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Abstract In this paper, we introduce (α, β)-type F−τ contraction and utilize
the same to prove some fixed point results for multivalued mappings in quasi
metric spaces. Furthermore, we furnish with some examples to exhibit the
utility of our results. As an application, we establish the existence of a solution
for a non-linear integral equation.
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1. Introduction

In 1922, Banach formulated his celebrated contraction principle which has been
extended and generalized in many directions with several applications in varied
domains. The enormous applications of fixed point theory had always inspired
the research activity of this domain. In 2012, Wardowski [22] obtained a novel
generalization of Banach contraction when he coined the idea of F -contraction and
proved that every F -contraction mapping on a complete metric space possesses a
unique fixed point. Thereafter, several authors enriched this concept in several
respects (e.g. [1, 6, 10,12,13,15,18,21,23]).

Recently, Acar et al. [2] introduced the concept of generalized multivalued F -
contraction (mappings). This idea attracted the attention of several researchers (e.g.
[4,8,9,11,17]). In 2017, Dag et al. [8] established fixed point results for multivalued
F -contraction on quasi metric spaces under suitable types of completeness.

Inspired by the work of Dag et al. [8], in this paper, we introduce a generalized
F -contraction namely “(α, β)-type F −τ contraction” and utilize the same to prove
some fixed point results for multi-valued F -contraction mappings in quasi metric
spaces using certain types of completeness assumptions. An example is also fur-
nished to exhibit that our results are proper generalizations of the corresponding
results contained in Dag et al. [8]. Additionally, we point out some fallacies in the
results due to Iqbal et al. [14]. We also deduce a fixed point result for single val-
ued mappings in the setting of Hausdorff T1-quasi metric space and likewise adopt
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an example to exhibit that Hausdorffness condition can not be dropped. Finally,
as an application, we establish the existence of a solution for a non-linear integral
equation.

2. Preliminaries

In this section, we present some definitions, related notions and basic results needed
in our subsequent discussions.

Definition 2.1 ( [24]). Let M be a non-empty set. A mapping q : M×M → [0,∞)
is said to be a quasi-pseudo metric if it satisfies the following conditions (∀x, y, z ∈
M):

(i) q(x, x) = 0;

(ii) q(x, y) ≤ q(x, z) + q(z, y).

If, in addition, q satisfies the following:

(iii) q(x, y) = q(y, x) = 0 =⇒ x = y,

then q is said to be a quasi metric. Further, q is called T1-quasi metric if, instead
of (iii), the following condition is satisfied:

(iii)∗ q(x, y) = 0 =⇒ x = y.

The pair (M, q) is said to be quasi-pseudo, quasi and T1-quasi metric space
respectively.

Remark 2.1.

(i) Every metric is T1-quasi metric, every T1-quasi metric is quasi metric and
every quasi metric is quasi-pseudo metric.

(ii) Each quasi-pseudo metric q on M generates a topology τq on M which has a
base the family of open balls {Bq(z, ε) : z ∈M, ε > 0}, where Bq(z, ε) = {y ∈
M : q(z, y) < ε}.

(iii) If q is a quasi-pseudo metric on M , then q−1 defined by q−1(z, y) = q(y, z) is
also a quasi-pseudo metric.

(iv) The closure of a subset A ⊂ M with respect to τq and τ−1
q are denoted by

Clq(A) and Clq−1(A), respectively. If (M, q) is a quasi metric space, A a
non-empty subset of M and z ∈M , then

z ∈ Clq(A) ⇐⇒ q(z,A) = inf{q(z, a) : a ∈ A} = 0

and

z ∈ Clq−1(A) ⇐⇒ q(A, z) = inf{q(a, z) : a ∈ A} = 0.

(v) If (M, q) is a metric space and A is a compact subset of M , then for each
z ∈ M , there is a ∈ A such that q(z, a) = q(z,A). But in the case of quasi
metric space, this property is not satisfied.
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Let (M, q) be a quasi-pseudo metric space. Then the upper (resp. lower) Haus-
dorff quasi-pseudo metric H+

q (resp. H−q ) on P(M) is defined by:

H+
q (A1, A2)= sup

a2∈A2

q(A1, a2) (resp. H−q (A1, A2)= sup
a1∈A1

q(a1, A2)), ∀A1, A2∈P(M),

where P(M) denotes the power set of M . Moreover,

H(A1, A2) = max{H−q (A1, A2), H+
q (A1, A2)}

is called Hausdorff quasi-pseudo metric on CBq(M), the family of all non-empty
τq-closed and bounded subsets of M . For further details, one can consult [5,16,19].

