
(∣∣x2

∣∣ , |y|) ,
xO (1) ,

(4.19)

where λ 6= 0. We assume that α > 0 and λ > 0 (or other combinations of α and
λ), so by taking αβ > 0, we get β > 0. Now we consider the singular points of the
vector field u0 − εu1 for all ε > 0 sufficiently small.

αx2 + βy2n + o
(
x2 + y2n

)
− ελ− εO (|x|+ |y|) = 0, (4.20)

− 2αxy + o(x2 + y2)− xεO (1) = 0. (4.21)

By the implicit function theorem, in a small neighborhood of (0, 0), we can solve
(4.20) in terms of ε uniquely as

ε = λ−1(αx2 + βy2n) + o
(
x2 + y2n

)
. (4.22)

(4.21) is satisfied for x = 0 and from (4.22) we get the solitions

P1,2 = ±

(
0,

(
ελ

β

)1/2n
)

+ o
(
ε1/2n

)
(4.23)

of u0 − εu1 = 0.
For x 6= 0, (4.21) becomes

− 2αy + λ−1αx2O(1) + o(x2 + y2) = 0, (4.24)

which gives the solution
y = O(x2). (4.25)

Plugging (4.25) into (4.22), we obtain two more solutions

P3,4 = ±

((
ελ

α

)1/2

, 0

)
+ o

(√
ε
)

(4.26)

of u0 − εu1 = 0. Finally, we shall show

detD(u0 − εu1) = −
(
∂

∂x

(
u0

1 − εu1
1

))2

− ∂

∂y

(
u0

1 − εu1
1

)
· ∂
∂x

(
u0

2 − εu1
2

)
= −4α2x2 + 4αβny2n + o

(
x2 + y2n

)
,

which yields that

detD
(
u0 − εu1

)
|P1,2

= 4nαελ > 0,

detD
(
u0 − εu1

)
|P3,4

= −4αελ < 0.

Thus it is proven that u0 − εu1 has four singular points for any sufficiently small
ε > 0. P1 and P2 are center points and the rest (P3 and P4) are saddle points, as
shown in Fig. 4(c).

Similarly, for all (x, y) in a small neighborhood of (0, 0) when ε > 0, α > 0,
β > 0 and λ > 0. Hence there no bifurcated solutions of u0 + εu1 = 0 for any ε > 0
sufficiently small. See Fig. 4(a). The complete bifurcation diagram is shown in Fig.
4. That finishes the proof.
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Figure 4. A description of the unfolding of codimension-one singularities for the case index 0 with
symmetry about an axis. A similar diagram was also found by Gürcan and Deliceoğlu [15].

Theorem 4.2. Let u ∈ C1 ([0, T ] , Er(TM)) (r ≥ 1) satisfy all conditions of As-
sumption (2). Then, the unfolding of codimension-one of u(x, t) bifurcates from
(x0, t0) exactly two non-degenerate singular points in a small neighborhood of x0 for
any t < t0 (or t > t0), which are saddle points and u(x, t) bifurcates from (x0, t0)
exactly two non-degenerate singular points in a small neighborhood of x0 for any
t > t0 (or t < t0), which are saddle points.

Proof. From Assumption (2) and Lemma 3.1 the vector field u0(x, y) has the
Taylor expansion at x0(x = 0) as follows:

u(x, y) =

αx2 + βy2 + f(x) + yg1(x, y) + o
(
|y|2
)
,

−2αxy − yf ′
(x) + y2g2(x, y),

(4.27)

where α 6= 0, β 6= 0, α · β < 0.
By (4.8) and because of the orbit of u(x, y) is symmetric with respect to the y

axis, we have

u1(x, y) =

λ+O
(
|xy|2

)
,

O (|xy|) ,
(4.28)

where λ 6= 0. We assume that α > 0 and λ > 0 (or other combinations of α and λ),
so by αβ < 0, then β < 0. Now we consider the singular points of the vector field
u0 − εu1 for all ε > 0 sufficiently small.

