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ASYMPTOTIC AUTONOMY OF RANDOM
ATTRACTORS FOR BBM EQUATIONS WITH

LAPLACE-MULTIPLIER NOISE∗

Renhai Wang and Yangrong Li†

Abstract We study asymptotic autonomy of random attractors for possi-
bly non-autonomous Benjamin-Bona-Mahony equations perturbed by Laplace-
multiplier noise. We assume that the time-indexed force converges to the
time-independent force as the time-parameter tends to negative infinity, and
then show that the time-indexed force is backward tempered and backward
tail-small. These properties allow us to show that the asymptotic compact-
ness of the non-autonomous system is uniform in the past, and then obtain
a backward compact random attractor when the attracted universe consists
of all backward tempered sets. More importantly, we prove backward conver-
gence from time-fibers of the non-autonomous attractor to the autonomous
attractor. Measurability of solution mapping, absorbing set and attractor is
rigorously proved by using Egoroff, Lusin and Riesz theorems.
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1. Introduction
We develop a new subject on asymptotic autonomy of random attractors for the
following non-autonomous stochastic Benjamin-Bona-Mahony (BBM) equation:{

du− d(∆u)− ν∆udt+∇ ·
−→
F (u)dt = g(t, x)dt+ Su ◦ dW,

u(t, τ)|∂Q = 0, u(τ, τ, x) = uτ (x), x ∈ Q, t ≥ τ, τ ∈ R,
(1.1)

where ν > 0, S = I − ∆ and Q is an unbounded 3D-channel: Q = D × R, D is
bounded in R2.

When the equation is deterministic (S = 0) and autonomous (g(t) ≡ g∞ ∈
L2(Q)), it was first proposed in [3] as a nonlinear dispersive model to describe
the physical phenomenon of long waves in shallow water. Both well-posedness and
global attractor had been extensively investigated (cf. [1,10,12,14,29,33]). Wang [31]
obtained a random attractor for the BBM equation with additive noise (Su = h).
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We take the Laplace-multiplier noise (S = I − ∆) instead of the usual multi-
plicative noise (S = I, see [5, 9, 13, 18, 21, 22, 44]). From the viewpoint of physics,
this operator-type noise vibrates in resonance with the dispersive wave (d(∆u)).
From the viewpoint of mathematics, it is possible to translate the stochastic equa-
tion with Laplace-multiplier noise such that the differential of the Wiener process
W disappears. Therefore, we can obtain a non-autonomous random dynamical sys-
tem (NRDS) Φ in the sense of Wang [32], where, measurability of the system is
rigorously proved by showing Lusin continuity in the sample, see Proposition 2.1.

The main purpose of this paper is to consider not only existence of a non-
autonomous random attractor A = {A(τ, ω)}, but also upper semi-continuity from
A(τ, ω) to A∞(ω) as τ → −∞, that is,

lim
τ→−∞

distH1
0 (Q)(A(τ, ω),A∞(ω)) = 0, P -a.s. ω ∈ Ω, (1.2)

where, Ω is a probability space, and A∞ = {A∞(ω)} is the random attractor
(obtained by [25]) for the RDS Φ∞ generated from the autonomous BBM equation
with the time-independent force g∞(x) instead of g(t, x) in (1.1).

Such an asymptotically autonomous problem in the non-random case (omitting
the sample in (1.2)) had been investigated by Kloeden et al. [15–17] or [6,11]. They
established some abstract results by using the uniform convergence of the system
and the uniform compactness of the pullback attractor. Two uniformness conditions
had been reduced by Li et al. [23], in which, it was shown that the asymptotic
autonomy only relates to backward or forward compactness of a pullback attractor.

The above abstract results can be partly generalized to the random case, where
we must consider variety of the sample. In fact, in order to establish the asymptotic
autonomy as given in (1.2), on one hand, we need to show the convergence from the
NRDS Φ to the RDS Φ∞, on the other hand, we need to show that the NRDS Φ is
backward asymptotically compact, which means that the asymptotic compactness is
uniform in the past, see Theorem 5.1.

Interestingly, the above two properties can be available by using only one as-
sumption on two forces.
Hypothesis G. (Convergence condition). g ∈ L2

loc(R, L2(Q)) and g∞ ∈ L2(Q)
such that

lim
τ→−∞

∫ τ

−∞
‖g(s)− g∞‖2ds = 0, where ‖ · ‖ is the L2-norm. (1.3)

In fact, under the hypothesis G, we can prove that Φ backward converges to Φ∞,
see Lemma 2.2. Moreover, we can show that the hypothesis G can imply that the
time-dependent force g is backward tempered and backward tail-small (see Lemma
2.1). These properties are enough to ensure that the random attractor A(τ, ω) is
backward compact, which means that ∪s≤τA(s, ω) is pre-compact.

Another novelty is the option of attracted universes. A bi-parametric set D =
{D(τ, ω)} in H1

0 (Q) is called backward tempered if

lim
t→+∞

e−
δ
3 t sup

s≤τ
‖D(s− t, θ−tω)‖2H1 = 0, ∀ (τ, ω) ∈ R× Ω, (1.4)

where δ = min( ν2 ,
νλ0

4 ) and λ0 is the Poincaré constant. We take the universe D
by the collection of all backward tempered sets, instead of the usual tempered sets
(i.e. the supremum in (1.4) is omitted, see [2, 19, 30, 37, 39, 41–43]), also, instead
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of the bounded sets [15, 16, 22]. The usual universe cannot work when proving the
backward asymptotic compactness of the NRDS Φ.

A difficulty arises from proving measurability of the absorbing set, which is a
union of some random sets over an uncountable index set. Fortunately, both Egoroff
and Lusin theorems can solve the problem, see Proposition 3.1.

The tail-estimates can be realized by using square of the usual cut-off func-
tion and by treating carefully the biquadrate of solutions. Those tail-estimates are
further proved to be uniform in the past.

Final application results are summarized in Theorem 5.2, where we show back-
ward compactness and asymptotic autonomy of the random attractor for Eq.(1.1).
Furthermore, Riesz theorem and measure-preserving property imply the conver-
gence of A(sn, θsnω) as sn → −∞, where the sample is varying.

2. NRDS from BBM equations
2.1. Two backward properties of the time-indexed force
We show that the hypothesis G can imply the following conditions.

(I) g is tempered:
∫ 0

−∞ ear‖g(r)‖2dr < +∞ for all a > 0. This is a com-
mon condition to ensure the existence of a pullback attractor, see [20, 28] and the
references therein.

(II) g is backward tempered: for all a > 0 and τ ∈ R,

G(a, τ) = sup
s≤τ

∫ s

−∞
ea(r−s)‖g(r)‖2dr < +∞.

This is a basic condition to guarantee existence of a backward compact attractor,
see [7, 38] for deterministic PDEs.

(III) g is backward tail-small: for all a > 0 and τ ∈ R,

lim
k→+∞

sup
s≤τ

∫ s

−∞
ea(r−s)

∫
Q(|x3|≥k)

|g(r, x)|2dxdr = 0.

This is a condition to ensure the existence of a backward compact attractor when a
PDE is defined on an unbounded domain, see [24,26,34,40] for some deterministic
PDEs.

Lemma 2.1. Let the time-indexed force g satisfy the hypothesis G. Then,
(i) g is backward tempered, which obviously implies that g is tempered.
(ii) g is backward tail-small.

Proof. (i) Let a > 0 and τ ∈ R. By (1.3), we can find a τ0 < τ such that∫ τ0
−∞ ‖g(r)− g∞‖2dr < 1. By g ∈ L2

loc(R, L2(Q)) and g∞ ∈ L2(Q), we have∫ τ

−∞
‖g(r)− g∞‖2dr =

∫ τ0

−∞
‖g(r)− g∞‖2dr +

∫ τ

τ0

‖g(r)− g∞‖2dr

≤ 1 + 2

∫ τ

τ0

‖g(r)‖2dr + 2(τ − τ0)‖g∞‖2 < +∞. (2.1)

Therefore, by ea(r−s) ≤ 1 for all r ≤ s, we have

G(a, τ) = sup
s≤τ

∫ s

−∞
ea(r−s)‖g(r)‖2dr
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≤ 2 sup
s≤τ

∫ s

−∞
ea(r−s)‖g(r)− g∞‖2dr + 2 sup

s≤τ

∫ s

−∞
ea(r−s)‖g∞‖2dr

≤ 2 sup
s≤τ

∫ s

−∞
‖g(r)− g∞‖2dr + 2‖g∞‖2

∫ 0

−∞
eardr

≤ 2

∫ τ

−∞
‖g(r)− g∞‖2dr + 2

a
‖g∞‖2 < +∞.