Definition 2.2 ( [7]). Let (M, q) be a quasi metric space. A sequence {zn} in M is
q-convergent (resp. q−1-convergent) if {zn} converges to z with respect to τq (resp.

τq−1) and is denoted by zn
q→ z (resp. zn

q−1

→ z), i.e.

zn
q→ z =⇒ lim

n→∞
q(z, zn) = 0,

(resp. zn
q−1

→ z =⇒ lim
n→∞

q(zn, z) = 0).

Definition 2.3 ( [7]). Let (M, q) be a quasi metric space. Then (M, q) is said to
be

(i) left K-Cauchy (/forward Cauchy) if for every ε > 0, there exists n0 ∈ N such
that ∀n, k, n ≥ k ≥ n0, q(zk, zn) < ε or we can say

∑∞
n=1 q(zn, zn+1) <∞.

(ii) right K-Cauchy (/backward Cauchy) if for every ε > 0, there exists n0 ∈ N
such that ∀n, k, n ≥ k ≥ n0, q(zn, zk) < ε or we can say

∑∞
n=1 q(zn+1, zn) <

∞.

If a sequence is left K-Cauchy with respect to q, then it is right K-Cauchy with
respect to q−1.

Definition 2.4 ( [7]). Let (M, q) be a quasi metric space. Then (M, q) is said to
be

(i) left (right) K-complete if every left (right) K-Cauchy sequence is q-convergent.

(ii)left (right)M-complete if every left (right)K-Cauchy sequence is q−1-convergent.

For more details about the convergence, Cauchyness and completeness of quasi
metric, one can go through [7].

In 2012, Wardowski [22] introduced the notion of F -contraction (which we denote
by Ξ) and to accomplish this, he utilized the following:

Definition 2.5. Let F : (0,∞) → R be a function satisfying the following condi-
tions:

(F1) F is strictly increasing;

(F2) for each sequence {pn}∞n=1 of positive numbers,

lim
n→∞

pn = 0 ⇐⇒ lim
n→∞

F (pn) = −∞;

(F3) there exists k ∈ (0, 1) such that limp→0+ pkF (p) = 0;



904 M. Imdad, A. Perveen & W. M. Alfaqih

(F4) F (inf A) = inf F (A), ∀A ⊂ (0,∞) with inf A > 0.

We denote the family of all functions F satisfying (F1)− (F3) by Ξ, while Ξ∗ stands
for the family of all functions F in Ξ which satisfy (F4).

Definition 2.6 ( [22]). Let (M, q) be a metric space. A mapping S : M → M is
said to be an F -contraction on (M, q), if there exist F ∈ Ξ and τ > 0 such that
∀z, y ∈M ,

q(Sz, Sy) > 0 =⇒ τ + F (q(Sz, Sy)) ≤ F (q(z, y)).

Wardowski proved the following fixed point result involving F -contraction:

Theorem 2.1 ( [22]). Let (M, q) be a complete metric space and S : M → M an
F -contraction. Then S has a unique fixed point z∗ ∈ M and for every z ∈ M , the
sequence {Snz}n∈N converges to z∗.

Let (M, q) be a quasi metric space, Cq(M) the family of all non-empty τq-closed
subsets of M and Kq(M) the family of all non-empty τq-compact subsets of M .
Dag et al. [8] defined a new class Aq(M) of subsets of M as:

Aq(M)={A ⊆M : there exists y=y(z)∈A, such that q(z,A)=q(z, y), ∀z∈M}.

Definition 2.7 ( [8]). Let (M, q) be a quasi metric space and S : M → P(M) a
multivalued mapping, F ∈ Ξ and µ ≥ 0. For z ∈M with q(z, Sz) > 0, define a set
F zµ ⊆M as

F zµ = {y ∈ Sz : F (q(z, y)) ≤ F (q(z, Sz)) + µ}.

Dag et al. [8] established the following facts:

• If S : M → Aq(M), then F zµ 6= ∅, ∀µ ≥ 0 and z ∈M.

