
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 9, Number 2, April 2019, 655–670 DOI:10.11948/2156-907X.20180137

A WEAK GALERKIN METHOD FOR SECOND
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Abstract The second order elliptic equation, which is also know as the
diffusion-convection equation, is of great interest in many branches of physics
and industry. In this paper, we use the weak Galerkin finite element method
to study the general second order elliptic equation. A weak Galerkin finite
element method is proposed and analyzed. This scheme features piecewise
polynomials of degree k ≥ 1 on each element and piecewise polynomials of de-
gree k− 1 ≥ 0 on each edge or face of the element. Error estimates of optimal
order of convergence rate are established in both discrete H1 and standard
L2 norm. The paper also presents some numerical experiments to verify the
efficiency of the method.
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1. Introduction

In the past few years, many researchers have investigated Galerkin methods utiliz-
ing fully discontinuous approximating spaces. Weak Galerkin (WG) finite element
method is one of these methods. Wang and Ye introduced and analyzed the weak
Galerkin method [19] for the second-order elliptic problems in 2013. Since then
the weak Galerkin method has been widely applied to different equations, such as
the Stokes equations [21], Helmholtz equations [11], Maxwell equations [14] and
biharmonic equations [12, 13, 15, 22], etc. Weak Galerkin refers to finite element
techniques for solving partial differential equations where the differential operators
are approximated by weak forms as distributions. The main idea is to use weak
functions and their weak derivatives. The continuity is regained by the stabilizer
term.

We consider the second-order elliptic equations with Dirichlet boundary condi-
tion, which seeks an unknown function u = u(x) satisfying,

−∇ · (a∇u) + b · ∇u+ cu =f, in Ω, (1.1)

u =g, on ∂Ω, (1.2)
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where Ω is a polygonal or polyhedral domain in Rd (d = 2, 3), a = (aij(x))d×d ∈
[L∞(Ω)]d

2

is a symmetric matrix-valued function, b = (bi(x))d×1 is a vector-valued
function, and c = c(x) is a scalar function on Ω. Assume that the matrix a satisfies
the following property: there exists a constant α > 0 such that

αξT ξ ≤ ξTaξ, ∀ξ ∈ Rd.

We concentrate on two-dimensional problems only (i.e., d = 2). An extension to
higher-dimensional problems is straightforward.

The general second order elliptic equation, which is also known as the convection-
diffusion equation, is a fundamental equation that has been widely used in many
areas of science and engineering [3,6,18]. In general, the diffusion term is dominated
by the convection term, which presents a challenging numerical computational tasks.

The general second order elliptic equation (1.1) has been studied using various
finite element methods. The standard Galerkin methods [4,7,9] and various interior
penalty type discontinuous methods [1, 2, 5, 16, 17] are few examples. The elliptic
equation (1.1) has also been studied in [19] using the weak Galerkin finite element
method. However, the formulation is limited to classical finite element partitions of
triangles and tetrahedral and cannot be applied to a general mesh. In [10], a new
weak Galerkin method has been developed to overcome this but with a as the only
non-zero coefficient.

In this paper, we are extending the results of [10] to include the coefficients b
and c. We study the elliptic equation (1.1) with all coefficients a,b, and c being
non-zero. We use weak functions of the form v = {v0, vb}, where the function v
takes the value v0 inside each element and takes the value vb on the boundary of each
element. Another objective of this paper is to study the reliability, flexibility and
the accuracy of the suggested weak Galerkin method through numerical tests for
both homogeneous and non-homogeneous boundary conditions. The corresponding
WG solution converges to the exact solution of (1.1) with rate of O(hk) in discrete
H1 norm and O(hk+1) in standard L2 norm, provided that the exact solution of the
original problem is sufficiently smooth. In the numerical analysis, both v0 and vb are
approximated by polynomials in P1(T ) and P0(e) respectively, where T represents
an element and e represents an edge of T .

This paper is organized as follows. In section 2, we describe the WG schemes
and review the definition of the weak gradient operator. In section 3, we present
some technical estimates that will be used later. Section 4 is dedicated to the
error analysis: in 4.1 we derive the error equation, and in 4.2 we present coercivity,
existence and uniqueness, and the optimal order error estimates in both discrete
H1 and standard L2 norms. Finally in section 5, we provide some numerical results
that confirm the theoretical results.