(ii) It is similar to the above proof that for each k ∈ N,

sup
s≤τ

∫ s

−∞
ea(r−s)

∫
Q(|x3|≥k)

|g(r, x)|2dxdr

≤2 sup
s≤τ

∫ s

−∞
ea(r−s)

∫
Q(|x3|≥k)

|g(r, x)− g∞(x)|2dxdr

+ 2 sup
s≤τ

∫ s

−∞
ea(r−s)

∫
Q(|x3|≥k)

|g∞(x)|2dxdr

≤2

∫ τ

−∞

∫
Q(|x3|≥k)

|g(r, x)− g∞(x)|2dxdr + 2

a

∫
Q(|x3|≥k)

|g∞(x)|2dx. (2.2)

Let h(r) = ‖g(r)− g∞‖2. By (2.1), we know
∫ τ

−∞ h(r)dr < +∞. Note that

hk(r) :=

∫
Q(|x3|≥k)

|g(r, x)− g∞(x)|2dx ≤ h(r), and hk(r) → 0,

as k → ∞ for all r ∈ (−∞, τ ]. The Lebesgue controlled convergence theorem gives

lim
k→∞

∫ τ

−∞
hk(r)dr = 0.

By the absolute continuity of the integral, we have
∫
Q(|x3|≥k)

|g∞(x)|2dx → 0 as
k → ∞. Thereby, (2.2) implies that g is backward tail-small as required.

We give the nonlinearity assumption as follows.
Hypothesis F. (Nonlinearity condition). −→

F (s) := (F1(s), F2(s), F3(s)) such that
all components Fk are smooth, and for two constants γ1, γ2 > 0,

Fk(0) = 0, |F ′
k(s)| ≤ γ1 + γ2|s|, s ∈ R, k = 1, 2, 3. (2.3)

By the hypothesis F, the nonlinearity −→
F has the following properties (cf. [25,31]):

Lemma 2.2. (a) Let fk(s) :=
∫ s

0
Fk(t)dt for k = 1, 2, 3. Then,

|Fk(s)| ≤ γ1|s|+ γ2|s|2, |fk(s)| ≤ γ1|s|2 + γ2|s|3, k = 1, 2, 3. (2.4)

(b) For all u1, u2, u3 ∈ H1
0 (Q), we have

|(∇ ·
−→
F (u1)−∇ ·

−→
F (u2), u3)|

≤c(1 + ‖u1‖H1 + ‖u2‖H1)‖‖u1 − u2‖H1‖u3‖H1 . (2.5)
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2.2. Lusin continuity and measurability of systems
We identify the Wiener process W (·, ω) with ω(·) on the metric dynamical system
(Ω,F , P, θt), where,

Ω = {ω ∈ C(R,R) : ω(0) = 0, lim
t→±∞

w(t)

t
= 0},

equipped with the Frechét metric: given ω1, ω2 ∈ Ω,

ρ(ω1, ω2) :=

∞∑
i=1

1

2n
‖ω1 − ω2‖n

1 + ‖ω1 − ω2‖n
, ‖ω1 − ω2‖n := sup

−n≤t≤n
|ω1(t)− ω2(t)|.

F is the Borel sigma-algebra on (Ω, ρ), P is the two-sided Wiener measure on (Ω,F)
and θt is a group defined by θtω(·) = ω(·+ t)− ω(t) for all (ω, t) ∈ Ω× R.

It is well known that z(θtω) = −
∫ 0

−∞ eτ (θtω)(τ)dτ is the pathwise-continuous
solution of the stochastic equation dz + zdt = dW (t). Also,

lim
t→±∞

z(θtω)

t
= lim

t→±∞

1

t

∫ t

0

z(θsω)ds = 0, for each ω ∈ Ω. (2.6)

In order to deal with Laplace-multiplier noise, we make an exponential change of
variables:

v(t, τ, ω, vτ ) := e−z(θtω)u(t, τ, ω, uτ ). (2.7)

In this case, we have

Su ◦ dW = ez(θtω)v(t, ω) ◦ dz(θtω) + z(θtω)e
z(θtω)v(t, ω)dt

− ez(θtω)∆v(t, ω) ◦ dz(θtω)− z(θtω)e
z(θtω)∆v(t, ω)dt.

We substitute the above equality into Eq.(1.1) to find that

vt −∆vt − ν∆v

=− e−z(θtω)∇ ·
−→
F (ez(θtω)v) + z(θtω)(v −∆v) + e−z(θtω)g(t, x), (2.8)

with the initial conditions: v(τ, τ, ω, vτ ) = vτ = e−z(θτω)uτ .
We establish some energy inequalities, which will be useful frequently.

Lemma 2.3. The solution of Eq.(2.8) satisfies: given δ := min( ν2 ,
νλ0

4 ),

d

dt
‖v‖2H1 + (δ − 2z(θtω))‖v‖2H1 ≤ 2

νλ0
e2|z(θtω)|‖g(t)‖2. (2.9)

Proof. Taking the inner product of Eq.(2.8) with v in L2(Q), we have

d

dt
‖v‖2H1 + 2ν‖∇v‖2 =− 2e−z(θtω)

∫
Q

v∇ ·
−→
F (ez(θtω)v)dx

+ 2z(θtω)‖v‖2H1 + 2e−z(θtω)

∫
Q

g(t, x)vdx.
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By the boundary condition in (1.1) and fi(0) = 0 for i = 1, 2, 3,∫
Q

u∇ ·
−→
F (u)dx = −

∫
Q

−→
F (u) · ∇u = −

∫
Q

∇ ·
−→
f (u) = −

∫
∂Q

−→
f (u) · −→n = 0,

where −→n is the outer unit normal vector. Then, by the Poincaré inequality ‖∇v‖2 ≥
λ0‖v‖2, the energy inequality (2.9) follows immediately.

Based on the above estimate, the similar argument as given in [29] shows the
well-posedness.

Lemma 2.4. For each (τ, ω, vτ ) ∈ R×Ω×H1
0 (Q), the problem (2.8) has a unique

solution v(·, τ, ω, vτ ) ∈ C([τ,∞),H1
0 (Q)) with v(τ, τ, ω, vτ ) = v0 such that v is

continuous in H1
0 (Q) with respect to vτ .

By the sub-exponential growth of ω(·) (see [4, Lemma 11]), we can write Ω =
∪N∈NΩN , where,

ΩN := {ω ∈ Ω : |ω(t)| ≤ Ne|t|, ∀t ∈ R}, ∀N ∈ N. (2.10)

Slightly generalizing [8, Corollary 22], we have the following continuity on each
closed subspace ΩN of Ω. The proof is similar and so omitted.

Lemma 2.5. For each N ∈ N, suppose ωk, ω0 ∈ ΩN such that ρ(ωk, ω0) → 0 as
k → ∞. Then, for each (τ, T ) ∈ R× R+,

sup
t∈[τ,τ+T ]

(
|z(θtωk)− z(θtω0)|+ |ez(θtωk) − ez(θtω0)|

)
→ 0 as k → ∞, (2.11)

sup
k∈N

sup
t∈[τ,τ+T ]

|z(θtωk)| ≤ C(τ, T, ω0). (2.12)

Now, we can show the Lusin continuity of the solution mapping in samples.

Proposition 2.1. For each N ∈ N, the mapping ω 7→ v(t, τ, ω, vτ ) is continuous
from (ΩN , ρ) to H1

0 (Q), uniformly in t ∈ [τ, τ + T ], T > 0.

Proof. Suppose ωk, ω0 ∈ ΩN such that ρ(ωk, ω0) → 0 as k → ∞. Let Vk := vk−v0
with vk = v(t, τ, ωk, vτ ) and v0 = v(t, τ, ω0, vτ ) for t ∈ [τ, τ + T ]. It deduces from
(2.8) that

1

2

d

dt
‖Vk‖2H1 + ν‖∇Vk‖2 =Ik + (z(θtωk)(vk −∆vk)− z(θtω0)(v0 −∆v0), Vk)

+ (e−z(θtωk) − e−z(θtω0))(g, Vk), (2.13)

where the nonlinear term Ik are defined and split into three parts:

Ik :=(e−z(θtω0)∇ ·
−→
F (ez(θtω0)v0)−e−z(θtωk)∇ ·

−→
F (ez(θtωk)vk), Vk)=Ik1+Ik2+Ik3.