• If S : M → Kq(M), then F zµ may be empty for some z ∈M and µ > 0.

• If S : M → Cq(M), then F zµ may be empty for some z ∈M and µ > 0 but if
F ∈ Ξ∗, then F zµ 6= ∅, ∀z ∈M and µ > 0.

Definition 2.8 ( [20]). Let S : M → M be a self-mapping and α, β : M ×M →
[0,∞). Then S is said to be

(i) an α-admissible mapping if

α(z, y) ≥ 1 =⇒ α(Sz, Sy) ≥ 1, ∀z, y ∈M.

(ii) a β-subadmissible mapping if

β(z, y) ≤ 1 =⇒ α(Sz, Sy) ≤ 1, ∀z, y ∈M.

Definition 2.9 ( [3]). Let S : M → P(M) be a multivalued mapping and α, β :
M ×M → [0,∞). Then S is said to be

(i) a generalized α∗-admissible mapping if for z, y ∈M ,

α(z, y) ≥ 1 =⇒ α(u, v) ≥ 1, ∀u ∈ Sz, v ∈ Sy.

(ii) a generalized β∗-subadmissible mapping if for z, y ∈M ,

0 < β(z, y) ≤ 1 =⇒ 0 < β(u, v) ≤ 1, ∀u ∈ Sz, v ∈ Sy.
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Iqbal et al. [14] introduced the notion of α-type F − τ contraction as follows:

Definition 2.10 ( [14]). Let (M, q) be a metric space, S : M → P(M) a multival-
ued mapping and F ∈ Ξ. Then we say that S is an α-type F − τ contraction on M ,
if there exists µ > 0 with τ : (0,∞) → (µ,∞) and α : M ×M → {−∞} ∪ (0,∞)
such that ∀z ∈M , y ∈ F zµ with q(z, Sz) > 0 satisfying

τ(q(z, y)) + α(z, y)F (q(y, Sy)) ≤ F (Mq(z, y)),

where

Mq(z, y) = max

{
q(z, y), q(z, Sz), q(y, Sy),

q(z, Sy) + q(y, Sz)

2
,

q(y, Sy)(1 + q(z, Sz))

1 + q(z, y)
,
q(y, Sz)(1 + q(z, Sy))

1 + q(z, y)

}
. (2.1)

In [14], the following result was established:

Theorem 2.2 ( [14]). Let (M, q) be a complete metric space and S : M → Kq(M)
an α-type F − τ contraction on X. Suppose that the following conditions are satis-
fied:

(i) S is generalized α∗-admissible mapping;

(ii) the map z → q(z, Sz) is lower semi-continuous;

(iii) there exists z0 ∈M and z1 ∈ Sz0 such that α(z0, z1) ≥ 1;

(iv) τ satisfies
lim inf
s→ω+

τ(s) > µ, ∀ω ≥ 0.

Then S has a fixed point in M .

Remark 2.2. Theorem 2.2 is incorrect in its presented form. See Examples 2.1
and 2.2 in [12].

3. Main Results

Before presenting our main results, we introduce the below definition:

Definition 3.1. Let (M, q) be a quasi metric space, S : M → P(M) a multivalued
mapping and F ∈ Ξ. Then we say that S is an (α, β)-type F − τ contraction on
M , if ∀z ∈M with q(z, Sz) > 0, there exists µ > 0 such that y ∈ F zµ satisfying

τ(q(z, y)) + F (α(z, y)q(y, Sy)) ≤ F (β(z, y)Mq(z, y)), (3.1)

where τ : (0,∞)→ (µ,∞), α, β : M ×M → (0,∞).

Now, we are equipped to state and prove our main result as follows:

Theorem 3.1. Let (M, q) be a left K-complete T1-quasi metric space and S : M →
Aq(M) an (α, β)-type F−τ contraction on M . Suppose that the following conditions
are satisfied:

(i) S is generalized α∗-admissible and β∗-subadmissible mapping;
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(ii) z → q(z, Sz) is lower semicontinuous with respect to τq;

(iii) there exists z0 ∈M and z1 ∈ F z0µ such that 0 < β(z0, z1) ≤ 1 ≤ α(z0, z1);

(iv) τ satisfies

lim inf
s→ω+

τ(s) > µ, ∀ω ≥ 0.