2. Weak Galerkin Finite Element Schemes

Let Th be a shape regular (see [8,20]) triangulation of Ω with elements T and edges
e. Let hT be the diameter of T and h = maxT∈ThhT .

Our weak formulation will use the following vector spaces of functions on Ω:

Vh ={v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk−1(e), e ∈ ∂T, T ∈ Th},
V 0
h ={v ∈ Vh : vb|e = 0 for e ∈ ∂Ω}.
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The notation e ∈ ∂Ω means that e is an edge on the boundary of Ω. Also note that
any function v ∈ Vh has a single value vb on each edge e.

The projection operators Q0 and Qb, defined piecewise on the interior and
boundary of each of the elements of Th, are the L2-projections onto Pk(T ) and
onto Pk(e), respectively. Let Rh be the projection operator onto [Pk−1(T )]2 whose
components are each the L2-projection onto Pk−1(T ).

The discrete weak gradient operator, denoted by ∇wv is defined as the unique
polynomial ∇wv|T ∈ [Pk−1(T )]2 satisfying,

(∇wv,q)T =− (v0,∇ · q)T + 〈vb,q · n〉∂T , ∀q ∈ [Pk−1(T )]2. (2.1)

Now we introduce three new forms on Vh as follows. For all v, w ∈ Vh,

a(v, w) =
∑
T∈Th

(a∇wv,∇ww)T −
∑
T∈Th

(bv,∇ww)T +
∑
T∈Th

(cv, w)T ,

s(v, w) =
∑
T∈Th

h−1T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

as(v, w) =a(v, w) + s(v, w). (2.2)

Weak Galerkin Algorithm 1. The weak Galerkin formulation for our boundary
value problem can now be given as: Find uh ∈ Vh such that ub = Qbg for e ∈ ∂Ω,
and

as(uh, v) = (f, v), ∀v ∈ V 0
h . (2.3)

The |||v||| is defined as,

|||v|||2 =
∑
T∈Th

(a∇wv,∇wv)T +
∑
T∈Th

(cv, v)T +
∑
T∈Th

h−1T 〈Qbv0 − vb, Qbv0 − vb〉∂T .

The fact that |||.||| defines a norm in V 0
h can be easily verified.

3. Some Estimates

In this section we are going to present some technical results that are used in later
sections. In what follows C denotes a generic constant independent of the mesh size
h.

Let T be an element with e as an edge. For any function v ∈ H1(T ), the
following trace inequality holds true, [20],

‖v‖2e ≤ C(h−1T ‖v‖
2
T + hT ‖∇v‖2T ). (3.1)

Another useful result is a commutative property for projection operators. The
proof of lemma 3.1 can be found in [10].

Lemma 3.1. Let Qh and Rh be the L2 projection operators defined in previous
section. Then, on each element T ∈ Th we have the following commutative property,

∇wQhv = Rh∇v, ∀v ∈ H1(T ). (3.2)



658 N. Malluwawadu & S. Hussain

Lemma 3.2. Let v ∈ Vh. Then for any w ∈ Hk+1(Ω), we have∑
T∈Th

(∇v0, a∇w)T =
∑
T∈Th

(∇wv, a∇wQhw)T +
∑
T∈Th

〈v0 − vb, aRh∇w · n〉∂T . (3.3)

Proof. Using (3.2), the definition of the discrete weak gradient, integration by
parts and properties of projections gives rise to,

(∇wv, a∇wQhw)T =(∇wv, aRh∇w)T

=− (v0,∇ · (aRh∇w))T + 〈vb, aRh∇w · n〉∂T
=(∇v0, aRh∇w)T − 〈v0 − vb, aRh∇w · n〉∂T
=(∇v0, a∇w)T − 〈v0 − vb, aRh∇w · n〉∂T ,

which gives us∑
T∈Th

(∇v0, a∇w)T =
∑
T∈Th

(∇wv, a∇wQhw)T +
∑
T∈Th

〈v0 − vb, aRh∇w · n〉∂T .

