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HOMOCLINIC SOLUTIONS OF DISCRETE
NONLINEAR SYSTEMS VIA VARIATIONAL

METHOD∗

Lynn Erbe1, Baoguo Jia2,3 and Qinqin Zhang4,†

Abstract Homoclinic solutions arise in various discrete models with vari-
ational structure, from discrete nonlinear Schrödinger equations to discrete
Hamiltonian systems. In recent years, a lot of interesting results on the homo-
clinic solutions of difference equations have been obtained. In this paper, we
review some recent progress by using critical point theory to study the exis-
tence and multiplicity results of homoclinic solutions in some discrete nonlinear
systems with variational structure.
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1. Introduction
In the theory of differential equations, a trajectory which is asymptotic to a constant
state as |t| → ∞ (t denotes the time variable) is called a homoclinic solution. It has
been found in various models of continuous dynamical systems, such as continuous
Hamiltonian system, and which often have tremendous effects on the dynamics of
such nonlinear systems [3, 27, 67, 86, 98]. It is well-known that homoclinic solutions
play an important role in analyzing the chaos of dynamical systems. If a system
has transversely intersected homoclinic solutions, then it must be chaotic. If it has
smoothly connected homoclinic solutions, then it cannot withstand the perturba-
tion, in the sense that its perturbed system probably produces chaos. Hence, it is
of interest to find homoclinic solutions. Discrete Hamiltonian system, a discretiza-
tion of the continuous one, can be easily shown that it preserves the symplectic
structure. So its solutions can give some desirable numerical features for solutions
of the continuous Hamiltonian system [1, 2]. It has been found that the trajectory
which is asymptotic to a constant state as |t| → ∞ also exists in discrete Hamilto-
nian systems. We still call it a homoclinic solution. First we give the definition of
homoclinic solutions for discrete nonlinear systems below: If x = {xn : n ∈ Z} is
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a solution of a discrete system, another solution x = {xn : n ∈ Z} will be called a
homoclinic solution emanating from x if |xn − xn| → 0 as |n| → ∞. In this paper,
it is of interest to consider a homoclinic solution emanating from 0.

In the past years, the discrete nonlinear Schrödinger (DNLS) equation, which
is a nonlinear lattice system that appears in many areas of physics, received great
attention. Discrete solitons or standing waves which exist in the DNLS systems also
yield a great deal of interest, from photorefractive media [46], biomolecular chains
[45], to Bose-Einstein condensates [58]. The experimental observations of discrete
solitons in nonlinear lattice systems have been reported in [29]. Many methods, such
as the principle of anticontinuity [4] and centre manifold reduction [41], are used
to study the existence of discrete solitons of DNLS equations. It is interesting that
homoclinic solutions also appear when we look for the discrete solitons of DNLS
equations. For example, consider the following DNLS equation:

iψ̇n = −∆ψn − cn|ψn|2ψn, n ∈ Z, lim
|n|→∞

ψn = 0, (1.1)

where ∆ψn = ψn+1+ψn−1−2ψn is the discrete Laplacian in one spatial dimension,
the given sequence {cn} is real-valued. Making use of ψn = une

−iωt, where {un} is
a real valued sequence and ω ∈ R is the temporal frequency, equation (1.1) becomes

−∆un − ωun = cn|un|2un, n ∈ Z, lim
|n|→∞

un = 0. (1.2)

Clearly, discrete solitons of (1.1) correspond to homoclinic solutions emanating
from 0 of (1.2). Moreover, it has been seen that the variational structure in (1.2)
leads to find the homoclinic solutions of (1.2). Generally, the problem of finding
homoclinic solutions of discrete nonlinear systems with variational structure, can
be reformulated as a problem of finding critical point of the corresponding func-
tional. Critical point theory has been used for a long time to study the existence
of homoclinic solutions to continous Newtonian and Hamilton systems, semi-linear
elliptic differential equations, nonlinear differential Schrödinger equations and so
on; see monographs [75,95] and the reference therein for more information. Only in
the past decade has critical point theory been widely used to study the existence of
homoclinic solutions for discrete nonlinear systems with variational structure. The
purpose of this paper is to review some progress on the existence and multiple re-
sults of homoclinic solutions of discrete nonlinear systems with variational structure
via critical point theory.

Critical point theory was first introduced in 2003 by Guo-Yu [31–33] for studying
the existence of periodic and subharmonic solutions in second order difference equa-
tions and discrete Hamiltonian systems. It has been shown to be a powerful tool
in the study of the existence of homoclinic solutions of discrete nonlinear systems.
The essential part of the usage of critical point theory is to make a transformation
of a discrete problem into a continuously differentiable one, we may refer to a recent
survey article [6] on the development of periodic solutions to discrete systems. In
2006-2007, Ma-Guo [60, 61] first used critical point theory to study homoclinic so-
lutions of a class of discrete Hamiltonian systems. It was found by Ma-Guo [60,61]
that the existence of homoclinic solutions for discrete systems can be changed to
the existence of critical points for the corresponding variational functional on suit-
able vector space, for example, the space l2 of two-sided infinite sequences, and
then it is made possible to use critical point theory. Pankov [68, 69] almost si-
multaneously found that the standing waves of a periodic DNLS equation can be
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changed to critical points of some variational functional. These pioneering works
have produced great attentions in the field and many more novel and interesting
results on the existence of homoclinic solutions for discrete systems are expanding
based on this approach. The most difficult obstacle on the existence of homoclinic
solutions for discrete systems by using critical point theory is to overcome the loss
of compactness due to the fact that the problem is set on the domain Z. To do
this, effective methods like periodic approximation and compact embedding are de-
veloped [51,60,61,109], which were used for a long time in studying the differential
systems.

The remainder of this paper proceeds as follows. In Section 2, we focus on
the existence of homoclinic solutions for nonlinear difference equations, which is
associated with the standing waves of DNLS equations. In Section 3, we review some
progress on the existence of nontrivial homoclinic solutions of discrete Hamiltonian
systems. Finally, in Section 4, we present results in the direction of discrete p-
Laplacian equations as well as difference equations containing both advanced and
retarded arguments.