αx2 + βy2 + f(x) + yg1(x, y) + o
(
|y|2
)
− ελ− εO

(
|xy|2

)
= 0, (4.29)

− 2αxy − yf
′
(x) + y2g2(x, y)− εO (|x| , |y|) = 0, (4.30)

If y = 0 in (4.29), then

x = ±
√
α−1ελ. (4.31)

If x = 0 in (4.29), then

y = ±
√
β−1ελ. (4.32)

In this case, (4.32) has no solution, then the singular points of u0− εu1 is taken
as follows:

P1 =
(√

α−1ελ, 0
)
, P2 =

(
−
√
α−1ελ, 0

)
.

Finally, we shall show that the singular points of u0 − εu1 are non-degenerate
for all ε > 0 sufficiently small. By ∇.u = 0, we have

detD(u0 − εu1) = −
(
∂

∂x

(
u0

1 − εu1
1

))2

− ∂

∂y

(
u0

1 − εu1
1

)
· ∂
∂x

(
u0

2 − εu1
2

)
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= −4α2x2 + 4αβy2,

which yields that

detD
(
u0 − εu1

)
|P1

= −4αελ < 0,

detD
(
u0 − εu1

)
|P2 = −4αελ < 0.

This implies that u0 − εu1 has two singular points for any sufficiently small ε > 0
and these points (P1 and P2) are saddle points on the x-axis, as shown in Fig. 5c.

Similarly, we consider the singular points of u0 + εu1 for all ε > 0 sufficiently
small.

αx2 + βy2 + f(x) + yg1(x, y) + o
(
|xy|2

)
+ ελ+ εO

(
|y|2
)

= 0, (4.33)

− 2αxy − yf
′
(x) + y2g2(x, y) + εO (|x| , |y|) = 0. (4.34)

When we consider (4.33) together with (4.34), if y = 0, then

x = ±
√
−α−1ελ. (4.35)

If x = 0, then

y = ±
√
−β−1ελ. (4.36)

We can clearly see that (4.35) has no solution and the singular points of u0 + εu1

are taken as follows:

P1 =
(

0,
√
−β−1ελ

)
, P2 =

(
0,−

√
−β−1ελ

)
.

Now, we shall show that the singular points of u0 + εu1 are non-degenerate for
all ε > 0 sufficiently small. By ∇.u = 0, we have

detD(u0 + εu1) = −
(
∂

∂x

(
u0

1 + εu1
1

))2

− ∂

∂y

(
u0

1 + εu1
1

)
· ∂
∂x

(
u0

2 + εu1
2

)
= −4α2x2 + 4αβy2,

which yields that

detD
(
u0 + εu1

)
|P1

= −4αελ < 0,

detD
(
u0 + εu1

)
|P2

= −4αελ < 0.

In this case we proved that u0 + εu1 has two singular points for any sufficiently
small ε > 0. P1 and P2 are saddle points away from boundaries, as shown in Fig.
5a. The bifurcation process is shown in Fig. 5.

Theorem 4.3. Let u ∈ C1 ([0, T ] , Er(TM)) (r ≥ 1) satisfy all conditions of As-
sumption (3). Then, the unfolding of codimension-one of u(x, t) bifurcates from
(x0, t0) exactly two non-degenerate singular points in a small neighborhood of x0 for
any t < t0 (or t > t0), which are saddle points and u(x, t) bifurcates from (x0, t0)
exactly two non-degenerate singular points in a small neighborhood of x0 for any
t > t0 (or t < t0), which are saddle points.

Proof. The proof is similar to the proof of Theorem 4.2. We omit the computa-
tional details here. Bifurcation diagram for the Theorem 4.3 is shown in Fig. 6.



Structural bifurcation of divergence-free vector fields 731

(a) (b) (c)

.

.

.

. .

Figure 5. A description of the unfolding of codimension-one singularities for the case index -2 with
symmetry about an axis. A similar diagram was also found by Gürcan and Deliceoğlu [15].

(a) (b) (c)

.

.

.

. .

Figure 6. Schematic illustration of the unfolding of codimension-one singularities for Theorem 4.3.