This concludes the proof.

Lemma 3.3. Let v ∈ Vh. Then for any w ∈ Hk+1(Ω), we have∑
T∈Th

(∇v0,bw)T =
∑
T∈Th

(∇wv,bQhw)T +
∑
T∈Th

〈v0 − vb,bQhw · n〉∂T . (3.4)

Proof. From the definition of the discrete weak gradient, integration by parts and
properties of projections, we get

(∇wv,bQhw)T =− (v0,∇ · bQhw)T + 〈vb,bQhw · n〉∂T
=(∇v0,bQhw)T − 〈v0 − vb,bQhw · n〉∂T
=(∇v0,bw)T − 〈v0 − vb,bQhw · n〉∂T ,

which gives rise to∑
T∈Th

(∇v0,bw)T =
∑
T∈Th

(∇wv,bQhw)T +
∑
T∈Th

〈v0 − vb,bQhw · n〉∂T .

This concludes the proof.
The proofs for lemma 3.4 and 3.5 can be found in [10].

Lemma 3.4. Let Th be a finite element partition of Ω that is shape regular. For
all v ∈ Hk+1(Ω), we have(∑

T∈Th

‖Q0v − v‖2T +
∑
T∈Th

h2T ‖∇(Q0v − v)‖2T

) 1
2

≤ Chk+1‖v‖k+1, (3.5)

(∑
T∈Th

‖a(Rh∇v −∇v)‖2T

) 1
2

≤ Chk‖v‖k+1. (3.6)

Lemma 3.5. For all v ∈ Vh, we have(∑
T∈Th

h−1T ‖v0 − vb‖
2
∂T

) 1
2

≤

(∑
T∈Th

{‖∇v0‖2T + h−1T ‖Qbv0 − vb‖2∂T }

) 1
2

. (3.7)
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We introduce a discrete H1 semi-norm on Vh as follows:

‖v‖1,h =

(∑
T∈Th

(‖∇v0‖2T + h−1T ‖Qbv0 − vb‖2∂T )

) 1
2

. (3.8)

The following lemma indicates that ‖ · ‖1,h is equivalent to ||| · |||

Lemma 3.6. There exists two positive constants c1 and c2 such that for any v =
{v0, vb} ∈ Vh, we have

C1‖v‖1,h ≤ |||v||| ≤ C2‖v‖1,h. (3.9)

Proof. Let v = {v0, vb} ∈ Vh. From the definition of weak gradient and the
properties of projections,

(∇wv,q)T =− (v0,∇ · q)T + 〈vb,q · n〉∂T
=(∇v0,q)T − 〈v0,q · n〉∂T + 〈vb,q · n〉∂T
=(∇v0,q)T − 〈Qbv0,q · n〉∂T + 〈vb,q · n〉∂T
=(∇v0,q)T − 〈Qbv0 − vb,q · n〉∂T . (3.10)

Let q = ∇wv in (3.10), then

(∇wv,∇wv)T = (∇v0,∇wv)T − 〈Qbv0 − vb,∇wv · n〉∂T .

From the trace inequality (3.1) and the inverse inequality, we get

‖∇wv‖2T ≤‖∇v0‖T ‖∇wv‖T + ‖Qbv0 − vb‖∂T ‖∇wv‖∂T
≤‖∇v0‖T ‖∇wv‖T + ch−

1
2 ‖Qbv0 − vb‖∂T ‖∇wv‖T .

Therefore,

‖∇wv‖T ≤ C
(
‖∇v0‖2T + h−1T ‖Qbv0 − vb‖2∂T

) 1
2 ,

which verifies the upper bound for the |||v|||.
As for the lower bound, let q = ∇v0 in (3.10) to obtain,

(∇wv,∇v0)T = (∇v0,∇v0)T + 〈Qbv0 − vb,∇v0 · n〉∂T .

From the trace inequality (3.1) and the inverse inequality,

‖∇v0‖2T ≤ ‖∇wv‖T ‖∇v0‖T + ch−
1
2 ‖Qbv0 − vb‖∂T ‖∇v0‖T .