2. Homoclinic solutions of DNLS equations
2.1. Periodic case
In the past decade, many scholars have focused on the existence of homoclinic
solutions for the following nonlinear difference equation

Lun − ωun = σfn(un), n ∈ Z, (2.1)

where fn(0) = 0, fn(u) is continuous in u, fn+T (u) = fn(u) for each n ∈ Z, σ = ±1,
and L is a Jacobi operator [93] given by

Lun = anun+1 + an−1un−1 + bnun,

where {an}, {bn} are real valued T -periodic sequences.
This problem appears when we look for the standing waves of the periodic

discrete nonlinear Schrödinger (DNLS) equation

iψ̇n = −∆ψn + vnψn − σfn(ψn), n ∈ Z, (2.2)

where σ = ±1, ∆ψn = ψn+1 + ψn−1 − 2ψn is the discrete Laplacian in one spa-
tial dimension, the given sequence {vn} is assumed to be T -periodic, and fn(u) is
a T -periodic function in n of nonlinearities. Typical representatives of saturable
nonlinearities are

fn(u) = ln
|u|pu

1 + |u|p
, ln ̸= 0, p > 0,

and
fn(u) = χn(1− e−hn|u|2)u, χn ̸= 0, hn > 0,

where {ln}, {χn}, and {hn} are T -periodic sequences. Typical representative of
superlinear nonlinearities is

fn(u) = cn|u|qu, cn ̸= 0, q > 0,
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where {cn} is T -periodic. Consider (2.2), we suppose that the nonlinearity is gauge
invariant, i.e.,

fn(e
iθu) = eiθfn(u), θ ∈ R,

and, in addition, fn(u) ≥ 0 for u ≥ 0 for each n ∈ Z. Now let us perform the
standard reduction of the standing wave problem for (2.2) to a stationary problem.
Making use of the standing wave Ansatz

ψn = une
−iωt, lim

|n|→∞
ψn = 0,

where un is a real valued sequence and ω ∈ R is the temporal frequency, equation
(2.2) becomes

−∆un + vnun − ωun = σfn(un), n ∈ Z, lim
|n|→∞

un = 0. (2.3)

Assume that fn(0) = 0 for n ∈ Z, then {un} = {0} is a solution of (2.1), which is
called the trivial solution. As usual, if u = {un} ̸= {0}, then u is called a nontrivial
homoclinic solution. Clearly, discrete solitons of (2.2) correspond to the homoclinic
solutions of (2.3), and (2.3) is a special form of (2.1) with an = −1, bn = vn + 2.
Therefore, we will study the existence of the nontrivial homoclinic solutions of (2.1).

Since the operator L is bounded and self-adjoint in the space l2 of two-sided
infinite sequences, we consider (2.1) as a nonlinear equation in l2. The spectrum
σ(L) of L has a band structure, i.e., σ(L) is a union of a finite number of closed
intervals [93]. Thus the complement R\σ(L) consists of a finite number of open
intervals called spectral gaps and two of them are semi-infinite. We fix a spectral
gap denoted by (α, β). In this section, we consider the homoclinic solutions of (2.1)
in l2 for the general case where ω ∈ (α, β).

We first establish the variational setting associated with (2.1). On the Hilbert
space l2, we consider the functional

J(u) =
1

2
(Lu− ωu, u)− σ

∞∑
n=−∞

Fn(un)

where (·, ·) is the inner product in l2, and

Fn(u) =

∫ u

0

fn(s)ds

is the primitive function of fn(u). The corresponding norm in l2 is denoted by ∥ · ∥.
Then J ∈ C1(l2,R) and

⟨J ′(u), v⟩ = (Lu− ωu, v)− σ

∞∑
n=−∞

fn(un)vn, u, v ∈ l2. (2.4)

Equation (2.4) implies that (2.1) is the corresponding Euler-Lagrange equation
for J . Therefore, we have reduced the problem of finding a nontrivial homoclinic
solution of (2.1) to that of seeking a nonzero critical point of the functional J on l2.

In 2006, Pankov [68] studied (2.1) when ω belongs to some spectral gap (α, β)
of the Jacobi operator L [93]. By using the linking theorem [75,95] in combination
with periodic approximations, Pankov obtained the following result [68].
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Theorem 2.1 ( [68]). The nonlinearity fn(u) is supposed to satisfy the following
assumptions.
(HP

1 ) fn(u) is continuous in u ∈ R and depends periodically in n with period T .
(HP

2 ) There exist p > 2 and c > 0 such that 0 ≤ fn(u) ≤ c|u|p−1 near u = 0.
(HP

3 ) There exists µ > 2 such that 0 < µFn(u) ≤ fn(u)u for u ̸= 0.
Suppose that either σ = 1 and β ̸= ∞, or σ = −1 and α ̸= −∞. Then the equation
(2.1) has a nontrivial exponentially decaying solution. If either σ = +1 and β = ∞,
or σ = −1 and α = −∞, then there is no nontrivial solution in l2.

In 2010, by using a variant linking theorem [77], Yang et al. [96] proved the
existence of solutions in l2 for equation (2.1) with ω being a lower bound of a finite
spectral gap.

Theorem 2.2 ( [96]). Suppose σ = 1. Assume further that
(V1) ω ∈ σ(L) and there exists ρ > 0 such that (ω, ρ] ∩ σ(L) = ∅.
(HY

1 ) The function fn(u) is continuous in u ∈ R and depends periodically in n with
period T and fn(u) = o(u) as u→ 0.
(HY

2 ) There exist p > 2 and c > 0 such that |fn(u)| ≤ c(1 + |u|p−1).
(HY

3 ) Fn(u)
|u|2 → ∞ as |u| → ∞.

(HY
4 ) fn(u)

|u| is strictly increasing on (−∞, 0) and (0,∞).
Then (2.1) has at least one solution in l2.

In 2013, by taking advantage of the classical linking theorem combined with an
approximation technique, Zhou et al. [110] considered the existence of homoclinic
solutions in (2.1) with superlinear nonlinearity when ω belongs to some spectral
gap (α, β) of L. Interestingly, the classical AR superlinear condition is improved by
a general superlinear one for this difficult strongly indefinite problem.

Theorem 2.3 ( [110]). Assume that ω ∈ (α, β), fn(u) is continuous in u, fn+T (u) =
fn(u) for any n ∈ Z and u ∈ R, fn(u) = o(u) as u → 0. And for each n ∈ Z, the
following conditions hold.
(HZ

1 ) The function fn(u)u > 0 for u ̸= 0 and lim|u|→∞ fn(u)/u = ∞.
(HZ

2 ) fn(u)u− 2Fn(u) > 0 for u ̸= 0, fn(u)u− 2Fn(u) → ∞ as |u| → ∞, and

lim supu→0

f2n(u)

fn(u)u− 2Fn(u)
= pn <∞.