Then S has a fixed point in M .

Proof. Let on contrary that S has no fixed point. Then ∀z ∈ M , we have
q(z, Sz) > 0. Since Sz ∈ Aq(M) for every z ∈ M , so for any µ > 0, F zµ 6= ∅.
Choose z0 ∈ M as in the condition (iii) and z1 ∈ F z0µ such that 0 < β(z0, z1) ≤
1 ≤ α(z0, z1). Observe that z1 /∈ Sz1, otherwise z1 is a fixed point of Sz1, a
contradiction. On using (3.1), we have

τ(q(z0, z1)) + F (α(z0, z1)q(z1, Sz1)) ≤ F (β(z0, z1)Mq(z0, z1)), (3.2)

where

Mq(z0, z1) = max

{
q(z0, z1), q(z0, Sz0), q(z1, Sz1),

q(z1, Sz0) + q(z0, Sz1)

2
,

q(z1, Sz1)(1 + d(z0, Sz0))

1 + q(z0, z1)
,
q(z1, Sz0)(1 + q(z0, Sz1))

1 + q(z0, z1)

}
≤max

{
q(z0, z1), q(z0, z1), q(z1, y),

q(z1, z1) + q(z0, y)

2
,

q(z1, y)(1 + q(z0, z1))

1 + q(z0, z1)
,
q(z1, z1)(1 + q(z0, y))

1 + q(z0, z1)

}
(for any y ∈ Sz1)

= max

{
q(z0, z1), q(z1, y),

q(z0, y)

2

}
≤max

{
q(z0, z1), q(z1, y),

q(z0, z1) + q(z1, y)

2

}
= max{q(z0, z1), q(z1, y)}.

Suppose that q(z1, y) > q(z0, z1), then Mq(z0, z1) ≤ q(z1, y).
Now, using (3.2), we have

τ(q(z0, z1)) + F (q(z1, Sz1)) ≤τ(q(z0, z1)) + F (α(z0, z1)q(z1, Sz1))

≤F (β(z0, z1)q(z1, y)), (for any y ∈ Sz1)

≤F (q(z1, y))

so that τ(q(z0, z1)) ≤ 0, which is a contradiction. Hence, we must infer that
q(z0, z1) ≥ q(z1, y). Therefore, we have

τ(q(z0, z1)) + F (α(z0, z1)q(z1, Sz1)) ≤ F (β(z0, z1)q(z0, z1)).

Now, for z1 ∈ M , there exists z2 ∈ F z1µ with z2 /∈ Sz2. As S is generalized α∗-
admissible and β∗-subadmissible, we have 0 < β(z1, z2) ≤ 1 ≤ α(z1, z2). Again on
the similar lines as above, we obtain

τ(q(z1, z2)) + F (α(z1, z2)q(z2, Sz2)) ≤ F (β(z1, z2)q(z1, z2)).
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Recursively, we get a sequence {zn} in M , where zn+1 ∈ F znµ , zn+1 /∈ Szn+1,
0 < β(zn, zn+1) ≤ 1 ≤ α(zn, zn+1) and M(zn, zn+1) ≤ q(zn, zn+1) satisfying

τ(q(zn, zn+1)) + F (q(zn+1, Szn+1)) ≤ F (q(zn, zn+1)). (3.3)

Now, as zn+1 ∈ F znµ , we have

F (q(zn, zn+1)) ≤ F (q(zn, Szn)) + µ. (3.4)

Using (3.3) and (3.4), we get

F (q(zn+1, Szn+1)) ≤ F (q(zn, Szn)) + µ− τ(q(zn, zn+1)) (3.5)

and
F (q(zn+1, zn+2)) ≤ F (q(zn, zn+1)) + µ− τ(q(zn, zn+1)). (3.6)

Denote wn = q(zn, zn+1), ∀n ∈ N. Then wn > 0 and from (3.6), the sequence {wn}
is a decreasing sequence of non-negative real numbers. Therefore, there exists l ≥ 0
such that limn→∞ wn = l.

We assert that l = 0. On contrary, let l > 0, then

F (wn+1) ≤F (wn) + µ− τ(wn)

≤F (wn−1) + 2µ− τ(wn)− τ(wn−1)

...

