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MULTIPLE SOLUTIONS FOR A
NONHOMOGENEOUS

SCHRÖDINGER-POISSON SYSTEM WITH
CONCAVE AND CONVEX NONLINEARITIES∗

Lixia Wang1,2,† and Shiwang Ma3

Abstract In this paper, we consider the following nonhomogeneous Schrödinger-
Poisson equation

(∗)

{
−∆u+ V (x)u+ φ(x)u = −k(x)|u|q−2u+ h(x)|u|p−2u+ g(x), x ∈ R3,

−∆φ = u2, lim|x|→+∞ φ(x) = 0, x ∈ R3,

where 1 < q < 2, 4 < p < 6. Under some suitable assumptions on V (x), k(x), h(x)
and g(x), the existence of multiple solutions is proved by using the Ekeland’s
variational principle and the Mountain Pass Theorem in critical point theory.
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1. Introduction

The system −∆u+ V (x)u+K(x)φ(x)u = f(x, u) + g(x), x ∈ R3,

−∆φ = K(x)u2, lim
|x|→+∞

φ(x) = 0, x ∈ R3, (1.1)

arises from several interesting physical contexts. It is well known that (1.1) has a
strong physical meaning since it appears in quantum mechanics models (see [8,22])
and in semiconductor theory (see [7, 23, 24]). From the point view of quantum
mechanics, the system (1.1) describes the mutual interactions of many particles [30].
Indeed, if the terms f(x, u) and g(x) are replaced with 0, then problem (1.1) becomes
the Schrödinger-Poisson system. In some recent works (see [2,4,9,14,17,35,39,47]),
different nonlinearities have added to Schrödinger-Poisson equation, giving rise to
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the so-called nonlinear Schrödinger-Poisson system. These nonlinear terms have
been traditionally used in the Schrödinger equation to model the interaction among
particles.

Many mathematicians have been devoted to the study of (1.1) with virous non-
linearities f(x, u). We recall some of them as follows.

The case of g ≡ 0, that is the homogeneous case, has been studied widely
in [1,3,10,11,13,21,26,28,37,38,48]. Very recently, Cerami etc [9] study system (1.1)
in the case of f(x, u) = a(x)|u|p−2u with 4 < p < 6 and a(x) being non-negative.
They establish a global compactness lemma to overcome the lack of compactness
of the embedding of H1(R3) into the Lebesgue space Ls(R3), s ∈ [2, 6), preventing
from using the variational techniques in a standard way. They prove the existence
of positive ground state and bound state solutions by minimizing the associated
functional restricted to the Nehari manifold, where for the coefficient function K(x)
Cerami etc [9] assume that K ∈ L2(R3), lim|x|→∞K(x) = 0,K(x) ≥ 0 for any
x ∈ R3 and K(x) 6≡ 0.

In 2012, the authors [34] consider another case, that is, f(x, u) = a(x)f̃(u) where
f̃ is asymptotically linear at infinity, i.e., f̃(s)/s → c as c → +∞ with a suitable
constant c. They establish a compactness lemma different from that in [9] and prove
the existence of ground state solutions. In [46], Ye and Tang study the existence
and multiplicity of solutions for homogeneous system of (1.1) when the potential
V may change sign and the nonlinear term f is superlinear or sublinear in u as
|u| → ∞. For the Schrödinger-Poisson system with sign-changing potential see [35].

Huang etc [17] consider the case that f(x, u) is a combination of a superlinear
term and a linear term. More precisely, f(x, u) = k1(x)|u|p−2u + µh1(x)u, where
4 < p < 6 and µ > 0, k1 ∈ C(R3), k1 changes sign in R3 and lim|x|→+∞ k1(x) =
k∞ < 0. They prove the existence of at least two positive solutions in the case that
µ > µ1 and near µ1, where µ1 is the first eigenvalue of −∆ + id in H1(R3) and with
weight function h. In another two papers [18, 19], the authors consider the critical
case of p = 6. Shen etc [31] consider the critical case of p = 4.

Sun etc [36] get infinitely many solutions for (1.1), where the nonlinearity
f(x, u) = k2(x)|u|q−2u − h2(x)|u|l−2u, 1 < q < 2 < l < ∞, i.e. the nonlineari-
ty involve a combination of concave and convex terms. For more results on the
effect of concave and convex terms of elliptic equations see [43,44] and the reference
therein.