If σ = 1 and β ̸= ∞, then equation (2.1) has at least one nontrivial solution u in
l2. Moreover, the solution decays exponentially at infinity. That is, there exist two
positive constants C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.

Other related results of (2.1) for the case when fn is a superlinear nonlinearity,
we refer to [13,15,36,37,62,65,69,74,81,85,87].

In 2008, Pankov-Rothos [73] considered a special form of (2.1) with an = −1
and bn = 2 when the nonlinearity fn(u) = f(u) is asymptotically linear at ∞ for
n ∈ Z. Nehari manifolds were employed to establish the existence of homoclinic
solutions.

Theorem 2.4 ( [73]). Suppose that an = −1, bn = 2, fn(u) = f(u) and the
nonlinearity f(u) satisfies the following assumptions, in which F (u) =

∫ u

0
f(s)ds.
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(hP1 ) f(u) = o(u) as u→ 0.
(hP2 ) lim|u|→∞(f(u)/u) = l <∞.
(hP3 ) f ∈ C1(R) and f(u)u < f ′(u)u2 for u ̸= 0.
(hP4 ) (1/2)f(u)u− F (u) → ∞ as |u| → ∞.
Assume either σ = 1, ω < 0 and l+ω > 0, or σ = −1, ω > 4 and −l+ω < 4. Then
equation (2.1) has at least one nontrivial ground-state solution u in l2. Moreover, the
solution decays exponentially at infinity. That is, there exist two positive constants
C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.
In 2010, Zhou-Yu [109] obtained a new sufficient condition on the existence of

homoclinic solutions of (2.1) by using the mountain pass lemma [75,95] in combina-
tion with periodic approximations. Moreover, they proved that it is also necessary
in some special cases. Interestingly, an original approximation technique has been
used to overcome the loss of compactness.

Theorem 2.5 ( [109]). Assume that σ = 1, ω ∈ (−∞, β), fn(u) is continuous in
u, fn+T (u) = fn(u) for any n ∈ Z and u ∈ R, fn(u) = o(u) as u → 0. And the
following conditions hold.
(H1Z) fn(u)/u is strictly increasing in (0,∞) and strictly decreasing in (−∞, 0).
Moreover, lim|u|→∞ fn(u)/u = dn <∞.
(H2Z) fn(u)u− 2Fn(u) → ∞ as |u| → ∞, and

lim supu→0

f2n(u)

fn(u)u− 2Fn(u)
= pn <∞.

If dn > β − ω, then equation (2.1) has at least one nontrivial solution u in l2.
Moreover, the solution decays exponentially at infinity. That is, there exist two
positive constants C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.

In 2016, Chen et al. [16] considered (2.1) when the nonlinearities fn(u) are
asymptotically linear as |u| → ∞. In the two different cases (ω is a spectral endpoint
of L, or it belongs to a finite spectral gap of L), they obtained the existence of
nontrivial solitons of this equation by using a variant of the generalized weak linking
theorem [77].

Theorem 2.6 ( [16]). Suppose that σ = 1, fn(u) is continuous in u, fn+T (u) =
fn(u) for any n ∈ Z and u ∈ R, fn(u) = o(u) as u→ 0.
(GC

1 ) lim|u|→∞ fn(u)/u = Vn <∞.
(GC

2 ) (1/2)fn(u)u− Fn(u) > 0 if u ̸= 0 and Fn(u) > 0.
(1) Assume that ω /∈ σ(L) and ω belongs to a finite spectral gap (α, β), Vn >
inf σ(L|E+

1
)−ω where E+

1 is the positive spectral subspace of L−ω in l2, and (GC
1 )

and (GC
2 ) hold. Assume further the condition holds:

(GC
3 ) There is ζ ∈ (0, η2 ) where η = min{|α− ω|, |β − ω|} such that

fn(u)

u
≥ η

2
− ζ ⇒ 1

2
fn(u)u− Fn(u) > ζ.

Then equation (2.1) has at least one nontrivial solution u in l2. Moreover, the
solution decays exponentially at infinity. That is, there exist two positive constants
C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.
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(2) Assume that ω ∈ σ(L) and there exists ρ > 0 such that (ω, ρ] ∩ σ(L) = ∅, and
(GC

1 ) and (GC
2 ) hold. Assume further the condition holds:

(GC
4 ) u → fn(u)/|u| is strictly increasing in (0,∞) and (−∞, 0).

If Vn > inf σ(L|E+
2
) − ω where E+

2 satisfies l2 = E−
2

⊕
E+

2 , corresponding to the
decomposition of σ(L−ω) into (−∞, 0]∩ σ(L−ω) and [ρ−ω,∞)∩ σ(L−ω), then
equation (2.1) has at least a nontrivial solution u in l2.

Other related results of (2.1) for the case when fn is a asymptotically linear
nonlinearity, we refer to [14,15,23,39,48,62,64,70,80,85,111,112].

In 2016, by using critical point theory [76,84] in combination with periodic ap-
proximations, Lin-Zhou [52] obtained some new sufficient conditions on the nonex-
istence and existence of homoclinic solutions for (2.1). Their novel results are nec-
essary in some sense, and extend and improve many existing ones for some special
cases. This was the first time to consider the homoclinic solutions of this class
of difference equations with mixed nonlinearities: The nonlinear terms can mix
superlinear nonlinearities with asymptotically linear ones at both ∞ and 0.

Theorem 2.7 ( [52]). Assume that σ = 1, β ̸= ∞, fn(u) is continuous in u,
fn+T (u) = fn(u) for n ∈ Z and u ∈ R. And for n ∈ Z, fn(u) and Fn(u) =∫ u

0
fn(s)ds satisfy the following conditions:

(FL
1 ) limu→0

fn(u)
u = δn <∞.

(FL
2 ) lim|u|→∞

fn(u)
u = dn ≤ ∞.

(FL
3 ) Fn(u) ≥ 0 for u ∈ R, fn(u)u−2Fn(u) > 0 for u ̸= 0, and fn(u)u−2Fn(u) → ∞

as |u| → ∞.
If δn < min{ω−α, β−ω} and β−ω < dn for n ∈ Z, then (2.1) has at least one

nontrivial solution u in l2. Moreover, if δn = 0 for n ∈ Z, then the solution decays
exponentially at infinity. That is, there exist two positive constants C and τ such
that

|un| ≤ Ce−τ |n|, n ∈ Z.