Therefore,

‖∇v0‖T ≤ C
(
‖∇wv‖2T + ch−1‖Qbv0 − vb‖2∂T

) 1
2 ,

which verifies the lower bound for |||v|||. Together they complete the proof.

Lemma 3.7. Assume that Th is shape regular. Then for any w ∈ Hk+1(Ω) and
v = {v0, vb} ∈ Vh, we have∣∣∣∣∣ ∑

T∈Th

h−1T 〈Qb(Q0w)−Qbw,Qbv0 − vb〉∂T

∣∣∣∣∣ ≤ Chk‖w‖k+1|||v|||, (3.11)
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T∈Th

〈a(Rh∇w −∇w) · n, v0 − vb〉∂T

∣∣∣∣∣ ≤ Chk‖w‖k+1|||v|||, (3.12)∣∣∣∣∣ ∑
T∈Th

〈b(Qhw − w) · n, v0 − vb〉∂T

∣∣∣∣∣ ≤ Chk‖w‖k+1|||v|||. (3.13)

Proof. The proof for the first inequality can be found in [10]. For the second
inequality, using (3.6), (3.7), and (3.9), we get∣∣∣∣∣ ∑

T∈Th

〈a(Rh∇w −∇w) · n, v0 − vb〉∂T

∣∣∣∣∣
≤C

(∑
T∈Th

hT ‖a(Rh∇w −∇w)‖2∂T

) 1
2
(∑

T∈Th

h−1T ‖v0 − vb‖
2
∂T

) 1
2

≤Chk‖w‖k+1

(∑
T∈Th

(‖∇v0‖2T + h−1T ‖Qbv0 − vb‖2∂T )

) 1
2

≤Chk‖w‖k+1|||v|||.

Using (3.5), (3.7), and (3.9), we get∣∣∣∣∣ ∑
T∈Th

〈b(Qhw − w) · n, v0 − vb〉∂T

∣∣∣∣∣
≤C

(∑
T∈Th

hT ‖b(Qhw − w)‖2∂T

) 1
2
(∑

T∈Th

h−1T ‖v0 − vb‖
2
∂T

) 1
2

≤Chk‖w‖k+1

(∑
T∈Th

(‖∇v0‖2T + h−1T ‖Qbv0 − vb‖2∂T )

) 1
2

≤Chk‖w‖k+1|||v|||.

This concludes the lemma.

4. Error Analysis

4.1. Error Equation

Let uh = {u0, ub} ∈ Vh be the weak Galerkin finite element solution arising from
2.3 and assume that the exact solution of 1.1 is given by u. The L2 projection of u
on to the finite element space Vh can be given as

Qhu = {Q0u,Qbu}.

Let

eh = {e0, eb} = {Q0u− u0, Qbu− ub}

be the error between the weak Galerkin finite element solution and L2 projection
of the exact solution.



A weak Galerkin method for second order... 661

Theorem 4.1. Let eh be the error of the weak Galerkin finite element solution
arising from (2.3). Then for any v ∈ V 0

h , we have

as(eh, v) =
∑
T∈Th

h−1T 〈Qb(Q0u)−Qbu,Qbv0 − vb〉∂T −
∑
T∈Th

(a(Rh∇u−∇u) · n,

v0 − vb)∂T +
∑
T∈Th

(b(Qhu− u) · n, v0 − vb)∂T .

Proof. Testing (1.1) by v0 and using integration by parts, we get∑
T∈Th

(a∇u,∇v0)T−
∑
T∈Th

〈a∇u · n, v0 − vb〉∂T −
∑
T∈Th

(bu,∇v0)T

+
∑
T∈Th

〈bu · n, v0 − vb〉∂T +
∑
T∈Th

(cu, v0)T = (f, v0), (4.1)

where we have used the fact that
∑

T∈Th(a∇u ·n, vb)∂T =
∑

T∈Th(bu ·n, vb)∂T = 0.
Using (3.3), (3.4) and properties of projections, we get

a(Qhu, v) =(f, v0)−
∑
T∈Th

(a(Rh∇u−∇u) · n, v0 − vb)∂T

+
∑
T∈Th

(b(Qhu− u) · n, v0 − vb)∂T .