≤F (w0) + (n+ 1)µ− τ(wn)− τ(wn−1)− ...− τ(w0). (3.7)

Let τ(wpn) = min{τ(w0), τ(w1), ..., τ(wn)}, ∀n ∈ N. Hence, from (3.7), we obtain
that

F (wn) ≤ F (w0) + n(µ− τ(wpn)). (3.8)

Similarly, using (3.5), we get

F (q(zn, Szn)) ≤ F (q(z0, Sz0)) + n(µ− τ(wpn)). (3.9)

For the sequence {τ(wpn)}, two cases arise:

Case-I: If for each n ∈ N, there is m > n such that τ(wpn) > τ(wpm), then we
have a subsequence {wpnk

} of {wpn} with τ(wpnk
) > τ(wpnk+1), ∀k ∈ N.

Since wpnk
→ l and l > 0, so we have

lim inf
k→∞

τ(wpnk
) > µ.

Hence,
F (wnk

) ≤ F (w0) + nk(µ− τ(wpnk
)), ∀k ∈ N.

Consequently, limk→∞ F (wnk
) = −∞ and by (F2), we get limk→∞ wpnk

= 0, a
contradiction.

Case-II: If there exists some n0 ∈ N such that τ(wpn0
) = τ(wm), ∀m > n0,

then
F (wm) ≤ F (w0) +m(µ− τ(wpn0

)), ∀m > n0.
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This implies limm→∞ F (wm) = −∞ and hence by (F2), limm→∞ wpm = 0, a con-
tradiction. Therefore, from both the cases, we conclude that l = 0 and hence,

lim
n→∞

q(zn, zn+1) = 0.

Thus, in view of (F3), there exists k ∈ (0, 1) such that

lim
n→∞

wknF (wn) = 0.

Now, from (3.8), we obtain

wknF (wn)− wknF (w0) ≤ wknn(µ− τ(wpn)) ≤ 0.

Letting n → ∞ in the above equation, we obtain that limn→∞ nwkn = 0. So, there
exists n0 ∈ N such that nwkn ≤ 1, ∀n ≥ n0, i.e.,

wn ≤
1

n
1
k

, ∀n ≥ n0.

To show that {zn} is left K-Cauchy sequence, consider m,n ∈ N, with m > n ≥ n0

and using triangle inequality, we have

q(zn, zm) ≤q(zn, zn+1) + q(zn+1, zn+2) + ...+ q(zm−1, zm)

=

m−1∑
i=n

q(zi, zi+1) ≤
∞∑
i=n

q(zi, zi+1) ≤
∞∑
i=n

1

i
1
k

.

Since
∑∞
i=1

1

i
1
k

is convergent, therefore on taking limit n→∞, we get

lim
m,n→∞

q(zn, zm) = 0.

Hence, {zn} is a left K-Cauchy sequence in T1-quasi metric space (M, q) and since
(M, q) is left K-complete, there exists z ∈ M such that {zn} is q-convergent to z,
i.e.

lim
n→∞

q(z, zn) = 0.

Also, from (3.9) and (F2), we have

lim
n→∞

q(zn, Szn) = 0.

As z → q(z, Sz) is lower semi continuous with respect to τq, we have

0 < q(z, Sz) ≤ lim inf
n→∞

q(zn, Szn) = 0,

a contradiction. Therefore, S must have a fixed point. This concludes the proof.

Remark 3.1. Theorem 3.1 is a corrected as well as a sharpened version of Theorem
2.2 in the setting of T1-quasi metric space.

Next, we prove a result analogous to Theorem 3.1 in case (M, q) is left M-
complete T1-quasi metric space.
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Theorem 3.2. Let (M, q) be a left M-complete T1-quasi metric space, S : M →
Aq(M) an (α, β)-type F − τ contraction on M . If we replace condition (ii) of
Theorem 3.1 by the following one (besides retaining the rest of the hypotheses):

(ii)∗ z → q(z, Sz) is lower semicontinuous with respect to τq−1 ,

then S has a fixed point.