2.2. Unbounded potential case
In contrast to the periodic case of (2.1), it is of interest to consider the non-periodic
case of (2.1). Specially, since it has been studied by many authors, we will review
some progress on the following equation:

−∆un + νnun − ωun = fn(un), n ∈ Z, (2.5)

where ∆ψn = ψn+1+ψn−1−2ψn is the discrete Laplacian in one spatial dimension,
the given sequence {νn} is assumed to be non-periodic, and fn(u) is a non-periodic
function in n of nonlinearities. As we know, periodic assumptions are very important
in the study of (2.1) since periodicity is used to control the lack of compactness due
to the fact that (2.1) is defined on Z. But non-periodic equations are quite different
from the ones described in periodic cases. Note that the domain Z is unbounded.
Thus, to overcome the loss of compactness caused by the unboundedness of the
domain Z, one can use the following assumption:

(V 1) The discrete potential V = {νn} satisfies

lim
|n|→∞

νn = ∞.
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Then condition (V 1) implies that the spectrum σ(−∆+V ) is discrete and consists
of simple eigenvalues accumulating at ∞ [105]. Now we can assume that

λ1 < λ2 < · · · < λk < · · · → ∞

are all eigenvalues of H = −∆ + V . Obviously, the operator H is an unbounded
self-adjoint operator in l2. There is no harm in assuming that λ1 > 0, we define the
space

E = { u ∈ l2 : H
1
2u ∈ l2}.

Then E is a Hilbert space equipped with the norm

∥u∥ = ∥H 1
2u∥l2 .

On the Hilbert space E, we consider the functional

J(u) =
1

2
((H − ω)u, u)l2 −

∑
n∈Z

Fn(un)

where
Fn(u) =

∫ u

0

fn(s)ds

is the primitive function of fn(u). Standard arguments show that the functional J
satisfies

⟨J ′(u), v⟩ = ((H − ω)u, v)l2 −
∑
n∈Z

fn(un)vn, u, v ∈ E. (2.6)

Equation (2.6) implies that (2.5) is the corresponding Euler-Lagrange equation
for J . Therefore, we have reduced the problem of finding a nontrivial homoclinic
solution of (2.5) to that of seeking a nonzero critical point of the functional J on
E.

In 2008, Zhang-Pankov [105] obtained the existence of non-trivial solutions for
a special superlinear case of (2.5) with fn(u) = γn|u|p−2u (p > 2) and ω < λ1.
The results in [105] were further extended by Zhang and his coworkers to the ones
in [71, 72, 99, 100, 104, 106] by using critical point theory. For example, in 2009,
Zhang [99] showed the existence of a nontrivial homoclinic solution of (2.5) .

Theorem 2.8 ( [99]). Assume that (V 1) hold and the nonlinearity fn(u) = γnf(u)
for any n ∈ Z, f(u) = o(u) as u→ 0 and the following conditions hold.
(FZ

1 ) There exists a positive constant γ such that 0 < γn ≤ γ for any n ∈ Z.
(FZ

2 ) There are two positive constants C1, C2 and 2 < p <∞ such that

|f(u)| ≤ C1(1 + |u|p−1),

and
|f(u)− f(v)| ≤ C2(1 + |u|p−2 + |v|p−2)|u− v|.

(FZ
3 ) There is a 2 < q <∞ such that

0 < (q − 1)f(u)u ≤ f ′(u)u2, u ̸= 0.

If ω < λ1, then equation (2.5) has at least one nontrivial solution u in E. Moreover,
there exist two positive constants C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.
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In 2014, Zhou-Ma [108] obtained some new multiplicity results of nontrivial
homoclinic solutions of (2.5) by using the fountain theorem [95,113]. This is a novel
and interesting result in which infinitely many high energy homoclinic solutions
were obtained.

Theorem 2.9 ( [108]). Assume that (V 1) holds and the nonlinearity fn(u) =
γnf(u) for any n ∈ Z, f(u) = o(u) as u→ 0 and the following conditions hold.
(A1) There exist two positive constants γ and γ̄, such that for any n ∈ Z,

γ ≤ γn ≤ γ̄.

(fZM
1 ) f ∈ C(R,R), and there exists a > 0, p ∈ (2,∞) such that

|f(u)| ≤ a(1 + |u|p−1), for all u ∈ R.

(fZM
2 ) lim

|u|→∞
F (u)/u2 = ∞, where F (u) is the primitive function of f(u), i.e.,

F (u) =

∫ u

0

f(t)dt.

(fZM
3 ) f(u)/u is increasing in u > 0 and decreasing in u < 0.

If ω < λ1 and the nonlinearity f(u) is odd in u, then equation (2.5) has infinitely
many solutions {u(k)}∞k=1 in E satisfying

1

2
(Hu(k), u(k))− 1

2
ω(u(k), u(k))−

∑
n∈Z

γnF (u
(k)
n ) → ∞ as k → ∞.

Moreover, there exist two positive constants C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.

In 2016, by using the variant weak linking theorem [77], Chen-Schechter [17]
obtained the existence of non-trivial homoclinic solutions of (2.5) in the following
three cases:
(H1) λk0

− ω = a < 0 < b = λk0+1 − ω for some k0 ≥ 1 (the indefinite case).
(H2) ω < λ1 (the positive definite case).
(H3) ω = λk′

0
for some k′0 ≥ 1 (ω is an eigenvalue of H).

Theorem 2.10 ( [17]). Assume that the following conditions hold for the nonlin-
earities fn, n ∈ Z.
(fCS

1 ) fn ∈ C(R,R), |fn(u)| ≤ c(1 + |u|p−1), for some c > 0 and p > 2, u ∈ R.
(fCS

2 ) Fn(u) =
∫ u

0
fn(s)ds ≥ 1

2au
2, here the constant a is defined in (H1), u ∈ R.

(fCS
3 ) |fn(u)| ≤ γ|u| if |u| < δ for some 0 < γ < b and δ > 0, u ∈ R.

(fCS
4 ) lim

|u|→∞
Fn(u)/u

2 = ∞ and Fn(u) ≥ −Wn for some W = (Wn)n∈Z ∈ l1, u ∈ R.