By (2.4), H1(Q) ↪→ L4(Q) and Lemmas 2.5, 2.4,

Ik1 : = (e−z(θtω0) − e−z(θtωk))(∇ ·
−→
F (ez(θtω0)v0), Vk)

≤ CJk(‖v0‖‖∇Vk‖+ ‖v0‖24‖∇Vk‖)
≤ ‖Vk‖2H1 + CJ2

k (1 + ‖v0‖4H1) ≤ ‖Vk‖2H1 + CJ2
k ,
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where Jk := sup{|e−z(θtωk) − e−z(θtω0)| : t ∈ [τ, τ + T ]}. By Lemmas 2.2 (b), 2.4,
2.5,

Ik2 : = e−z(θtωk)(∇ ·
−→
F (ez(θtω0)v0)−∇ ·

−→
F (ez(θtω0)vk), Vk)

≤ cec|z(θtωk)|+c|z(θtω0)|(1 + ‖vk‖H1 + ‖v0‖H1)‖Vk‖2H1 ≤ C(1 + ‖vk‖H1)‖Vk‖2H1 .

By (2.5) in Lemma 2.2 and the Young inequality,

Ik3 : = e−z(θtωk)(∇ ·
−→
F (ez(θtω0)vk)−∇ ·

−→
F (ez(θtωk)vk), Vk)

≤ cJke
c|z(θtωk)|+c|z(θtω0)|(1 + ‖vk‖H1)‖vk‖H1‖Vk‖H1

≤ ‖Vk‖2H1 + CJ2
k (1 + ‖vk‖4H1).

The force term in (2.13) is bounded by

(e−z(θtωk) − e−z(θtω0))(g, Vk) ≤ ‖Vk‖2H1 + CJ2
k‖g(t)‖2.

Let J̃k := sup{|z(θtωk) − z(θtω0)| : t ∈ [τ, τ + T ]}. Then, the rest term on the
right-hand side of (2.13) is bounded by

(z(θtωk)(vk −∆vk)− z(θtω0)(v0 −∆v0), Vk)

= (z(θtωk)− z(θtω0))(vk −∆vk, Vk) + z(θtω0)(Vk −∆Vk, Vk)

≤ J̃k(‖vk‖‖Vk‖+ ‖∇vk‖‖∇Vk‖) + |z(θtω0)|‖Vk‖2H1

≤ C‖Vk‖2H1 + CJ̃2
k (1 + ‖vk‖4H1).

We substitute all estimates into (2.13) to see that
d

dt
‖Vk‖2H1 ≤ C(1 + ‖vk‖H1)‖Vk‖2H1 + C(J2

k + J̃2
k )(1 + ‖vk‖4H1 + ‖g(t)‖2). (2.14)

Noting that Vk(τ) = 0, then applying the Gronwall inequality to (2.14) over (τ, t),
we have, for all t ∈ [τ, τ + T ],

‖Vk(t)‖2H1 ≤ C(J2
k + J̃2

k )e
C

∫ τ+T
τ

(1+∥vk(s)∥H1 )ds

∫ τ+T

τ

(1 + ‖vk(s)‖4H1 + ‖g(s)‖2)ds

≤ C(J2
k + J̃2

k )e
C

∫ τ+T
τ

∥vk(s)∥H1ds(1 +

∫ τ+T

τ

‖vk(s)‖4H1ds). (2.15)

By the energy inequality (2.9) with vk instead of v, it follows from Lemma 2.5 that
d

dt
‖vk‖2H1 ≤ C‖vk‖2H1 + C‖g(t)‖2, for all t ∈ [τ, τ + T ].

Then, the Gronwall lemma gives

sup
k∈N

sup
t∈[τ,τ+T ]

‖vk(t)‖2H1 ≤ eCT ‖vτ‖2H1 + CeCT

∫ τ+T

τ

‖g(s)‖2ds ≤ C.

We substitute it into (2.15) to find that ‖Vk(t)‖2H1 ≤ C(J2
k + J̃2

k ). By Lemma 2.5,
Jk, J̃k → 0 and thus ‖Vk(t)‖H1 → 0 as k → ∞, uniformly in t ∈ [τ, τ + T ].

By Lemma 2.4, we can define a mapping Φ: R+ × R× Ω×X → X by

Φ(t, τ, ω)vτ = v(t+ τ, τ, θ−τω, vτ ), ∀(t, τ, ω) ∈ R+ × R× Ω, vτ ∈ X, (2.16)

where X = H1
0 (Q). The Lusin continuity in Proposition 2.1 gives the F-measurability

of Φ. Therefore, we obtain
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Theorem 2.1. The mapping Φ as given by (2.16) is a non-autonomous random
dynamical system (NRDS) on X in the following sense.

(i) Φ is (B(R+)×B(R)×F ×B(X),B(X)) measurable,
(ii) Φ satisfies the cocycle property: Φ(0, τ, ω) = I, and

Φ(t+ s, τ, ω) = Φ(t, τ + s, θsω)Φ(s, τ, ω), t, s ≥ 0. (2.17)

2.3. Backward convergence of NRDS
We consider the autonomous BBM equation with Laplace-multiplier noise:{

dû− d(∆û)− ν∆ûdt+∇ ·
−→
F (û)dt = g∞(x)dt+ Sû ◦ dW,

û(t, x)|∂Q = 0, û(0, x) = û0(x), x ∈ Q, t ≥ 0.
(2.18)

Let v̂(t, ω) = e−z(θtω)û(t, ω). Eq.(2.18) can be rewritten as

v̂t −∆v̂t − ν∆v̂

=− e−z(θtω)∇ ·
−→
F (ez(θtω)v̂) + z(θtω)(v̂ −∆v̂) + e−z(θtω)g∞ (2.19)

with the initial conditions: v̂(0, ω) = v̂0 = e−z(ω)û0 ∈ H1
0 (Q).

Proposition 2.2. The solution v of (2.8) backward converges to the solution v̂ of
(2.19), that is,

lim
τ→−∞

‖v(T + τ, τ, θ−τω, vτ )− v̂(T, ω, v̂0)‖H1 = 0, ∀T > 0, ω ∈ Ω, (2.20)

whenever ‖vτ − v̂0‖H1 → 0 as τ → −∞.

Proof. Let V τ (t) := v(t + τ, τ, θ−τω, vτ ) − v̂(t, ω, v̂0) for t ≥ 0. By (2.19) and
(2.8), we have

V τ
t −∆V τ

t − ν∆V τ =e−z(θtω)(∇ ·
−→
F (ez(θtω)v̂)−∇ ·

−→
F (ez(θtω)v))

+ z(θtω)(V
τ −∆V τ ) + e−z(θtω)(g(t+ τ)− g∞). (2.21)

Taking the inner product of (2.21) with V τ in L2(Q), we have,

1

2

d

dt
‖Vτ‖2H1 + ν‖∇V τ‖2 =e−z(θtω)(∇ ·

−→
F (ez(θtω)v̂)−∇ ·

−→
F (ez(θtω)v), V τ )

+ z(θtω)‖V τ‖2H1 + e−z(θtω)(g(t+ τ)− g∞, V τ ). (2.22)

By Lemma 2.2 (b),

e−z(θtω)(∇ ·
−→
F (ez(θtω)v̂)−∇ ·

−→
F (ez(θtω)v), V τ )

≤c(e−z(θtω) + ‖v̂‖H1 + ‖v‖H1)‖V τ‖2H1 . (2.23)

The Young inequality implies that

z(θtω)‖V τ‖2H1 + e−z(θtω)(g(t+ τ)− g∞, V τ )

≤‖g(t+ τ)− g∞‖2 + cec|z(θtω)|‖V τ‖2H1 . (2.24)
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Substituting (2.23)-(2.24) into (2.22), we have for each t ∈ R+,

d

dt
‖V τ‖2H1 ≤c(ec|z(θtω)| + ‖v̂‖H1 + ‖v(t+ τ)‖H1)‖V τ‖2H1

+ c‖g(t+ τ)− g∞‖2. (2.25)

Applying the Gronwall inequality to (2.25) over (0, T ), we have

‖V τ (T )‖2H1 ≤ ceJ(T,τ)
(
‖V τ (0)‖2H1 +

∫ T

0

‖g(t+ τ)− g∞‖2dt
)
,

where, there exists a constant C = C(T, v̂0) such that

J(T, τ) : = c

∫ T

0

(ec|z(θtω)| + ‖v̂(t)‖H1 + ‖v(t+ τ)‖H1)dt

≤ C + c

∫ T

0

‖v(t+ τ)‖H1dt.