Proof. Let on contrary that S has no fixed point. On the lines of the proof
of Theorem 3.1, we can construct a left K-Cauchy sequence {zn}. Now, using
the left M-completeness of (M, q), there exists z ∈ M such that {zn} is q−1-
convergent to z, i.e., q(zn, z)→ 0 as n→∞. Observe that limn→∞ q(zn, Szn) = 0
and z → q(z, Sz) is lower semi-continuous under the topology τq−1 so that 0 <
q(z, Sz) ≤ lim infn→∞ q(zn, Szn) = 0, a contradiction. Hence, S must have a fixed
point.

In the following results, we demonstrate that the existence of fixed point of
S : M → Cq(M) (in our above results) can be ascertained, if we take F ∈ Ξ∗.

Theorem 3.3. Let (M, q) be a K-complete quasi metric space and S : M → Cq(M)
an (α, β)-type F − τ contraction on M with F ∈ Ξ∗, satisfying all the hypotheses of
Theorem 3.1. Then S has a fixed point.

Proof. Suppose S has no fixed point, then q(z, Sz) > 0. Otherwise, if q(z, Sz) =
0, then z ∈ Clq(Sz) = Sz and hence, z is a fixed point of S, a contradiction. Since
Sz ∈ Clq(M) for every z ∈M , so for any µ > 0, F zµ 6= ∅ for F ∈ Ξ∗.

In the same way as in Theorem 3.1, choose z0 ∈ M and z1 ∈ F z0µ such that
0 < β(z0, z1) ≤ 1 ≤ α(z0, z1) with z1 /∈ Sz1. On using (2.1), we have

τ(q(z0, z1)) + F (α(z0, z1)q(z1, Sz1)) ≤ F (β(z0, z1)Mq(z0, z1)), (3.10)

where

Mq(z0, z1) = max

{
q(z0, z1), q(z0, Sz0), q(z1, Sz1),

q(z1, Sz0) + q(z0, Sz1)

2
,

q(z1, Sz1)(1 + q(z0, Sz0))

1 + q(z0, z1)
,
q(z1, Sz0)(1 + q(z0, Sz1))

1 + q(z0, z1)

}
.

On the lines of the proof of Theorem 3.1, we obtain

Mq(z0, z1) ≤ max{q(z0, z1), q(z1, y)}, for any y ∈ Sz1.

Now, suppose q(z1, y) > q(z0, z1), then Mq(z0, z1) ≤ q(z1, y).
On using (3.10), we have

τ(q(z0, z1)) + F (q(z1, Sz1)) ≤ F (q(z1, y))

and for y ∈ F z1µ , we obtain τ(q(z0, z1)) ≤ µ, which is a contradiction to our assertion.
Hence, we must have q(z0, z1) ≥ q(z1, y), for every y ∈ Sz1 so that

τ(q(z0, z1)) + F (α(z0, z1)q(z1, Sz1)) ≤ F (β(z0, z1)q(z0, z1)).

Rest of the proof can be completed on the lines of the proof of Theorem 3.1.
Similarly, we can also prove the following result:
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Theorem 3.4. Let (M, q) be a left M-complete quasi metric space, S : M →
Cq(M) an (α, β)-type F − τ contraction on M and F ∈ Ξ∗ satisfying all the hy-
potheses of Theorem 3.2. Then S has a fixed point.

The following example is adopted to demonstrate that Theorem 3.4 is a proper
generalization of Theorem 4 of [8].

Example 3.1. Let M =
{

1
2n−1 ;n ∈ N

}
∪{0} endowed with the metric q : M×M →

[0,∞) defined by

q(z, y) =

{
0, if z = y,

|y|, if z 6= y.

Then (M, q) is left M-complete quasi metric space. Define S : M → Cq(M),
α, β : M ×M → [0,∞) and F : (0,∞)→ R by

Sz =

{{
1

2n+1 , 1
}
, if z = 1

2n ,

{0, 1}, if z ∈ {0, 1}.

α(z, y) =

{
2, if z, y ∈ {0, 1},
1
2 , otherwise .

β(z, y) = 1, ∀z, y ∈M

and
F (α) = lnα, ∀α ∈ (0,∞),

wherein we have

q(z, Sz) =

{
1

2n+1 , if z = 1
2n ,

0, if z ∈ {0, 1}.