Adding the term s(Qhu, v) to both sides of the above equation gives rise to

as(Qhu, v) =
∑
T∈Th

h−1T 〈Qb(Q0u)−Qbu,Qbv0 − vb〉∂T −
∑
T∈Th

(a(Rh∇u−∇u) · n,

v0 − vb)∂T +
∑
T∈Th

(b(Qhu− u) · n, v0 − vb)∂T + (f, v0). (4.2)

Subtracting (2.3) by (4.2) yields the following error equation,

as(eh, v) =
∑
T∈Th

h−1T 〈Qb(Q0u)−Qbu,Qbv0 − vb〉∂T −
∑
T∈Th

(a(Rh∇u−∇u) · n,

v0 − vb)∂T +
∑
T∈Th

(b(Qhu− u) · n, v0 − vb)∂T , ∀v ∈ Vh.

This concludes the proof.

4.2. Error Estimates

Define the dual problem:

−∇ · (a∇w) + b · ∇w + cw =e0, in Ω, (4.3)

w =0, on ∂Ω,

with the regularity assumption ‖w‖2 ≤ C‖e0‖.

Theorem 4.2. Let uh ∈ Vh be the weak Galerkin finite element solution of the
problem (1.1) arising from (2.3). Assume the exact solution u ∈ Hk+1(Ω). In
addition, assume that the dual problem (4.3) has the usual H2-regularity. Then,
there exists a constant C such that

‖e0‖ ≤ Ch|||e0|||. (4.4)
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Proof. Testing (4.3) with e0, we get

‖e0‖2 = (−∇ · (a∇w), e0) + (b · ∇w, e0) + (cw, e0).

From integration by parts, we get

‖e0‖2 =
∑
T∈Th

(a∇w,∇e0)T −
∑
T∈Th

〈a∇w · n, e0〉∂T −
∑
T∈Th

(bw,∇e0)T

+
∑
T∈Th

〈bw · n, e0〉∂T +
∑
T∈Th

(cw, e0)T .

Since
∑

T∈Th〈a∇w · n, eb〉∂T =
∑

T∈Th〈bw · n, eb〉∂T = 0, we can rewrite the above
expression as,

‖e0‖2 =
∑
T∈Th

(a∇w,∇e0)T −
∑
T∈Th

〈a∇w · n, e0 − eb〉∂T −
∑
T∈Th

(bw,∇e0)T

+
∑
T∈Th

〈bw · n, e0 − eb〉∂T +
∑
T∈Th

(cw, e0)T . (4.5)

Using (3.3) and (3.4) together with equation (4.5) gives us,

‖e0‖2 =a(Qhw, eh) +
∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T

−
∑
T∈Th

〈b(Qhw − w) · n, e0 − eb〉∂T ,

adding and subtracting the term s(Qhw, eh), we get

‖e0‖2 =as(Qhw, eh) +
∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T

−
∑
T∈Th

〈b(Qhw − w) · n, e0 − eb〉∂T

−
∑
T∈Th

h−1T 〈Qb(Q0w)−Qbw,Qbe0 − eb〉∂T ,

using theorem 4.1 together with (3.11), (3.12) and (3.13), we get

‖e0‖2 ≤ Ch‖w‖2|||e0|||.

This together with the regularity assumption ‖w‖2 ≤ C‖e0‖, provides the required
result.

Theorem 4.3 (Coercivity). Let eh = {e0, eb} = {Q0u− u0, Qbu− ub}. Then,

|||eh|||2 ≤ as(eh, eh).

Proof. Using the definition of the |||eh||| and (4.2) in (2.2), we get

as(eh, eh) =(a∇weh,∇weh) + (beh,∇weh) + (ceh, eh) + s(eh, eh)

=|||e0|||2 + (beh,∇weh)
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≥|||eh|||2 − C‖eh‖‖∇weh‖

≥(C1 − C2h)|||eh|||2

≥C|||eh|||2,

when h is sufficiently small.
Using the coercivity, now we can prove that scheme (2.3) has a unique solution.

Theorem 4.4. The weak Galerkin finite element scheme (2.3) has a unique solu-
tion.