By the hypothesis G, we have∫ T

0

‖g(t+ τ)− g∞‖2dt ≤
∫ τ+T

−∞
‖g(s)− g∞‖2ds → 0 as τ → −∞. (2.26)

By using the energy inequality (2.9) on v(t+ τ, τ, θ−τ , vτ ) for t ∈ [0, T ], we obtain

d

dt
‖v(t+ τ)‖2H1 ≤ C1‖v(t+ τ)‖2H1 + C2‖g(t+ τ)‖2,

where C1, C2 are independent of τ . The Gronwall inequality implies that for all
t ∈ [0, T ],

‖v(t+ τ)‖2H1 ≤ C2e
C1T

(
‖vτ‖2H1 +

∫ T

0

‖g(s+ τ)‖2ds
)

≤ 2C2e
C1T

(
‖vτ‖2H1 + T‖g∞‖2 +

∫ T

0

‖g(s+ τ)− g∞‖2ds
)
,

which is bounded (as τ → −∞) in view of (2.26). So, J(T, τ) is bounded as
τ → −∞. Note that ‖V τ (0)‖2H1 = ‖vτ − v̂0‖2H1 → 0 as τ → −∞. We obtain
‖V τ (T )‖H1 → 0 as τ → −∞.

3. Increasing random absorbing sets
In this section, we show existence of a D-random absorbing set, where D is the
backward tempered universe as given in (1.4). The main difficult is to verify mea-
surability of the absorbing set because the absorbing radius is a supremum of some
random functions over an uncountable index set.

Lemma 3.1. For each (τ, ω,D) ∈ R× Ω×D, there is a T := T (τ, ω,D) > 0 such
that

sup
s≤τ

sup
t≥T

sup
v0∈D(s−t,θ−tω)

‖v(s, s− t, θ−sω, v0)‖2H1 ≤ 1 +
2

νλ0
R(τ, ω), (3.1)
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where R(τ, ω) is given by

R(τ, ω) := sup
s≤τ

∫ 0

−∞
eδr+2|z(θrω)|+2

∫ 0
r
z(θσω)dσ‖g(r + s)‖2dr. (3.2)

Moreover, for all ŝ ≥ s− t, t ≥ 0 and v0 ∈ H1
0 (Q),

‖v(ŝ, s− t, θ−sω, v0)‖2H1

≤e−δ(ŝ−s+t)+2
∫ ŝ−s
−t

z(θσω)dσ‖v0‖2H1

+
2

νλ0

∫ ŝ−s

−t

eδ(r+s−ŝ)+2|z(θrω)|+2
∫ ŝ−s
r

z(θσω)dσ‖g(r + s)‖2dr. (3.3)

Proof. We rewritten the energy inequality (2.9) for v(r) = v(r, s − t, θ−sω, v0).
The result is

d

dr
‖v‖2H1 + (δ − 2z(θr−sω))‖v‖2H1 ≤ 2

νλ0
e2|z(θr−sω)|‖g(r)‖2. (3.4)

Applying the Gronwall inequality to (3.4) with respect to r ∈ (s − t, ŝ), we obtain
(3.3) immediately. Letting ŝ = s in (3.3) yields

‖v(s, s− t, θ−sω, v0)‖2H1 ≤ e−δt+2
∫ 0
−t

z(θσω)dσ‖v0‖2H1 +
2

νλ0
R(τ, ω), (3.5)

for all s ≤ τ . Since v0 ∈ D(s− t, θ−tω) and D is backward tempered, it follows from
(2.6) and (1.4) that there exists a T = T (τ, ω,D) such that for all t ≥ T ,

e−δt+2
∫ 0
−t

z(θσω)dσ sup
s≤τ

‖v0‖2H1 ≤ e−
δ
3 t sup

s≤τ
‖D(s− t, θ−tω)‖2H1 ≤ 1.

Therefore, by taking the maximum on s∈(−∞, τ ] in (3.5), we show (3.1) as required.

Recall that a bi-parametric set K is said to be a D-pullback absorbing set
(briefly, an absorbing set) if for each (D, τ, ω) ∈ D×R×Ω there is a T := T (D, τ, ω)
such that

Φ(t, τ − t, θ−tω)D(τ − t, θ−tω) ⊂ K(τ, ω), ∀t ≥ T.

Proposition 3.1. There is an increasing random absorbing set K given by

K(τ, ω) :=
{
w ∈ H1

0 (Q) : ‖w‖2H1 ≤ 1 +
2

νλ0
R(τ, ω)

}
, ∀τ ∈ R, (3.6)

where R(τ, ω) is defined by (3.2). Moreover, K is backward tempered, i.e. K ∈ D.

Proof. By Lemma 2.1, g is backward tempered. So, it follows from the conver-
gence (2.6) that

R(τ, ω) ≤ c sup
s≤τ

∫ 0

−∞
e

δ
2 r‖g(r + s)‖2dr < +∞.

It is easy to show that K is tempered. Since τ → R(τ, ω) is obviously an increasing
function, K(τ, ω) is increasing. Then, K is an increasing tempered set and thus
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backward tempered, that is, K ∈ D. The absorption follows from Lemma 3.1
immediately.

Next, we prove the measurability of the absorbing set K. It suffices to prove that
ω → R(τ, ω) is a measurable function for each τ ∈ R, where we need to carefully
treat the supremum when s ∈ (−∞, τ ], this interval is an uncountable set. For this
end, we actually prove that ω → R(τ, ω) is Lusin continuous.

By the Egoroff theorem, the convergence given in (2.6) is basically uniform
on Ω, that is, for each N ∈ N, there is a measurable set Ω̃N ⊂ Ω such that
P (Ω \ Ω̃N ) < 1/N and

lim
t→±∞

sup
ω∈Ω̃N

∣∣∣z(θtω)
t

∣∣∣ = lim
t→±∞

1

t
sup

ω∈Ω̃N

∣∣∣ ∫ t

0

z(θsω)ds
∣∣∣ = 0. (3.7)

Let EN = Ω̃N ∩ ΩN , where ΩN = {ω ∈ Ω : |ω(s)| ≤ Ne|s|,∀s ∈ R} as given in
(2.10). Because Ω =

⋃∞
N=1 ΩN and ΩN ⊂ ΩN+1, we have P (ΩN ) → 1 as N → ∞,

it follows that

lim
N→∞

P (Ω \ EN ) ≤ lim
N→∞

P (Ω \ Ω̃N ) + lim
N→∞

P (Ω \ ΩN ) = 0.

Now, suppose ρ(ωk, ω0) → 0 as k → ∞, where ωk, ω0 ∈ EN . Let

h(r, ω) := 2|z(θrω)|+ 2

∫ 0

r

z(θσω)dσ, for r ≤ 0, ω ∈ EN .

By the uniform convergence (3.7) on Ω̃N ⊃ EN , there is an r0 < 0 such that

sup
k

|h(r, ωk)| ≤ −δ

8
r, |h(r, ω0)| ≤ −δ

8
r, for all r ≤ r0.

Given ε > 0, we take r1 ≤ r0 < 0 such that e
δ
4 r1 < ε. Then, the above inequality

implies that

sup
r≤r1

e
δ
2 r|eh(r,ωk) − eh(r,ω0)| ≤ sup

r≤r1

e
δ
4 r < ε, ∀k ∈ N.

By the same method as given in [8, Corollary 22] (see (2.11) in Lemma 2.5), we
have

sup
r1≤r≤0

|eh(r,ωk) − eh(r,ω0)| → 0 as k → ∞.

Then, there is a k0 ∈ N such that

sup
r1≤r≤0

e
δ
2 r|eh(r,ωk) − eh(r,ω0)| ≤ sup

r1≤r≤0
|eh(r,ωk) − eh(r,ω0)| < ε, ∀k ≥ k0.