Theorem 4.4. Let u ∈ C1 ([0, T ] , Er(TM)) (r ≥ 1) satisfy all conditions of As-
sumption (4). Then, the unfolding of codimension-one of u(x, t) bifurcates from
(x0, t0) exactly two non-degenerate singular points in a small neighborhood of x0 for
any t < t0 (or t > t0), which are saddle points and u(x, t) bifurcates from (x0, t0)
exactly three non-degenerate singular points in a small neighborhood of x0 for any
t > t0 (or t < t0), two of which are saddle points and another one is a center.

Proof. The proof is similar to the proof of Theorem 4.2. We omit the computa-
tional details here. Bifurcation diagram for the Theorem 4.4 is shown in Fig. 7.

(a) (b) (c)

.

Figure 7. Schematic illustration of the unfolding of codimension-one singularities for the case index -1
with symmetry about an axis.
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4.1. Genericity of Structural Bifurcation in Double-Symmetric
Flow Near Non-Simple Degenerate Singular Point

Let x0 ∈
◦
M and 0 < t0 < T be given. we consider the space of double-symmetric

vector fields

Sd =
{
u ∈ C1 ([0, T ] , F r (TM)) , u0 (x0) = 0,detDu0 (x0) = 0, u0= u (., t0)

}
which contains all double-symmetric 2D divergence free vector fields in C1([0, T ],
F r(TM)), which have a local bifurcation in their local structure at (x0, t0). İt is
easy to see that the subset

∼
Sd = {u ∈ Sd | Du0 (x0) = 0,

∂2 (u(x0) · e1)

∂e2
1

6= 0, (4.37)

∂2 (u(x0) · e1)

∂e2
2

6= 0, u1 (x0) · e1 6= 0)}

is open and dense in Sd, where e1 and e2 are unit vectors and u1 (x) = ∂
∂tu (x, t0).

From Lemma 3.2, it follows the genericity theorems of structural bifurcation.

Theorem 4.5. For any u ∈
∼
Sd and ind

(
u0,x0

)
= 0, u has a bifurcation in its lo-

cal structure at (x0, t0). More precisely the unfolding of codimension-one of u(x, t)
bifurcates from (x0, t0) exactly four non-degenerate singular points in a small neigh-
borhood of x0 for any t < t0 (or t > t0), two of which are saddle points and another
ones are center points. u(x, t) has no singular point in a small neighborhood of x0

for any t > t0 (or t < t0), as shown in Fig. 4.

Theorem 4.6. For any u ∈
∼
Sd and ind

(
u0,x0

)
= −2, u has a bifurcation in

its local structure at (x0, t0). More precisely the unfolding of codimension-one
of u(x, t) bifurcates from (x0, t0) exactly two non-degenerate singular points in a
small neighborhood of x0 for any t < t0 (or t > t0), which are saddle points and
u(x, t) bifurcates from (x0, t0) exactly two non-degenerate singular points in a small
neighborhood of x0 for any t > t0 (or t < t0), which are saddle points, as shown in
Fig. 5.

Proof. If u ∈
∼
Sd, then u0 ∈ F 2(TM) and u(x, y) has the Taylor expansion (3.15)

for k = 1. By using Lemma 3.2, we have

ind(u0,x0) = 0,

ind(u0,x0) = −2.

Then these two Genericity Theorems follow from Theorem 4.1. and Theorem 4.2,
respectively. The proofs are complete.

5. Application

As an application of the bifurcation found in the previous section, we investigate
the two dimensional Stokes flow in a double lid driven cavity with two rigid walls
using an analytical solution for the stream function. A detailed exploration of
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streamline patterns and their bifurcation in the double lid driven cavity can be
found in Gürcan and Deliceoğlu ( [15]) and Gürcan ( [17]). They explored the
mechanism of eddy generation for the case of lids moving in the same direction and
the flow satisfying the symmetry condition (3.10) and (3.11) (reproduced in Figure
8). The parameter space for these cavity flows is two dimensional, described by
variations in the aspect ratio A and the speed ratio which we fix S = 1. In Figure
9 a series of flow patterns is illustrated for different values of aspect ratio A. By
variation of the aspect ratio, the flow structures (a)-(c) in Figure 9 were obtained by
Gürcan and Deliceoğlu [15]. In Figure 9(a), there exists a heteroclinic connection
between side eddies. By increasing the aspect ratio(A) to around 3.225, these side
eddies approach each other and coalesce to produce a non-simple degenerate critical
point in the middle cavity; Figure 9(b). As A is further increased, this degenerate
saddle point evolves into two separatrix with a saddle point and two centers (see
Figure 9(c)). This bifurcation is exactly the same as those shown in Figure 5.