Proof. Suppose that u
(1)
h and u

(2)
h are two solutions of (2.3). Then eh = u

(1)
h −u

(2)
h

would satisfy the equation

as(eh, v) = 0, ∀v ∈ Vh.

Note that eh ∈ V 0
h . Letting v = eh, we get

as(eh, eh) = 0, ∀v ∈ Vh.

From theorem 4.3, we get

|||eh||| ≤ as(eh, eh) = 0.

The fact that ||| · ||| is a norm in V 0
h implies eh = 0, hence u

(1)
h = u

(2)
h . This concludes

the proof.

Theorem 4.5 (H1 error). Let uh ∈ Vh be the weak Galerkin finite element solution
of the problem (1.1) arising from (2.3). Assume the exact solution u ∈ Hk+1(Ω).
Then, there exists a constant C such that

|||uh −Qhu||| ≤ Chk‖u‖k+1.

Proof. From theorem 4.3, theorem 4.1, and equations (3.11), (3.12) and (3.13),
we get

|||eh|||2 ≤as(eh, eh)

=
∑
T∈Th

〈b(Qhu− u) · n, e0 − eb〉∂T −
∑
T∈Th

〈a(Rh∇u−∇u) · n, e0 − eb〉∂T

−
∑
T∈Th

h−1T 〈Qb(Q0u)−Qbu,Qbe0 − eb〉∂T

≤Chk‖u‖k+1|||eh|||,

which concludes the proof.

Theorem 4.6 (L2 error). Let uh ∈ Vh be the weak Galerkin finite element solution
of the problem (1.1) arising from (2.3). Assume the exact solution u ∈ Hk+1(Ω).
In addition, assume that the dual problem (4.3) has the usual H2-regularity. Then,
there exists a constant C such that

‖u− u0‖ ≤ Chk+1‖u‖k+1.

Proof. From theorems 4.2, and 4.5, we get

‖e0‖ ≤ Ch|||e0||| ≤ Chk+1‖u‖k+1,

which concludes the proof.
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5. Numerical Experiments

In this section, we provide some numerical examples using scheme (2.3) to verify
the results in theorems 4.5, and 4.6.

For simplicity, we define our domain as a rectangle Ω = [0, 1]× [0, 1]. Then we
construct the triangular mesh by uniformly partitioning the square domain Ω =
[0, 1] × [0, 1] into N × N sub-squares, and then dividing each square element into
two triangles by using the diagonal with a positive slope. Also, we consider a =
1, 0.01, 0.001, b = (1, 1)T and c = 1.

Consider different mesh sizes h = 1
N (N = 2, 4, 8, 16, 32, 64, 128) for different

triangular meshes. The following examples use these triangulations of Ω to find a
solution uh = {u0, ub} where u0|T ∈ P1(T ), and ub|e ∈ P0(e).

5.1. Homogeneous Boundary Conditions

Consider the elliptic problem

−∇ · (a∇u) + b · ∇u+ cu =f, in Ω (5.1)

u =0, on ∂Ω

where a is a unit matrix, b = (1, 1) and c = 1. The source term f(x) is choosen
according to the corresponding analytical solution of the given example.

Example 5.1. The analytical solution to (5.1) is

u = sin(πx) sin(πy).

The finite element scheme (2.3), with different mesh sizes h is applied, and
the corresponding discrete H1-norm and L2-norm errors and convergence rates are
listed in Tables 1 and 2. Figure 5.1 represents the approximation of weak Galerkin
solution on the left and the exact solution on the right for example (5.1).

Table 1. H1 norm errors and their corresponding convergence rates for Example 5.1.

h |||u− uh||| order |||u− uh||| order |||u− uh||| order

when a=1 when a=0.01 when a=0.001

1/2 7.29E-01 1.41E+00 2.02E+00

1/4 2.44E-01 1.58 7.21E-01 0.97 1.44E+00 0.49

1/8 9.68E-02 1.34 4.01E-01 0.84 9.50E-01 0.60

1/16 4.45E-02 1.12 2.22E-01 0.85 5.52E-01 0.78

1/32 2.17E-02 1.03 1.15E-01 0.95 3.24E-01 0.77

1/64 1.08E-02 1.01 5.78E-02 0.99 1.77E-01 0.87

1/128 5.39E-03 1.00 2.89E-02 1.00 9.08E-02 0.96
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Table 2. L2 norm errors and their corresponding convergence rates for Example 5.1.