Hence, the above two estimates yield

sup
r≤0

e
δ
2 r|eh(r,ωk) − eh(r,ω0)| → 0 as k → ∞. (3.8)

By using the inequality | sups≤τ A(s) − sups≤τ B(s)| ≤ sups≤τ |A(s) − B(s)|, it
follows from the definition (3.2) of R(τ, ω) that

|R(τ, ωk)−R(τ, ω0)|
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=
∣∣∣ sup
s≤τ

∫ 0

−∞
eδr+h(r,ωk)‖g(r + s)‖2dr − sup

s≤τ

∫ 0

−∞
eδr+h(r,ω0)‖g(r + s)‖2dr

∣∣∣
≤ sup

s≤τ

∫ 0

−∞
eδr|eh(r,ωk) − eh(r,ω0)|‖g(r + s)‖2dr

≤ sup
r≤0

e
δ
2 r|eh(r,ωk) − eh(r,ω0)| sup

s≤τ

∫ 0

−∞
e

δ
2 r‖g(r + s)‖2dr,

which tends to zero as k → ∞, in view of (3.8) and that g is backward tempered.
Therefore, ω → R(τ, ω) is continuous in EN and thus Lusin continuous in Ω, which
further implies the measurablity.

For the later purpose, we need an auxiliary estimate, which is similar to the
autonomous case given by [25, Lemma 5.1], and so we omit the proof.

Lemma 3.2. For each (s, t, ω) ∈ R× R+ × Ω and v0 ∈ H1
0 (Q), we have,

‖v(s, s− t, ω, v0)‖2H1 ≤ cec|z(θsω)|(1 + ‖v(s, s− t, ω, v0)‖4H1 + ‖g(s)‖2). (3.9)

4. Backward tail-estimates and backward flattening
Now, we intend to give the backward tail-estimate when the third component of
space-variable is large enough. We will use the square of the usual cut-off function:

ρk(x) := ρ(
x2
3

k2
), x = (x1, x2, x3) ∈ Q, k ≥ 1. (4.1)

where ρ : R+ 7→ [0, 1] is smooth such that ρ(s) ≡ 0 on [0, 1] and ρ(s) ≡ 1 on [4,+∞).

Lemma 4.1. For each (τ, ω,D) ∈ R× Ω×D,

lim
k,t→+∞

sup
s≤τ

sup
v0∈D(s−t,θ−tω)

‖v(s, s− t, θ−sω, v0)‖2H1(Qc
k)

= 0,

where, Qc
k = Q \Qk with Qk = {x = (x1, x2, x3) ∈ Q : |x3| < k} for each k ≥ 1.

Proof. Taking the inner product of Eq.(2.8) with ρ2kv in L2(Q), we see that

d

ds

∫
Q

ρ2k(|v|2 + |∇v|2)dx+ 2ν

∫
Q

ρ2k|∇v|2dx

=2z(θsω)

∫
Q

ρ2k(|v|2 + |∇v|2)dx+ I1 + I2 + I3, (4.2)

where I1, I2, I3 are defined later. By (2.4), ‖∇ρ2k‖∞ ≤ c
k and H1(Q) ↪→ L3(Q), we

have

I1 : = −2e−z(θsω)

∫
Q

ρ2kv∇ ·
−→
F (u)dx

= 2e−2z(θsω)

∫
Q

ρ2k(∇u ·
−→
F (u))dx+ 2e−2z(θsω)

∫
Q

u(∇ρ2k ·
−→
F (u))dx

= 2e−2z(θsω)

∫
Q

ρ2k(∇ ·
−→
f (u))dx+ 2e−2z(θsω)

∫
Q

u(∇ρ2k ·
−→
F (u))dx
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= −2e−2z(θsω)

∫
Q

∇ρ2k ·
−→
f (u)dx+ 2e−2z(θsω)

∫
Q

u(∇ρ2k ·
−→
F (u))dx

≤ c

k
ec|z(θsω)|

∫
Q

(|u|2 + |u|3)dx ≤ c

k
ec|z(θsω)|(‖u‖2H1 + ‖u‖3H1)

≤ c

k
ec|z(θsω)|(1 + ‖v‖4H1),

Similarly, by ‖∇ρ2k‖∞ ≤ c
k and Lemma 3.2, we have

I2 : = −2

∫
Q

v(∇vs · ∇ρ2k)dx+ 2(z(θsω)− ν)

∫
Q

v(∇v · ∇ρ2k)dx

≤ c

k
(1 + |z(θsω)|)(‖v‖2H1 + ‖vs‖2H1) ≤

c

k
ec|z(θsω)|(1 + ‖g(s)‖2 + ‖v‖4H1).

I3 : = 2e−z(θsω)

∫
Q

ρ2kvg(s, x)dx ≤ νλ0

4

∫
Q

ρ2k|v|2dx+ cec|z(θsω)|
∫
Q

ρ2k|g(s, x)|2dx.

Applying the Poincaré inequality on ρkv, we have

2ν

∫
Q

ρ2k|∇v|2dx ≥ ν

∫
Q

ρ2k|∇v|2dx+
νλ0

2

∫
Q

ρ2k|v|2dx− c

k
‖v‖2.

Substituting all above estimates into (4.2) and recalling δ := min( ν2 ,
νλ0

4 ), we have,

d

ds

∫
Q

ρ2k(v
2 + |∇v|2)dx+ (δ − 2z(θsω))

∫
Q

ρ2k(v
2 + |∇v|2)dx

≤ c

k
ec|z(θsω)|(1 + ‖g(s)‖2 + ‖v‖4H1) + cec|z(θsω)|

∫
Qc

k

|g(s, x)|2dx. (4.3)

Applying the Gronwall inequality to (4.3) over (s − t, s) and replacing ω by θ−sω,
we have,

sup
s≤τ

∫
Q

ρ2k(|v(s, s− t, θ−sω, v0)|2 + |∇v|2)dx ≤ J1 + J2 +
c

k
(J3 + J4), (4.4)

where J1, J2, J3, J4 are given and estimated as follows. Since v0 ∈ D(s − t, θ−tω)
for all s ≤ τ , by (2.6) and (1.4), we have

J1 : = sup
s≤τ

e−δt+2
∫ 0
−t

z(θσω)dσ

∫
Q

ρ2k(|v0|2 + |∇v0|2)dx

≤ sup
s≤τ

ce−
δ
3 t‖v0‖2H1 ≤ ce−

δ
3 t sup

s≤τ
‖D(s− t, θ−tω)‖2H1 → 0,

as t → +∞. By Lemma 2.1, the hypothesis G implies that g is backward tail-small.
So, by (2.6), we have

J2 : = c sup
s≤τ

∫ s

s−t

eδ(ŝ−s)+c|z(θŝ−sω)|+2
∫ s
ŝ
z(θσ−sω)dσ

∫
Qc

k

|g(ŝ, x)|2dxdŝ

≤ sup
s≤τ

∫ 0

−∞
eδŝ+c|z(θŝω)|+2

∫ 0
ŝ
z(θσω)dσ

∫
Qc

k

|g(ŝ+ s, x)|2dxdŝ

≤ c sup
s≤τ

∫ s

−∞
e

δ
4 (r−s)

∫
Qc

k

|g(r, x)|2dxdr → 0,
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as k → +∞. Since g is backward tempered as given in Lemma 2.1, it follows that
the following term

J3 := sup
s≤τ

∫ s

s−t

eδ(ŝ−s)+c|z(θŝ−sω)|+2
∫ s
ŝ
z(θσ−sω)dσ(1 + ‖g(ŝ)‖2)dŝ (4.5)

is finite, and so cJ3/k → 0 as k → ∞. It suffices to prove finiteness of the following
term:

J4 := sup
s≤τ

∫ s

s−t

eδ(ŝ−s)+c|z(θŝ−sω)|+2
∫ s
ŝ
z(θσ−sω)dσ‖v(ŝ, s− t, θ−sω, v0)‖4dŝ, (4.6)

where we need to deal with the biquadrate. By using (3.3) in Lemma 3.1, we can
split J4 ≤ Ĵ4 + J̃4 with

Ĵ4 : = sup
s≤τ

∫ s

s−t

eδ(ŝ−s)+c|z(θŝ−sω)|+c
∫ s
ŝ
z(θσ−sω)dσe−2δ(ŝ−s+t)+c

∫ ŝ−s
−t

z(θσω)dσdŝ‖v0‖4H1

≤ sup
s≤τ

∫ s

s−t

e
1
4 δ(ŝ−s)+c|z(θŝ−sω)|dŝ · e−

3
4 δt+c

∫ 0
−t

z(θσω)dσ‖v0‖4H1

=

∫ 0

−t

e
1
4 δŝ+c|z(θŝω)|dŝ · e−

3
4 δt+c

∫ 0
−t

z(θσω)dσ sup
s≤τ

‖v0‖4H1 .