Observe that z → q(z, Sz) is lower semi-continuous with respect to τq−1 .
Let q(z, Sz) > 0, then z = 1

2n , for n ∈ N so that Sz =
{

1
2n+1 , 1

}
and y = 1

2n+1 ∈
Sz such that

F (q(z, y))− F (q(z, Sz)) = F

(
1

2n+1

)
− F

(
1

2n+1

)
= 0.

Thus, on taking τ(t) = 1, ∀t ∈ (0,∞) for µ = 1
2 , we get y ∈ F zµ so that

Mq(z, y) = max

{
1

2n+1
,

1

2n+1
,

1

2n+2
,

1
2n+2 + 1

2n+1

2
,

1

2n+2
,

1
2n+1 (1 + 1

2n+2 )

1 + 1
2n+1

}
=

1

2n+1
.

Henceforth,

τ(q(z, y)) + F (α(z, y)q(y, Sy)) = τ

(
1

2n+1

)
+ F

(
1

2
× 1

2n+2

)
= 1 + ln

(
1

2n+3

)
= 1− ln(2n+3)

< − ln 2n+1

= F (β(z, y)Mq(z, y)).
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Thus, S is (α, β)-type F − τ contraction. Also S is generalized α∗-admissible and
β∗-subadmissible mapping. Hence, all the conditions of Theorem 3.4 are satisfied
so that S has a fixed point.

Observe that for z = 1
2 , we have y = 1

4 ∈ F
1
2
µ (for µ = 1

2 ) and

τ(q(z, y)) + F (q(y, Sy)) = τ

(
1

2

)
+ F

(
1

8

)
= 1 + ln

(
1

8

)
= −1.07944

> ln

(
1

4

)
= F (q(z, y)),

so that Theorem 4 of [8] is not applicable in the context of the present example
which shows that Theorem 3.4 is a genuine extension of Theorem 4 of [8].

Now, we deduce the following result using Theorem 3.1.

Theorem 3.5. Let (M, q) be a left K-complete T1-quasi metric space, S : M →
Aq(M) a τq-continuous mapping and F ∈ Ξ. Suppose the following conditions are
satisfied:

(i) S is generalized α∗-admissible and β∗-subadmissible mapping;

(ii) there exists z0 ∈M and z1 ∈ F z0µ such that 0 < β(z0, z1) ≤ 1 ≤ α(z0, z1);

(iii) there exists τ : (0,∞)→ (µ,∞) satisfying

lim inf
s→ω+

τ(s) > µ, ∀ω ≥ 0

and ∀z, y ∈ M with H(Sz, Sy) > 0, there exist α, β : M × M → (0,∞)
satisfying

τ(q(z, y)) + F (α(z, y)H(Sz, Sy)) ≤ F (β(z, y)Mq(z, y)).

Then S has a fixed point.

Proof. If S is τq-continuous mapping, then the mapping z → q(z, Sz) is lower
semi-continuous with respect to τq and for z ∈ M with q(z, Sz) > 0 and y ∈ F zµ ,
we have

τ(q(z, y)) + F (α(z, y)q(y, Sy)) ≤ τ(q(z, y)) + F (α(z, y)H(Sz, Sy))

≤ F (β(z, y)Mq(z, y)).

Thus, all the conditions of Theorem 3.1 are satisfied. Hence, S has a fixed point.

Next, we deduce the following natural theorem for single valued mapping from
Theorem 3.5.

Theorem 3.6. Let (M, q) be a Hausdorff left K-complete T1-quasi metric space,
S : M → M a τq-continuous mapping and F ∈ Ξ. Assume that the following
conditions are satisfied:
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(i) S is α-admissible and β-subadmissible mapping;

(ii) there exist z0, z1 ∈M such that 0 < β(z0, z1) ≤ 1 ≤ α(z0, z1);

(iii) τ : (0,∞)→ (0,∞) such that

lim inf
s→ω+

τ(s) > 0, ∀ω ≥ 0

and ∀z, y ∈M with q(Sz, Sy) > 0, there exist functions α, β : M×M → (0,∞)
satisfying

τ(q(z, y)) + F (α(z, y)q(Sz, Sy)) ≤ F (β(z, y)Mq(z, y)). (3.11)

Then S has a fixed point.

Now, we present the following example which exhibits that the Hausdorffness
condition in Theorem 3.6 is unavoidable.