h ‖u− uh‖ order ‖u− uh‖ order ‖u− uh‖ order

when a=1 when a=0.01 when a=0.001

1/2 6.31E-01 1.12E+00 1.94E+00

1/4 1.67E-01 1.92 4.05E-01 1.46 1.21E+00 0.68

1/8 4.24E-02 1.98 1.57E-01 1.36 5.90E-01 1.03

1/16 1.06E-02 1.99 4.93E-02 1.67 2.53E-01 1.22

1/32 2.66E-03 2.00 1.31E-02 1.91 1.02E-01 1.31

1/64 6.66E-04 2.00 3.34E-03 1.97 3.01E-02 1.76

1/128 1.67E-04 2.00 8.40E-04 1.99 7.85E-03 1.94

Figure 1. Weak Galerkin Solution vs Exact Solution

Example 5.2. The analytical solution to (5.1) is

u = x(1− x)y(1− y) exp(x− y).

Numerical errors and convergence rates are listed in Table 3 and 4. Figure 5.2
represents the approximation of weak Galerkin solution on the left and the exact
solution on the right for example (5.2).

Table 3. H1 norm errors and their corresponding convergence rates for Example 5.2.

h |||u− uh||| order |||u− uh||| order |||u− uh||| order

when a=1 when a=0.01 when a=0.001

1/2 7.23E-02 8.59E-02 1.23E-01

1/4 3.05E-02 1.24 5.21E-02 0.72 1.04E-01 0.24

1/8 1.45E-02 1.07 3.01E-02 0.79 7.15E-02 0.54

1/16 7.16E-03 1.02 1.69E-02 0.84 4.18E-02 0.77

1/32 3.57E-03 1.00 8.77E-03 0.94 2.44E-02 0.78

1/64 1.78E-03 1.00 4.42E-03 0.99 1.34E-02 0.86

1/128 8.91E-04 1.00 2.21E-03 1.00 6.93E-03 0.96
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Table 4. L2 norm errors and their corresponding convergence rates for Example 5.2.

h ‖u− uh‖ order ‖u− uh‖ order ‖u− uh‖ order

when a=1 when a=0.01 when a=0.001

1/2 5.86E-02 6.83E-02 1.18E-01

1/4 1.68E-02 1.80 2.93E-02 1.22 8.72E-02 0.68

1/8 4.37E-03 1.94 1.23E-02 1.26 4.41E-02 1.03

1/16 1.10E-03 1.99 4.29E-03 1.52 1.87E-02 1.22

1/32 2.77E-04 2.00 1.20E-03 1.83 8.08E-03 1.31

1/64 6.92E-05 2.00 3.11E-04 1.95 2.62E-03 1.76

1/128 1.73E-05 2.00 7.85E-05 1.99 7.08E-04 1.94

Figure 2. Weak Galerkin Solution vs Exact Solution

The numerical examples given in this section gives the first order convergence
rate in discrete H1 norm and second order convergence rate in the standard L2

norm. The numerical results are in good agreement with the theoretical results,
which shows that the WG finite element scheme (2.3) is stable and have the optimal
order convergence for the homogeneous boundary case.

5.2. Non-homogeneous Boundary Conditions

Now let’s consider some examples of the general elliptic problem with non-homogeneous
boundary conditions. Consider the following elliptic problem

−∇ · (a∇u) + b · ∇u+ cu =f, in Ω, (5.2)

u =g, on ∂Ω,

where a is a unit matrix, b = (1, 1) and c = 1. The source term f(x) is choosen
according to the corresponding analytical solution of the given example.

Example 5.3. The analytical solution to (5.2) is

u = sin(πx) sin(πy) + x.

The finite element scheme (2.3), with the different mesh sizes h is applied, and
the corresponding discrete H1 and L2 norm errors and convergence rates are listed
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in Table 5 and 6. Figure 5.3 represents the approximation of weak Galerkin solution
on the left and the exact solution on the right for example (5.3).