The first integral in the last line is obviously finite. Also, by v0 ∈ D(s− t, θ−tω),

e−
3
4 δt+c

∫ 0
−t

z(θσω)dσ sup
s≤τ

‖v0‖4H1

≤e−
2
3 δt sup

s≤τ
‖v0‖4H1 ≤ (e−

1
3 δt sup

s≤τ
‖D(s− t, θ−tω)‖2H1)2 → 0,

as t → +∞. So, Ĵ4 < +∞. Another term J̃4 is given by

J̃4 := sup
s≤τ

∫ s

s−t

eδ(ŝ−s)+c|z(θŝ−sω)|+c
∫ s
ŝ
z(θσ−sω)dσ

·
(∫ ŝ−s

−t

eδ(r+s−ŝ)+c|z(θrω)|+c
∫ ŝ−s
r

z(θσω)dσ‖g(r + s)‖2dr
)2

dŝ.

Let C1 =
∫ 0

−∞ e
1
3 δŝ+c|z(θŝω)|+c

∫ 0
ŝ
z(θσω)dσdŝ < +∞. Then, since g is backward

tempered, it easily follows that

J̃4 ≤ cC1

(
sup
s≤τ

∫ 0

−t

e
1
3 δr+c|z(θrω)|+c

∫ 0
r
z(θσω)dσ‖g(r + s)‖2dr

)2

< +∞.

Therefore, J4 ≤ Ĵ4 + J̃4 < +∞. By (4.4),

sup
s≤τ

‖v(s, s− t, θ−sω, v0)‖2H1(Qc
2k)

≤ sup
s≤τ

∫
Q

ρ2k(|v|2 + |∇v|2)dx → 0,

as k, t → +∞, uniformly in v0 ∈ D(s− t, θ−tω). The proof is completed.
Next, we give backward flattening estimates in the bounded domain. For each

k ≥ 1, we let

ξk(x) := 1− ρk(x) = 1− ρ(
x2
3

k2
), x = (x1, x2, x3) ∈ Q.



Asymptotic autonomy of random attractors 1213

Let v̄ := ξkv for v := v(s, s− t, ω, vτ ) ∈ H1
0 (Q). Then, v̄ ∈ H1

0 (Q2k), which has the
orthogonal decomposition:

v̄ = Piv̄ ⊕ (I − Pi)v̄ =: v̄i,1 + v̄i,2, for each i ∈ N, (4.7)

where, Pi : L
2(Q2k) 7→ Hi := span{e1, e2 ···, ei} ⊂ H1

0 (Q2k) is a canonical projection
and {ej}∞j=1 is the family of eigenfunctions for −∆ in L2(Q2k) with corresponding
positive eigenvalues λ1 ≤ λ2 ≤ ·· ≤ λj → ∞ as j → ∞.

It is easy to calculate that ξk∆v = ∆v̄ − v∆ξk − 2∇ξk · ∇v and ξk∆vs =
∆v̄s − vs∆ξk − 2∇ξk · ∇vs. Hence, we multiply (2.8) by ξk, the equation can be
rewritten as

v̄s −∆v̄s − ν∆v̄ = z(θsω)(v̄ −∆v̄)− e−z(θsω)ξk∇ ·
−→
F (ez(θsω)v) + e−z(θsω)ξkg

− vs∆ξk − 2∇ξk · ∇vs + (z(θsω)− ν)v∆ξk + 2(z(θsω)− ν)∇ξk · ∇v. (4.8)

Lemma 4.2. Let (τ, ω,D) ∈ R× Ω×D and k ≥ 1 be fixed. Then

lim
i,t→+∞

sup
s≤τ

sup
v0∈D(s−t,θ−tω)

‖(I − Pi)v̄(s, s− t, θ−sω, v̄0,2)‖2H1(Q2k)
= 0,

where v̄0,2 = (I − Pi)(ξkv0).

Proof. Applying I − Pi to Eq.(4.8) and taking the inner product of the resulting
equation with v̄i,2 in L2(Q2k), it yields from the orthogonal decomposition (4.7)
that

d

ds
‖v̄i,2‖2H1 + 2ν‖∇v̄i,2‖2 − 2z(θsω)‖v̄i,2‖2H1 = I1 + I2 + I3, (4.9)

where I1, I2, I3 are defined and estimated as follows. By ‖v‖23 ≤ c‖∇v‖‖v‖ and
‖∇v̄i,2‖2 ≥ λi+1‖v̄i,2‖2, we have

I1 : = −2e−z(θsω)(ξk∇ ·
−→
F (ez(θsω)v), v̄i,2) (by (2.3) )

≤ cec|z(θsω)|
∫
Q2k

(1 + |v|)|∇v||v̄i,2|dx

≤ cec|z(θsω)|‖∇v‖‖v̄i,2‖+ cec|z(θsω)|‖v‖6‖∇v‖‖v̄i,2‖3
≤ cec|z(θsω)|‖∇v‖‖v̄i,2‖+ cec|z(θsω)|‖v‖2H1‖∇v̄i,2‖

1
2 ‖v̄i,2‖

1
2

≤ cλ
− 1

2
i+1e

c|z(θsω)|‖∇v‖‖∇v̄i,2‖

≤ ν

8
‖∇v̄i,2‖2 + c(λ−1

i+1 + λ
− 1

2
i+1)e

c|z(θsω)|(1 + ‖v‖4H1).

Similarly, the Young inequality implies that

I2 := 2e−z(θsω)(ξkg, v̄i,2) ≤
ν

4
‖∇v̄i,2‖2 + cλ−1

i+1e
c|z(θsω)|‖g(s)‖2.

By Lemma 3.2 and ‖∆ξk‖∞ ≤ c,

I3 : = 2((z − ν)v∆ξk − vs∆ξk − 2∇ξk · ∇vs + 2(z − ν)∇ξk · ∇v, v̄i,2)

≤ cλ
− 1

2
i+1(1 + |z(θsω)|)‖∇v̄i,2‖(‖vs‖H1 + ‖v‖H1)

≤ ν

8
‖∇v̄i,2‖2 + cλ−1

i+1(1 + |z(θsω)|+ |z(θsω)|2)(‖vs‖2H1 + ‖v‖2H1)
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≤ ν

8
‖∇v̄i,2‖2 + cλ−1

i+1e
c|z(θsω)|(1 + ‖g(s)‖2 + ‖v‖4H1).

We assume without loss of generality that λi ≥ 1, then λ−1
i ≤ λ

−1/2
i . Substituting

all above estimates into (4.9) yields

d

ds
‖v̄i,2‖2H1 + (δ − 2z(θsω))‖v̄i,2‖2H1

≤λ
− 1

2
i+1ce

c|z(θsω)|(1 + ‖g(s)‖2 + ‖v‖4H1), (4.10)

where δ := min( ν2 ,
νλ0

4 ). Hence, the Gronwall lemma over (4.10) implies

sup
s≤τ

‖v̄i,2(s, s− t, θ−sω, (I − Pi)(ξkv0))‖2H1

≤e−δt+2
∫ 0
−t

z(θσω)dσ sup
s≤τ

‖(I − Pi)(ξkv0)‖2H1 + cλ
− 1

2
i+1(J3 + J4), (4.11)

where J3 and J4 are given by (4.5) and (4.6) respectively. By the same method as
given in the proof of Lemma 4.1, both J3 and J4 are finite.

On the other hand, it is obvious that ‖(I − Pi)(ξkv0)‖2H1 ≤ c‖v0‖2H1 for all
v0 ∈ ∪s≤τD(s− t, θ−tω). Hence, by (2.6) and (1.4),

e−δt+2
∫ 0
−t

z(θσω)dσ sup
s≤τ

‖(I − Pi)ξkv0‖2H1

≤ce−
1
3 δt sup

s≤τ
‖D(s− t, θ−tω)‖2H1 → 0 as t → +∞.

Therefore, (4.11) implies the needed convergence.

5. Backward compact attractors and asymptotic au-
tonomy

5.1. Abstract results
Let Φ be a general NRDS on a Banach space X over (Ω,F , P, θ), as defined in
Theorem 2.1. Let D = {D(τ, ω)} be a universe of some bi-parametric sets. We
assume that D is backward-closed, which means D̃ ∈ D provided D ∈ D and
D̃(τ, ω) = ∪s≤τD(s, ω). Also, D is inclusion-closed (see [32]).