Figure 8. The boundary value problem for the double lid-driven cavity with two solid walls.

Figure 9. Flow structure development found by Gürcan and Deliceoğlu ( [15]) in the double lid driven
cavity as A increases from A = 2.95 to 3.45 for S = 1; (a) A = 2.95, (b) A = 3.225, (c) A = 3.45.
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The streamline topologies of two-dimensional planar and axisymmetric peri-
staltic flow have been investigated by Jiménez-Lozano and Sen [25]. They found
flow structures (a)-(e) shown in Figure 10. They obtained two non-simple degener-
ate critical points as the flow rate q and the amplitude ratio φ are varied. The flow
patterns (b) and (d) correspond to the non-simple degenerate critical points with
index 0 and -1, respectively. The sequence (a)-(c) corresponds to the bifurcation in
Figure 4 when ε is changed from negative to positive. Jiménez-Lozano and Sen [25]
also stated that a degenerate point with six heteroclinic connections can be seen at
q = −2/15 ( Figure 10(d)) which corresponds to the non-simple degenerate point
with index -2 in Figure (5).

Figure 10. Streamline patters of peristaltic flow in moving frame for different values of the flow rate q
with fixed amplitude ratio φ = 0.6, reproduced from Ref. [25].

Bifurcations and eddy genesis of Stokes flow within a sectorial cavity consisting
of two stationary side walls and both lids moving studied by Gürcan et al. [18]. Lids
moving in the same radial direction with equal speed, (i.e. S = 1), the flow structure
is symmetric about θ = 0 for all values of A. The corresponding flow structures at
the three aspect ratio A = 1.65 (before the bifurcation), A = 1.641 (the degenerate
critical point) and A = 1.62 (after the bifurcation) are given in Figure 11. The flow
pattern at the aspect ratio A = 1.641 is structurally unstable. This numerical result
agrees with the result outlined in Figure 5. The two-dimensional flow induced by an
oscillatory magnetic obstacle has been analyzed by Beltrn et al. [4]. The problem
is characterized by three parameters: the oscillation Reynolds number, Reω, the
Hartmann number, Ha, and the dimensionless amplitude of the magnetic obstacle
oscillation, D. The motion is periodic and can be described as a function of the
phase π < φ < π in the cycle. They show instantaneous streamlines for D = 0.01,
Ha = 100, and Reω = 1 in Figure 12. A more detailed description of this application
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Figure 11. Illustration of flow structure in a sectorial cavity with lids moving in the same direction.
(a) (A,S) = (1.65, 1), (b) (A,S) = (1.641, 1), (c) (A,S) = (1.62, 1).

can be found in Beltrn et al. [4].

Figure 12. Instantaneous streamlines for D = 0.01, Ha = 100 and Reω = 1: (a) φ = −927π/1000 and
(b) φ = −752 pi/1000, reproduced from Ref. [4]

6. Conclusion

In this paper, flow topology near the non-simple-degenerate critical points with
symmetry and their bifurcation are investigated from a topological point of view.
Using a homotopy invariance of the index we develop a theory for the sufficient and
necessary conditions for structural bifurcation of a divergence free-vector fields near
non-simple degenerate critical points. We obtain new flow patters (the degenerate
cusp point appears on the x-axis) that appears only near the non-simple degenerate
critical point. Also, both kinematic and structural bifurcation theories for incom-
pressible flows near non-simple degenerate singular points with double symmetry
have been derived. We show that the two structural bifurcation scenarios near the
non-simple degenerate points we obtain are indeed generic for flows with double



736 A. Deliceoğlu & D. Bozkurt

symmetry. The theory was applied to the pattern found numerically in the studies
of Stokes flow in a double lid driven cavity and in two dimensional peristaltic flow.

Acknowledgements. The authors are grateful to Dr. T. Şengül for his valuable
comments, suggestions and corrections.
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