Table 5. H1 norm errors and their corresponding convergence rates for Example 5.3.

h |||u− uh||| order |||u− uh||| order |||u− uh||| order

when a=1 when a=0.01 when a=0.001

1/2 9.96E-02 1.47E+00 2.06E+00

1/4 4.05E-02 1.30 7.68E-01 0.93 1.49E+00 0.46

1/8 1.90E-02 1.09 4.35E-01 0.82 1.01E+00 0.57

1/16 9.35E-03 1.02 2.42E-01 0.84 5.97E-01 0.75

1/32 4.66E-03 1.00 1.25E-01 0.95 3.54E-01 0.76

1/64 2.33E-03 1.00 6.31E-02 0.99 1.94E-01 0.87

1/128 1.16E-03 1.00 3.16E-02 1.00 9.95E-02 0.96

Table 6. L2 norm errors and their corresponding convergence rates for Example 5.3.

h ‖u− uh‖ order ‖u− uh‖ order ‖u− uh‖ order

when a=1 when a=0.01 when a=0.001

1/2 8.44E-02 1.21E+00 1.98E+00

1/4 2.24E-02 1.91 4.60E-01 1.40 1.27E+00 0.64

1/8 5.70E-03 1.97 1.78E-01 1.37 6.54E-01 0.96

1/16 1.43E-03 1.99 5.53E-02 1.68 2.90E-01 1.17

1/32 3.59E-04 2.00 1.47E-02 1.91 1.15E-01 1.33

1/64 8.97E-05 2.00 3.75E-03 1.98 3.39E-02 1.77

1/128 2.24E-05 2.00 9.41E-04 1.99 8.82E-03 1.94

Figure 3. Weak Galerkin Solution vs Exact Solution
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Example 5.4. The analytical solution to (5.2) is

u = x(1− x)y(1− y) exp(x− y) + x.

Numerical errors and convergence rates are listed in Table 7 and 8. Figure 5.4
represents the approximation of weak Galerkin solution on the left and the exact
solution on the right for example (5.4).

Table 7. H1 norm errors and their corresponding convergence rates for Example 5.4.

h |||u− uh||| order |||u− uh||| order |||u− uh||| order

when a=1 when a=0.01 when a=0.001

1/2 1.13E-01 4.43E-01 5.84E-01

1/4 4.70E-02 1.27 2.93E-01 0.60 5.21E-01 0.17

1/8 2.21E-02 1.09 1.79E-01 0.71 3.89E-01 0.42

1/16 1.09E-02 1.02 1.00E-01 0.83 2.48E-01 0.65

1/32 5.42E-03 1.00 5.21E-02 0.95 1.49E-01 0.74

1/64 2.71E-03 1.00 2.63E-02 0.99 8.08E-02 0.88

1/128 1.36E-03 1.00 1.32E-02 1.00 4.14E-02 0.96

Table 8. L2 norm errors and their corresponding convergence rates for Example 5.4.

h ‖u− uh‖ order ‖u− uh‖ order ‖u− uh‖ order

when a=1 when a=0.01 when a=0.001

1/2 9.49E-02 3.33E-01 5.60E-01

1/4 2.60E-02 1.87 1.50E-01 1.15 4.44E-01 0.33

1/8 6.67E-03 1.96 5.91E-02 1.35 2.50E-01 0.83

1/16 1.68E-03 1.99 1.84E-02 1.69 1.10E-01 1.19

1/32 4.21E-04 2.00 4.89E-03 1.91 4.14E-02 1.41

1/64 1.05E-04 2.00 1.24E-03 1.98 1.20E-02 1.79

1/128 2.63E-05 2.00 3.12E-04 1.99 3.12E-03 1.94

Figure 4. Weak Galerkin Solution vs Exact Solution
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The numerical examples given in this section gives the first order convergence
rate in discrete H1 norm and second order convergence rate in the standard L2

norm. The numerical results are in good agreement with the theoretical results,
which shows that the WG finite element scheme (2.3) is stable and have the optimal
order convergence for the non-homogeneous boundary case.
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