(fCS
5 ) Fn(u+ l)− Fn(u)− rfn(u)l +

(r−1)2

2 fn(u)u ≥ −Wn, r ∈ [0, 1], u ∈ R.
Assume If (V 1), (fCS

1 )-(fCS
5 ) and (H1) (or (H2), or (H3)) hold, then equation

(2.5) has at least one non-trivial solution u in E Moreover, if fn(u) = o(u) as
u→ 0, then there exist two positive constants C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z.
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Other related results for (2.5) without periodic assumptions can be found in
[12,38,42,43,51,57,63,66].

One should mention that the existing results of homoclinic solutions of DNLS
equations mainly focus on the case with periodic coefficients or unbounded potential.
However, the existence of homoclinic solutions of DNLS equations with bounded
and non-periodic coefficients, especially asymptotically periodic coefficients, is still
an open problem. Such an unsolved problem needs a further study.

3. Discrete Hamiltonian systems
In 2006, Ma-Guo [60] first used critical point theory [75, 95] to study the existence
of nontrivial homoclinic solutions of the following discrete Hamiltonian system:

△[p(t)△u(t− 1)] + q(t)u(t) = f(t, u(t)), t ∈ Z, (3.1)

where △ defined by △u(t) = u(t+ 1)− u(t) is the forward difference operator. To
prove the Palais-Smale condition on the unbounded domain, an original embedding
lemma was given. Moreover, an unbounded sequence of homoclinic solutions were
first obtained by invoking the symmetric mountain pass theorem.

Theorem 3.1 ( [60]). Assume that the following conditions hold.
(fM1 ) limx→0

f(t,x)
x = 0 uniformly for t ∈ Z.

(fM2 ) There exists a constant β > 2 such that

xf(t, x) ≤ β

∫ x

0

f(t, s)ds < 0

for all (t, x) ∈ Z× R\{0}.
(p) p(t) > 0 for all t ∈ Z.
(q) q(t) < 0 for all t ∈ Z and lim|t|→∞ q(t) = −∞.

Suppose (p), (q), (fM1 ), and (fM2 ) are satisfied. Then there exist a homoclinic
solution u of equation (3.1) emanating from 0 such that

0 <

∞∑
t=−∞

[
1

2
p(t)(△u(t− 1))2 − 1

2
q(t)(u(t))2 + F (t, u(t))

]
<∞.

Equation (3.1) was considered in [60] without any periodicity assumptions on
p(t), q(t), and f , providing that f(t, x) grows superlinearly both at origin and at
infinity. In 2007, Ma-Guo [61] further extended the result in [60] to the periodic case
by applying the mountain pass theorem relying on Ekeland’ s variational principle
and the diagonal method.

These pioneer works of [60, 61] on the existence of nontrivial homoclinic solu-
tions of discrete Hamiltonian systems have attracted a great deal of attentions. To
generalize the results in [60,61] for the scalar case to the N -dimensional case, many
authors have considered the nontrivial homoclinic solution of the following discrete
Hamiltonian systems:

△[p(n)△u(n− 1)]− L(n)u(n) = ∇W (n, u(n)), n ∈ Z, (3.2)

where u ∈ RN , p, L : Z → RN×N , and W : Z × RN → R for some integer N ∈ Z.
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We first consider the periodic case of equation (3.2). In 2009, equation (3.2)
with periodicity assumptions was considered in [26]. Based on the critical point
theory, some sufficient conditions for the existence of subharmonic solutions and
homoclinic solutions were obtained by Deng-Cheng-Shi [26]. The obtained results
extended the results of [61] by relaxing the assumptions on the sign of the potential.

Theorem 3.2 ( [26]). Assume that W (n, x) = b(n)V (x) for n ∈ Z and x ∈ RN . For
a given integer T , assume that p(·) is a T -periodic, N ×N real symmetric positive
definite matrix function, L(·), b(·), and V (·) satisfy the following conditions:
(L) L(·) is a T -periodic and N×N real symmetric matrix function, and there exists
a > 0 such that

L(n)x · x ≥ a|x|2, x ∈ RN , n ∈ Z.
(B) b(·) is T -periodic, and there exists n0 ∈ Z such that b(n0) > 0.
(V1) V ∈ C1(RN ,R), V (x) ≥ V (0) = 0, |∇V (x)| = o|x| as x→ 0.
(V2) There exist a1 > 0, a2 ≥ 0, α > 2 such that

V (x) ≥ a1|x|α − a2, x ∈ RN .

(V3) There exist β > 2 and a3 ∈
[
0, a(β−2)

2

]
such that

|∇V (x) · x− βV (x)| ≤ B̄−1a3|x|2, x ∈ RN

where B̄ = maxn∈Z{|b(n)|}.
Then equation (3.2) has at least one nontrivial homoclinic solution.

If p(n) and L(n) are T -periodic N × N real symmetric matrices, it is easy to
check that the operator A given as

(Au)(n) = △[p(n)△u(n− 1)]− L(n)u(n), n ∈ Z, (3.3)

is a bounded self-adjoint operator in l2(Z,RN ). By the Floquet Theorem, we can
see that A has only continuous spectrum σ(A), which is a union of bounded closed
intervals.

In 2015, based on a generalized linking theorem for the strongly indefinite func-
tionals [49], Zhang [102] studied the existence of homoclinic solutions of equation
(3.2) where p(n), L(n) and W (n, x) are T -periodic in n, and 0 lies in a gap of the
spectrum σ(A) of A with weak superquadratic conditions.

Theorem 3.3 ( [102]). Assume that p, L and W satisfy the following conditions.
(PL) p(n) and L(n) are T -periodic N ×N real symmetric matrices, and

sup[σ(A)] ∩ (−∞, 0)] < 0 < inf[σ(A)] ∩ (0,∞)].

(W1) W (n, x) is continuously differentiable in x for every n ∈ Z, W (n, 0) = 0,
W (n, x) ≥ 0 and W (n, x) is T -periodic in n.
(W2) ∇W (n, x) = o(|x|) as |x| −→ 0 uniformly for n ∈ Z.
(W3) lim|x|−→0

|W (n,x)|
|x|2 = ∞ for all n ∈ Z.

(W4) W̃ (n, x) = 1
2 (∇W (n, x), x)−W (n, x) > 0, (n, x) ∈ Z× (RN \ {0}), and there

exist c1 > 0 and R0 > 0 such that

|∇W (n, x)| ≤ c1|x|W̃ (n, x), (n, x) ∈ Z× RN , |x| ≥ R0.