Example 3.2. Let M = { 1
n : n ∈ N} and define q : M ×M → [0,∞) as

q(z, y) =

{
0, if z = y,

y, if z 6= y.

Then (M, q) is a left K-complete T1-quasi metric space but it is not Hausdorff,
as the underlying topology τq is cofinite. Define S : M → M by Sz = z

2 and
F : (0,∞) → R by Fα = lnα, ∀α > 0. Also set α(z, y) = β(z, y) = 1, ∀z, y ∈ M
and τ(t) = ln 2, ∀t ∈ (0,∞). Then S satisfies conditions (i)-(iii) of Theorem 3.6,
but S has no fixed point.

The following corollary shows that our earlier results are generalizations of re-
sults contained in [8].

Corollary 3.1. Theorems 1-4 of [8] follow immediately from 3.1-3.4 respectively.

Proof. Take α(z, y) = β(z, y) = 1, τ(t) = τ0 where τ0 is a constant > µ.

4. Application

In this section, as an application of Theorem 3.6, we study the existence of a solution
of the non-linear integral equation

z(t) = a(t) +

∫ t

a

K(t, s, z(s))ds (4.1)

where t ∈ Ω = [a, b], a : Ω→ R and K : Ω× Ω× R→ R are continuous functions.
Denote M = C(Ω,R) with usual sup norm, i.e.

‖z‖ = max
t∈Ω
|z(t)|.

Theorem 4.1. Suppose that the following conditions hold:

(i) for any z, y ∈M with z 6= y, we have∫ t

a

K(t, s, z(s))ds 6=
∫ t

a

K(t, s, y(s))ds

for each t ∈ Ω,
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(ii) for each t, s ∈ Ω and z, y ∈M ,

|K(t, s, z(s))−K(t, s, y(s))| ≤ 1

b− a
e−
(

1
2 + 1
‖z−y‖

)
|z(s)− y(s)|.

Then (4.1) has a solution in M .

Proof. Consider q : M×M → (0,∞) defined by q(z, y) = ‖z−y‖, where ‖z−y‖ =
supt∈Ω |z(t) − y(t)|. Then (M, q) is a Hausdorff left K-complete T1-quasi metric
space. Define S : M →M by:

Sz(t) = a(t) +

∫ t

a

K(t, s, z(s))ds, ∀z ∈M.

Observe that z ∈M is a fixed point of S iff it is a solution of (4.1).
Now, define F : (0,∞)→ R by F (α) = lnα, ∀α > 0. Then ∀z, y ∈M , we have

|Sz(t)− Sy(t)| =
∣∣∣∣ ∫ t

a

(K(t, s, z(s))−K(t, s, y(s))ds

∣∣∣∣
≤
∫ t

a

|K(t, s, z(s))−K(t, s, y(s))|ds

≤
∫ t

a

1

b− a
e−
(

1
2 + 1
‖z−y‖

)
|z(s)− y(s)|ds

≤ ‖z − y‖e−
(

1
2 + 1
‖z−y‖

) ∫ t

a

1

b− a
ds

≤ 1

b− a
‖z − y‖e−

(
1
2 + 1
‖z−y‖

) ∫ b

a

ds

= ‖z − y‖e−
(

1
2 + 1
‖z−y‖

)
which implies that ‖Sz − Sy‖ ≤ ‖z − y‖e−

(
1
2 + 1
‖z−y‖

)
. Thus, for q(z, y) > 0 and

τ(t) = 1
t + 1

2 , we have

q(Sz, Sy) = ‖Sz − Sy‖

≤ ‖z − y‖e−
(

1
2 + 1
‖z−y‖

)
= q(z, y)e−

(
1
2 + 1

d(z,y)

)
,

which implies that

ln q(Sz, Sy) ≤ −
(

1

2
+

1

q(z, y)

)
+ ln(q(z, y)),

or
1

2
+

1

q(z, y)
+ ln q(Sz, Sy) ≤ ln(q(z, y)),

yielding thereby
τ(q(z, y)) + F (q(Sz, Sy)) ≤ F ((q(z, y))).

Hence, all the hypotheses of Theorem 3.6 are satisfied (with α(z, y) = β(z, y) = 1,
∀z, y ∈ M) ensuring the existence of a fixed point of S and hence, (4.1) has a
solution in M .
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