Definition 5.1. A bi-parametric set A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} is said to be a
D-backward compact random attractor for a NRDS Φ if

(i) A ∈ D and A is a random set,
(ii) A is backward compact, that is, both A(τ, ω) and ∪s≤τA(s, ω) are compact,
(iii) A is invariant, that is, Φ(t, τ, ω)A(τ, ω) = A(t+ τ, θtω) for t ≥ 0,
(iv) A is attracting under the Hausdorff semi-distance, that is, for each D ∈ D,

lim
t→+∞

distX(Φ(t, τ − t, θ−tω)D(τ − t, θ−tω), A(τ, ω)) = 0. (5.1)

The backward compact random attractor has been studied in [27,35,36]. In this
article, we use it as one of the criteria for asymptotic autonomy of pullback random
attractors.
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Definition 5.2. A non-autonomous cocycle Φ on X is said to be D-backward
asymptotically compact if for each (τ, ω,D) ∈ R× Ω×D, the sequence

{Φ(tn, sn − tn, θ−tnω)xn}∞n=1 has a convergent subsequence in X,

whenever sn ≤ τ , tn → +∞ and xn ∈ D(sn − tn, θ−tnω).

We then introduce a concept of a backward limiting set : given a bi-parametric
set D,

Wb(τ, ω,D) :=
⋂
T>0

⋃
t≥T

⋃
s≤τ

Φ(t, s− t, θ−tω)D(s− t, θ−tω), ∀ (τ, ω) ∈ R× Ω, (5.2)

which generalizes the usual omega-limit set W(τ, ω,D) (see [32]).
The following results are crucial for finding a backward compact attractor.

Proposition 5.1. Let D be a bi-parametric set, τ ∈ R and ω ∈ Ω. Then,
(i) y ∈ Wb(τ, ω,D) if and only if there are τn ≤ τ , tn ↑ +∞ and xn ∈ D(τn −

tn, θ−tnω) such that

Φ(tn, τn − tn, θ−tnω)xn → y in X. (5.3)

(ii) Wb(τ, ω,D) is increasing in τ , that is, Wb(τ1, ω,D) ⊂ Wb(τ2, ω,D) if τ1 ≤ τ2.
(iii) The backward limit-set contains the backward union of the usual limit-set,

that is, ⋃
s≤τ

W(s, ω,D) ⊂ Wb(τ, ω,D) =
⋃
s≤τ

Wb(s, ω,D). (5.4)

(iv) If Φ is D-backward asymptotically compact in X, then, both limit-sets
W(τ, ω,D) and Wb(τ, ω,D) are backward compact for each D ∈ D.

Proof.
The assertion (i) is similar to the deterministic case (see e.g. [26]), while the

assertion (ii) follows from the definition (5.2) immediately.
The assertion (iii) follows from the following inclusion:⋃

s≤τ

W(s, ω,D) =
⋃
s≤τ

⋂
T>0

⋃
t≥T

Φ(t, s− t, θ−tω)D(s− t, θ−tω)

⊂
⋂
T>0

⋃
t≥T

⋃
s≤τ

Φ(t, s− t, θ−tω)D(s− t, θ−tω) = Wb(τ, ω,D).

Since Wb(τ, ω,D) is increasing in τ , it follows that
⋃

s≤τ Wb(s, ω,D) = Wb(τ, ω,D).
We prove (iv). Assume that Φ is backward asymptotically compact, then it is

asymptotically compact. It is well-known that W(τ, ω,D) is nonempty. Hence, by
(iii), Wb(τ, ω,D) is nonempty.

We take any sequence {yn}∞n=1 from Wb(τ, ω,D). Then, by (i), there are τn ≤ τ ,
tn ↑ +∞ and xn ∈ D(τn − tn, θ−tnω) such that

‖Φ(tn, τn − tn, θ−tnω)xn − yn‖ ≤ 1

n
.
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By the backward asymptotical compactness of Φ, passing to a subsequence, we have

Φ(tnk
, τnk

− tnk
, θ−tnk

ω)xnk
→ y0, in X.

By (i), y0 ∈ Wb(τ, ω,D). Also, we have ynk
→ y0 in X, and so Wb(τ, ω,D) is

compact. Hence, it follows from (5.4) that both limit-sets W and Wb are backward
compact.

Now, we give a unified result for asymptotic autonomy and backward compact-
ness of a non-autonomous random attractor. Let D∞ = {D(ω)} be an inclusion-
closed universe of some single-parametric sets.

Theorem 5.1. Suppose that a NRDS Φ satisfies the following two conditions:
(a) Φ has a closed random absorbing set K ∈ D;
(b) Φ is D-backward asymptotically compact.

Then, Φ has a unique backward compact random attractor A ∈ D.
Let Φ∞ be an RDS with a D∞-random attractor A∞, and further assume that
(c) Φ backward converges to Φ∞ in the following sense:

‖Φ(t, τ, ω)xτ − Φ∞(t, ω)x0‖X → 0 as τ → −∞, ∀t ≥ 0, ω ∈ Ω0, (5.5)

whenever ‖xτ − x0‖X → 0 as τ → −∞, where Ω0 is a θ-invariant full-measure set;
(d) Kτ0 ∈ D∞ for some τ0 < 0, where Kτ0(ω) :=

⋃
τ≤τ0

K(τ, ω).
Then, A backward converges to A∞:

lim
τ→−∞

distX(A(τ, ω),A∞(ω)) = 0, P -a.s. ω ∈ Ω. (5.6)

Moreover, for any sequence τn → −∞, there is a subsequence {τnk
} such that P -a.s.

lim
k→∞

dist(A(τnk
, θτnk

ω),A∞(θτnk
ω)) = 0. (5.7)

Proof. Existence. Note that backward asymptotic compactness obviously implies
asymptotic compactness. By [32, Theorem 2.23], both conditions (a) and (b) imply
that Φ has a unique D-random attractor A ∈ D given by the omega-limit set of K,
that is, A(τ, ω) = W(τ, ω,K). Since Φ is D-backward asymptotically compact, by
(iv) of Proposition 5.1, we know A is backward compact.

Asymptotic autonomy. In order to show the asymptotic autonomy as given in
(5.6), it suffices to prove P (Ω1) = 1, where

Ω1 = {ω ∈ Ω : lim
τ→−∞

distX(A(τ, ω),A∞(ω)) = 0}.

Suppose that P (Ω1) < 1, then P (Ω \ Ω1) > 0. Let Ω2 = (Ω \ Ω1) ∩ Ω0, where Ω0

is the θ-invariant full-measure set given in (5.5). Then, P (Ω2) > 0, and θsΩ2 ⊂ Ω0

for all s ∈ R.
Let ω ∈ Ω2 be fixed. Since ω 6∈ Ω1, there are η > 0 and 0 > τn ↓ −∞ such that

distX(A(τn, ω),A∞(ω)) ≥ 3η, ∀n ∈ N.

By the compactness of A(τn, ω), for each n ∈ N, we can take a xn ∈ A(τn, ω) such
that

dX(xn,A∞(ω)) = distX(A(τn, ω),A∞(ω)) ≥ 3η. (5.8)
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We then prove Aτ0 ∈ D∞, where Aτ0(ω) :=
⋃

τ≤τ0
A(τ, ω). Indeed, by invari-

ance of A ∈ D and absorption of K, we know, for large t > 0,

A(τ, ω) = Φ(t, τ − t, θ−t)A(τ − t, θ−t) ⊂ K(τ, ω),

which implies that

Aτ0(ω) :=
⋃

τ≤τ0

A(τ, ω) ⊂
⋃

τ≤τ0

K(τ, ω) = Kτ0(ω).

By (d) and by the inclusion-closedness of D∞, we have Aτ0 ∈ D∞.
Since Aτ0 ∈ D∞ can be attracted by the attractor A∞, there is an n0 ∈ N such

that τn0 ≤ τ0 ≤ 0 and

distX(Φ∞(|τn0 |, θτn0
ω)Aτ0(θτn0

ω), A∞(ω)) ≤ η.

Furthermore, by the continuity of Φ∞ : X → X, we have

distX(Φ∞(|τn0 |, θτn0
ω)Aτ0(θτn0

ω), A∞(ω)) ≤ η. (5.9)

On the other hand, by the invariance of A, we know

A(τn, ω) = Φ(|τn0 |, τn − |τn0 |, θτn0
ω)A(τn − |τn0 |, θτn0

ω).