Then system (3.2) possesses a nontrivial homoclinic solution.
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Recently, inspired by Tang-Lin-Yu [92], Condition (W3) was substantially im-
proved in [103] by the following much weaker condition
(W3)′ there is some integer n0 such that lim|x|−→0

|W (n,x)|
|x|2 = ∞ just for n ∈

{n0 − 1, n0, n0 + 1}.
Other related results of equation (3.2) with periodicity assumptions can be found

in [8, 24,88,94,101].
Now we turn to consider the non-periodic case of equation (3.2). In 2008, Deng-

Cheng [25] considered equation (3.2) without any periodicity assumptions. Based
on critical point theory, they obtained some sufficient conditions for the existence
of homoclinic solution and extended the results in [60] by relaxing the assumptions
on the sign of the potential.

Theorem 3.4 ( [25]). Assume that W (n, x) = b(n)V (x) for n ∈ Z and x ∈ RN ,
and p(n) is a N ×N real symmetric positive definite matrix. Moreover L(n), b(n),
and V (x) satisfy the following:
(A) L(n) is a N ×N real symmetric matrix, and there exists a > 0 such that

L(n)x · x ≥ a|x|2,∀x ∈ RN ,∀n ∈ Z.

(B) b(n) is a bounded real number for each n ∈ Z, and there exists n0 ∈ Z such that
b(n0) > 0 and

∑
n∈Z |b(n)|2 <∞.

(V1) V ∈ C1(RN ,R), V (0) = 0, and |∇V (x)| = o|x| as x→ 0.
(V2) There exist µ > 2, and a1 > 0 such that

V (x) ≥ a1|x|µ,∀x ∈ RN .

(V3) There exist α > 2 and a2 ∈
[
0, a(α−2)

2

)
, r1 > 0 such that

|∇V (x) · x− αV (x)| ≤ B̄−1a2|x|2,∀|x| ≥ r1, x ∈ RN ,

where B̄ = supn∈Z{|b(n)|}.
Then equation (3.2) has at least one homoclinic solution.

By using Symmetric Mountain Pass Theorem [75, 95], in 2011, Lin-Tang [50]
established some existence criteria to guarantee equation (3.2) has infinitely many
homoclinic solutions, where p(n), L(n) and W (n, x) are non-periodic in n.

Theorem 3.5 ( [50]). Assume that p(n) is a real symmetric positive definite matrix
for all n ∈ Z, where L and W satisfy the following assumptions:
(L) L(n) is a real symmetric positive definite matrix for all n ∈ Z and there exists
a function l : Z → (0,∞) such that l(n) → ∞ as |n| → ∞ and

(L(n)x, x) ≥ l(n)|x|2,∀(n, x) ∈ Z× RN .

(W1) W (n, x) =W1(n, x)−W2(n, x), for every n ∈ Z, W1 and W2 are continuously
differentiable in x, and there is a bounded set J ⊂ Z such that

W2(n, x) ≥ 0,∀(n, x) ∈ J× RN , |x| ≤ 1,

and
1

l(n)
|∇W (n, x)| = o(|x|)
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as x→ 0 uniformly in n ∈ Z\J.
(W2) There is a constant µ > 2 such that

0 < µW1(n, x) ≤ (∇W1(n, x), x),∀(n, x) ∈ Z× (RN\{0}).

(W3) W2(n, 0) ≡ 0 and there is a constant ϱ ∈ (2, µ) such that

(∇W2(n, x), x) ≤ ϱW2(n, x),∀(n, x) ∈ Z× RN .

(W4) W (n,−x) =W (n, x),∀(n, x) ∈ Z× RN .
Then there exists an unbounded sequence of homoclinic solutions for system

(3.2).

Other related results for the non-periodic case of equation (3.2) can respec-
tively be seen from [11] with asymptotically quadratic potentials, [89,91] with sub-
quadratic potentials, and [9,10,18,21,35,59,90,107] with superquadratic potentials.

4. Discrete p-Laplacian equations and difference equa-
tions containing both advance and retardation

Using critical point theory, some scholars established sufficient conditions on the
existence of homoclinic solutions for discrete p-Laplacian equations and difference
equations containing both advance and retardation. We view some progress in this
direction.

4.1. Discrete p-Laplacian equations
Cabada-Li-Tersian [7] in 2010 studied the existence of homoclinic solutions for the
p-Laplacian difference equation with periodic coefficients:

△ϕp(△u(k − 1))− V (k)u(k)|u(k)|q−2 + λf (k, u(k)) = 0, k ∈ Z. (4.1)

Here the p-Laplacian operator ϕp is defined as ϕp(t) = |t|p−2t for all t ∈ R and
p > 1.

Theorem 4.1 ( [7]). Assume that the following hypotheses are satisfied:
(F1) The function f(k, t) is continuous in t ∈ R and T -periodic in k.
(F2) The potential function F (k, t) of f(k, t),

F (k, t) =

∫ t

0

f(k, s)ds

satisfies the Rabinowitz’s type condition: There exist µ > p ⩾ q > 1 and s > 0 such
that

µF (k, t) ⩽ tf(k, t), k ∈ Z, t ̸= 0,

F (k, t) > 0, ∀k ∈ Z, for t ⩾ s > 0.

(F3) f(k, t) = o(|t|q−1) as |t| → 0.
Suppose that the function V : Z → R is positive and T -periodic and the functions

f(·, ·) : Z×R → R satisfy assumptions (F1)− (F3). Then, for each λ > 0, equation
(4.1) has a nonzero homoclinic solution u ∈ ℓq. Moreover, given a nontrivial
solution u of equation (4.1), there exist k± two integer numbers such that for all
k > k+ and k < k−, the sequence u(k) is strictly monotone.
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In 2013, Liu-Zhang-Shi [55] considered the following second order p-Laplacian
difference equation containing both advanced and retarded arguments:

△ (ϕp(△(t− 1)))− q(t)ϕp(u(t)) = f (t, u(t+ 1), u(t), u(t− 1)) t ∈ Z. (4.2)

By using the critical point theory, they obtained the existence of a nontrivial ho-
moclinic solution. The proof is based on the mountain pass lemma in combination
with periodic approximations.

Theorem 4.2 ( [55]). Assume that the following hypotheses are satisfied:
(r) q(t) > 0, for all t ∈ Z.
(F1) There exists a functional F (t, v1, v2) ∈ C1(Z×R2,R) with F (t, v1, v2) ⩽ 0 and
it satisfies

F (t+ T, v1, v2) = F (t, v1, v2),

∂F (t− 1, v2, v3)

∂v2
+
∂F (t, v1, v2)

∂v2
= f(t, v1, v2, v3),

lim
ρ→0

F (t, v1, v2)

ρp
= 0 ρ =

√
v21 + v22 ,

lim
r→0

f(t, v1, v2, v3)

ϕp(v2)
= 0 r =

√
v21 + v22 + v23 .

(F2) There exists a constant β > p such that
∂F (t, v1, v2)

∂v1
v1 +

∂F (t, v1, v2)

∂v2
v2 ⩽ βF (t, v1, v2) < 0,

for all (t, v1, v2) ∈ Z× R2\{(0, 0)}.
Then equation (4.2) has a nontrivial homoclinic solution.

Using critical point theory in combination with periodic approximations, in 2014,
Kuang [47] established sufficient conditions on the existence of homoclinic solutions
for higher-order periodic difference equations with p-Laplacian:

(−1)n△n [r(k)ϕp(△nu(k − n))] + q(k)ϕp(u(k)) = f (k, u(k)) , k ∈ Z. (4.3)

The results in [47] provide rather weaker conditions to guarantee the existence
of homoclinic solutions and considerably improve some existing ones even for some
special cases.

Theorem 4.3 ( [47]). Assume that the following hypotheses are satisfied:
(r) r(k) > 0 and r(k + T ) = r(k) for all k ∈ Z.
(q) q(k) > 0 and q(k + T ) = q(k) for all k ∈ Z.
(f) f(k, u) is continuous in u and T -periodic in k, and F (k, u) =

∫ u

0
f(k, s)ds for

u ∈ R.
(F1) there exist positive constants δ1 and a1 < q∗ such that

|f(k, u) ⩽ a1|u|p−1, for all k ∈ Z, |u| ⩽ δ1.

(F2) f(k, u)u− pF (k, u) > 0 for all k ∈ Z and u ∈ R\{0}.
(F3) f(k, u)u− pF (k, u) → ∞ as |u| → ∞.

(F4) there exist constants ρ1 > 0, c1 > q∗+r∗2n(
√
2c)pn

p and b1 such that

F (k, u) ⩾ c1|u|p + b1 for all k ∈ Z, |u| ⩾ ρ1.

Then equation (4.3) has at least a nontrivial homoclinic solution.
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In 2013, Iannizzotto-Tersian [40] dealt with nontrivial homoclinic solutions of
the following discrete p-Laplacian equation:

−△ϕp(△u(k − 1)) + a(k)ϕp(u(k)) = λf (k, u(k)) , k ∈ Z, (4.4)

involving a coercive weight function and a positive parameter λ. By means of
critical point theory, they proved the existence of at least two nontrivial homoclinic
solutions for λ big enough.

Theorem 4.4 ( [40]). Assume that the following hypotheses are satisfied:
(A) a(k) ⩾ a0 > 0 for all k ∈ Z, a(k) → ∞ as |k| → ∞.

(F1) limt→0
|f(k,t)|
|t|p = 0 uniformly for k ∈ Z.

(F2) sup|t|⩽T |F (·, t)| ∈ ℓ1 for all T > 0, where F (·, t) =
∫ t

0
f(·, s)ds for t ∈ R.

(F3) lim sup|t|→∞
F (k,t)
|t|p ⩽ 0 uniformly for all k ∈ Z.

(F4) F (h, b) > 0 for some h ∈ Z, b ∈ R.
Then for all λ > 0 big enough problem (4.4) admits at least two nonzero homo-

clinic solutions. Moreover, whenever u : Z → R is a nontrivial solution of problem
(4.4), there exist k± ∈ Z such that both sequences (u(k))k⩽k− and (u(k))k⩾k+ are
strictly monotone.

In 2017, Stegliński [83] obtained conditions under which the following nonlinear
second-order difference equation:

−△(a(k)ϕp(△u(k − 1))) + b(k)ϕp(u(k)) = λf (k, u(k)) , k ∈ Z, (4.5)

has infinitely many homoclinic solutions. A variant of the fountain theorem [95,113]
is utilized in the proof of the main results.

Theorem 4.5 ( [83]). Assume that the following hypotheses are satisfied:
(B) b(k) ⩾ b0 > 0 for all k ∈ Z, b(k) → ∞ as |k| → ∞;
(H1) f(k,−t) = −f(k, t) for all k ∈ Z, t ∈ R;
(H2) there exist d > 0 and q > p such that |F (k, t)| ⩽ d(|t|p+|t|q) for all k ∈ Z, t ∈ R;
(H3) limt→0

|f(k,t)|
|t|p−1 = 0 uniformly for k ∈ Z;

(H4) lim|t|→∞
f(k,t)t
|t|p = ∞ for all k ∈ Z;

(H5) there exists σ ⩾ 1 such that σG(k, t) ⩾ F (k, st) for k ∈ Z, t ∈ R, and s ∈ [0, 1],
where F (k, t) is the primitive function of f(k, t), that is F (k, t) =

∫ t

0
f(k, s)ds for

k ∈ Z, t ∈ R, and G(k, t) = f(k, t)t− pF (k, t).
Then, for any λ > 0, the problem has a sequence {un(k)} of solutions such that
Jλ(un) → ∞ as n→ ∞, where

Jλ(u) =
1

p

∑
k∈Z

[|a(k)||△u(k − 1)|p + b(k)|u(k)|p]− λ
∑
k∈Z

F (k, u(k)).