Hence, we can rewrite xn ∈ A(τn, ω) as

xn = Φ(|τn0 |, τn − |τn0 |, θτn0
ω)yn, for some yn ∈ A(τn − |τn0 |, θτn0

ω).

If n ≥ n0, then τn − |τn0 | ≤ τn ≤ τn0 ≤ τ0, and thus

{yn : n ≥ n0} ⊂
⋃

τ≤τ0

A(τ, θτn0
ω) = Aτ0(θτn0

ω).

Because we have proved that A is backward compact, we know Aτ0(θτn0
ω) is a

pre-compact set, which further implies that {yn} has a convergent subsequence:

ynk
→ y0 as k → ∞ for some y0 ∈ Aτ0(θτn0

ω).

By the θ-invariance of Ω0, we know θτn0
ω ∈ θτn0

Ω2 ⊂ θτn0
Ω0 ⊂ Ω0. By (c), we

can apply the backward convergence (5.5) at the sample θτn0
ω for t = |τn0 | and

τ = τnk
− |τn0

| → −∞. The result is

‖xnk
− Φ∞(|τn0

|, θτn0
ω)y0‖

=‖Φ(|τn0 |, τnk
− |τn0 |, θτn0

ω)ynk
− Φ∞(|τn0 |, θτn0

ω)y0‖ ≤ η,

if k is large enough. This, together with (5.9), implies that

dX(xnk
,A∞(ω))

≤‖xnk
− Φ∞(|τn0 |, θτn0

ω)y0‖+ dX(Φ∞(|τn0 |, θτn0
ω)y0,A∞(ω))

≤η + distX(Φ∞(|τn0
|, θτn0

ω)Aτ0(θτn0
ω),A∞(ω)) ≤ 2η,

if k is large enough. We obtain a contradiction with (5.8), and finish the proof of
(5.6).
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Finally, we show the asymptotic convergence (5.7). Given τn → −∞, by (5.6),
we know

dist(A(τn, ω),A∞(ω)) → 0 as n → ∞.

By the Lebesgue theorem (because P (Ω) is finite), any almost everywhere conver-
gent sequence of measurable functions must be convergent in probability. Hence,

lim
n→∞

P{ω : distX(A(τn, ω),A∞(ω)) ≥ δ} = 0, ∀δ > 0.

Note that each θτn is measure preserving, it follows the following convergence in
probability:

P{ω : distX(A(τn, θτnω),A∞(θτnω)) ≥ δ}
=Pθτn{ω : distX(A(τn, θτnω),A∞(θτnω)) ≥ δ}
=P{ω : distX(A(τn, ω),A∞(ω)) ≥ δ} → 0, as n → ∞.

Therefore, by the Riesz theorem, the above convergence in probability implies that
there is a subsequence satisfying (5.7) as required.

5.2. Application results for the BBM equation
Let D∞ be the universe of all tempered sets, where a parametric set P = {P(ω)}
is tempered if

lim
t→+∞

e−
δ
3 t‖P(θ−tω)‖2H1 = 0, with δ := min(

ν

2
,
νλ0

4
), ∀ ω ∈ Ω. (5.10)

Let Φ∞ : R+ × Ω × H1
0 (Q) → H1

0 (Q) be the RDS generated by the autonomous
problem (2.19):

Φ∞(t, ω)v̂0 = v̂(t, ω, v̂0), (t, ω) ∈ R+ × Ω. (5.11)

Then, by [25], Φ∞ has a D∞-random attractor A∞ = {A∞(ω)}.

Theorem 5.2. Let the hypotheses F, G be satisfied. Then, the non-autonomous
cocycle Φ, generated from the BBM equation (2.8), has a backward compact random
attractor A in H1

0 (Q) such that A is a backward tempered set. This attractor
backward converges to A∞, i.e.

lim
τ→−∞

distH1(Q)(A(τ, ω),A∞(ω)) = 0, ω ∈ Ω. (5.12)

For any sequence τn → −∞, there is a subsequence {τnk
} such that P -a.s.

lim
k→∞

distH1(Q)(A(τnk
, θτnk

ω),A∞(θτnk
ω)) = 0. (5.13)

Proof. By Propostion 3.1, Φ has an increasing random absorbing set K such
that K is backward tempered, i.e. K ∈ D. We then show that Φ is backward
asymptotically compact in H1

0 (Q).
For this end, we let (τ, ω,D) ∈ R×Ω×D be fixed, and take arbitrary sequences

sn ≤ τ , tn → +∞ and v0,n ∈ D(sn − tn, θ−tnω). We need to show the pre-
compactness of the following sequence:

vn = Φ(tn, sn − tn, θ−tnω)v0,n = v(sn, sn − tn, θ−snω, v0,n).
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Let BN = {vn : n ≥ N}, N = 1, 2, · · · . It suffices to show the Kuratowski measure
κH1(Q)(BN ) → 0 as N → +∞, where κ(B) means the minimum of diameters d
such that B has a finite d/2-net.

For each η > 0, by Lemma 4.1, there are N1 ∈ N and K ≥ 1 such that

‖vn‖H1(Qc
K) ≤ η, for all n ≥ N1, (5.14)

where we recall Qc
K = Q\QK and QK = {x ∈ Q : |x3| ≤ K}. By Lemma 4.2, there

are i ∈ N and N2 ≥ N1 such that

‖(I − Pi)(ξKvn)‖H1(Q2K) ≤ η, for all n ≥ N2. (5.15)

By Lemma 3.1, the set BN2
is bounded in H1

0 (Q). Then, {ξKvn : n ≥ N2} is
bounded in H1

0 (Q2K), hence, Pi{ξKvn : n ≥ N2} is pre-compact in H1
0 (Q2k) due

to the finitely dimensional range of Pi. In a conclusion,

κH1(Q2K)(Pi{ξKvn : n ≥ N2}) = 0,

which along with (5.15) implies that

κH1(Q2K){ξKvn : n ≥ N2}
≤κH1(Q2K)(Pi{ξKvn : n ≥ N2}) + κH1(Q2K)((I − Pi){ξKvn : n ≥ N2})
≤2η.

Since ξKv = v on QK , we have

κH1(QK)(BN2
) = κH1(QK){ξKvn : n ≥ N2}
≤ κH1(Q2K){ξKvn : n ≥ N2} ≤ 2η. (5.16)

Since BN2
⊂ BN1

, we deduce from (5.14) and (5.16) that

κH1(Q)(BN2
) ≤ κH1(QK)(BN2

) + κH1(Qc
K)(BN1

) ≤ 4η.

So far, we have verified both conditions (a) and (b) in Theorem 5.1. Therefore,
Φ possesses a backward compact random attractor A ∈ D, where the measurability
of A follows from the measurability of the NRDS and the absorbing set.

On the other hand, by Proposition 2.2, the NRDS Φ backward converges to the
RDS Φ∞, that is, the condition (c) in Theorem 5.1 holds true.

We need to verify the condition (d) in Theorem 5.1. In fact, we can prove
K−1 ∈ D∞, where K−1(ω) = ∪τ≤−1K(τ, ω). Indeed, since K(τ, ω) is increasing in
τ , it follows K−1(ω) = K(−1, ω). Hence, by the definition (3.6) of K, we have

e−
δ
3 t‖K−1(θ−tω)‖2H1 ≤ e−

δ
3 t + ce−

δ
3 tR(−1, θ−tω).

By (2.6) and Lemma 2.1 (g is backward tempered), we have

e−
δ
3 tR(−1, θ−tω)

= e−
δ
3 t sup

τ≤−1

∫ 0

−∞
eδr+2|z(θr−tω)|+2

∫ 0
r
z(θσ−tω)dσ‖g(r + τ)‖2dr

= e−
δ
3 t sup

τ≤−1

∫ τ

−∞
eδ(r−τ)+2|z(θr−τ−tω)|+2

∫ −t
r−τ−t

z(θσω)dσ‖g(r)‖2dr

≤ e(
1
4−

1
3 )δt sup

τ≤−1

∫ τ

−∞
e

3
4 δ(r−τ)‖g(r)‖2dr → 0 as t → +∞.

Hence, K−1 ∈ D∞. So, the needed convergence (5.12)-(5.13) follows from Theorem
5.1 immediately.
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