Other related results of nontrivial homoclinic solutions for discrete p-Laplacian
equation can be seen in [5,22,30,34,44,53,54,78,82,83]. Recently, nontrivial results
of homoclinic solutions with discrete p-Laplacian have been first extended to the
ones with ϕ -Laplacian [53,54]. However, there exist only a few results of homoclinic
solutions with discrete ϕ-Laplacian [53, 54]. This is an important aspect of homo-
clinic solutions for discrete equations and one that requires further investigation.
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4.2. Difference equations containing both advances and retar-
dations

We first consider the existence of nontrivial homoclinic solutions for periodic differ-
ence equations containing both advances and retardations. In 2009, by using the
mountain pass theorem [75, 95], Fang-Zhao [28] obtained a sufficient condition for
the existence of nontrivial homoclinic solutions for fourth-order difference equations:

△4u(t− 2)− q(t)u(t) = f (t, u(t+ 1), u(t), u(t− 1)) , t ∈ Z. (4.6)

Theorem 4.6 ( [28]). Assume that the following hypotheses are satisfied:
(F1) f(t, u, v, w) ∈ C(R4,R), and there exists a positive integer T such that

f(t+ T, u, v, w) = f(t, u, v, w), q(t+ T ) = q(t), q(t) < 0, ∀t ∈ Z.

(F2) limρ→0
f(t,u,v,w)

ρ = 0 uniformly for t ∈ Z, where ρ =
√
u2 + v2 + w2.

(F3) There exist a constant β > 2 and a functional F (t, u, v) ∈ C1(R3,R) with
F (t+ T, u, v) = F (t, u, v), such that

F ′
2(t− 1, v, w) + F ′

3(t, u, v) = f(t, u, v, w), ∀(t, u, v, w) ∈ Z× R3,

and
F ′
2(t, u, v) + F ′

3(t, u, v) ⩽ βF (t, u, v) < 0, ∀(t, u, v) ∈ Z× R2\{0}.

(F4) There exist constants a0 > 0, a1 > 0, such that

F (t, u, v) ⩽ −a0ρβ0 , for ρ0 ⩾ 1;

F (t, u, v) ⩾ −a1ρβ0 , for ρ0 ⩽ 1;

lim
ρ0→0

F ′
2(t, u, v)

ρ0
= 0, lim

ρ0→0

F ′
3(t, u, v)

ρ0
= 0, lim

ρ0→0

F (t, u, v)

ρ20
= 0 uniformly for t ∈ Z,

where ρ0 =
√
u2 + v2.

Then there exists a nontrivial homoclinic solution u of equation (4.6) emanating
from 0 such that

∑T
t=−T |u(t)| > 0.

In 2009, Yu-Shi-Guo [97] discussed for the first time how to use the critical
point theory to study the existence of a nontrivial homoclinic solution for nonlinear
difference equations:

Lu(t)− ωu(t) = f (t, u(t+ T ), u(t), u(t− T )) , t ∈ Z, (4.7)

containing both long-range advance and long-range retardation without any periodic
assumptions. Here the operator L is a second-order difference operator given by

Lu(t) = a(t− 1)u(t− 1) + b(t)u(t) + a(t)u(t+ 1),

where a(t), b(t) are real valued for each t ∈ Z and ω ∈ R, f ∈ C(R4,R).

Theorem 4.7 ( [97]). Assume that the following hypotheses are satisfied:
(L) a(t) ̸= 0, b(t)− |a(t− 1)| − |a(t)| > ω, for all t ∈ Z and

lim
|t|→∞

(b(t)− |a(t− 1)| − |a(t)|) = ∞.
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(F1) There exists a functional F (t, v1, v2) ∈ C1(Z × R2,R) with F (t, v1, v2) ⩾ 0,
and it satisfies

∂F (t− T, v2, v3)

∂v2
+
∂F (t, v1, v2)

∂v2
= f(t, v1, v2, v3),

lim
ρ→0

F (t, v1, v2)

ρ2
= 0 uniformly for t ∈ Z, ρ =

√
v21 + v22 ,

lim
r→0

f(t, v1, v2, v3)

v2
= 0 uniformly for t ∈ Z, r =

√
v21 + v22 + v23 .

(F2) There exists a constant β > 2 such that

0 < βF (t, v1, v2) ⩽
∂F (t, v1, v2)

∂v1
v1 +

∂F (t, v1, v2)

∂v2
v2,

for all (t, v1, v2) ∈ Z× R2\{(0, 0)}.
Then equation (4.7) has a nontrivial homoclinic solution.

Chen-Tang in 2011 [19] considered the existence of homoclinic solutions for 2nth-
order nonlinear difference equations containing both many advances and retarda-
tions:

△n (r(t− n)△nu(t− n))− q(t)u(t) = f (t, u(t+ n), · · · , u(t), · · · , u(t− n)) , t ∈ Z,
(4.8)

where △ is the forward difference operator.

Theorem 4.8 ( [19]). Assume that the following hypotheses are satisfied:
(r) For every t ∈ Z, r(t) > 0.
(q) For every t ∈ Z, q(t) > 0, and lim|t|→∞ q(t) = ∞.
(F1) There exists a functional F (t, xn, · · · , x0) which is continuously differentiable
in the variable from xn to x0 for every t ∈ Z and satisfy

0∑
i=−n

F ′
2+n+i(t+ i, xn+i, . . . , xi) = f(t, xn, xn−1, . . . , x0, x−1, . . . , x−n)

and

|f(t, xn, xn−1, . . . , x0, x−1, . . . , x−n)| = o

( n∑
i=−n

x2i

) 1
2

 , as
(

n∑
i=−n

x2i

) 1
2

→ 0,

|F (t, xn, . . . , x0)| = o

(
n∑

i=0

x2i

)
, as

n∑
i=0

x2i → 0

uniformly in t ∈ Z\J .
(F2) F (t, xn, · · · , x0) = W (t, x0) − H(t, xn, · · · , x0), for every t ∈ Z, W,H are
continuously differentiable in x0 and xn, · · · , x0, respectively. Moreover, there is a
bounded set J ∈ Z such that

H(t, xn, · · · , x0) ⩾ 0.
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(F3) There exists a constant µ > 2 such that

0 < µW (t, x0) ⩽W ′
2(t, x0)x0,∀(t, x0) ∈ Z× R\{0}.

(F4) H(t, 0, · · · , 0) and there exists a constant ϱ ∈ (2, µ) such that

0∑
i=−n

H ′
2+n+i(t, xn, . . . , x0)x−i ⩽ ϱH(t, xn, · · · , x0).

(F5) there exists a constant b such that

H(t, xn, · · · , x0) ⩽ bγϱ, for t ∈ Z, γ > 1,

where γ =
(∑n

i=0 x
2
i

) 1
2 .

Then equation (4.8) possesses at least one nontrivial homoclinic solution.

Other related results of nontrivial homoclinic solutions for difference equations
containing both advanced and retarded arguments can be seen in [20,56,79].
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