Next, we consider the nonhomogeneous case of (1.1), that is g 6≡ 0. The exis-
tence of radially symmetric solutions is obtained for above nonhomogeneous system
in [29]. Chen etc [12] obtain two solutions for the nonhomogeneous system with
f(x, u) satisfying Ambrosetti-Rabinowitz type condition and V being nonradially
symmetric. In [15, 16], the system with asymptotically linear and 3-linear nonlin-
earity is considered. For more results on the nonhomogeneous case see [20, 45] and
the reference therein. Other nonhomogeneous equations with sign-changing poten-
tial see [40, 41]. Variational approach to other equations see [5, 27]. There is a
natural question, whether we can get the multiple solutions for nonhomogeneous
Schrödinger-Poisson system with a combination of concave and convex terms.

Motivated by the works mentioned above, in the present paper, we consider the
following nonhomogeneous Schrödinger-Poisson system:−∆u+ V (x)u+ φ(x)u = −k(x)|u|q−2u+ h(x)|u|p−2u+ g(x), x ∈ R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, x ∈ R3, (1.2)
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where 1 < q < 2, 4 < p < 6, i.e. the nonlinearity of this problem may involve a
combination of concave and convex terms. To our best knowledge, this is the first
result on the existence of multiple solutions to problem (1.2).

We assume that V (x), k(x), h(x) and g(x) are measurable functions satisfying
the following conditions:

(V0) V (x) ∈ C(R3,R) satisfies infx∈R3V (x) = a1 > 0.

(V) for any M > 0, meas{x ∈ R3 : V (x) < M} < +∞, where meas denotes the
Lebesgue measures.

(K) k(x) ∈ L6/(6−q)(R3) ∩ L∞(R3) and k(x) ≥ 0 is not identically zero for a.e.
x ∈ R3.

(H) h(x) ∈ L∞(R3) and h(x) > 0 for a.e. x ∈ R3.

(G) g(x) ∈ L2(R3) and g(x) > 0 for a.e. x ∈ R3.

Before stating our main result, we give several notations. Let H1(R3) be the usual
Sobolev space endowed with the standard scalar and norm

(u, v) =

∫
R3

(∇u∇v + uv)dx; ‖u‖ =

(∫
R3

(|∇u|2 + |u|2)dx

)1/2

.

D1,2(R3) is the completion of C∞0 (R3) with respect to the norm

‖u‖D := ‖u‖D1,2(R3) =

(∫
R3

|∇u|2dx
)1/2

.

Let

E :=

{
u ∈ H1(R3) :

∫
R3

(|∇u|2 + V (x)u2)dx <∞
}
.

Then E is a Hilbert space with the inner product

(u, v)E =

∫
R3

(∇u · ∇v + V (x)uv) dx

and the norm ‖u‖E = (u, u)
1/2
E . Obviously, the embedding E ↪→ Ls(R3) is contin-

uous, for any s ∈ [2, 2∗], where 2∗ = 6.
Now we state our main result:

Theorem 1.1. Let 1 < q < 2, 4 < p < 6, (V0), (V ), (K), (H) and (G) hold, then
there exists a constant m0 > 0 such that problem (1.2) admits at least two different
solutions u0, ũ0 in E satisfying I(u0) < 0 and I(ũ0) > 0 if ‖g‖2 < m0.

Remark 1.1. The condition in (V ), which implies the compactness of embedding of
the working space E and contains the coercivity condition: V (x)→∞ as |x| → ∞,
is first introduced by Bartsch and Wang in [6] to overcome the lack of compactness.
We are not sure whether Theorem 1.1 is hold without the condition (V ).

Remark 1.2. Salvatore [29] obtain the existence of multiple radially symmetric
solutions on R3 for the homogeneous and the nonhomogeneous system (1.1). Since
the potential V may be not radially symmetric in Theorem 1.1, we get the multiple
non-radially symmetrical solutions for system (1.2) with the concave and convex
nonlinearities.
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Remark 1.3. Our proof is variational. The main difficulty is the loss of compact-
ness of the Sobolev embedding H1(R3) into Ls(R3), s ∈ [2, 6] since this problem is
set on R3. To recover this difficulty, some of the papers use special function space,
such as the radially symmetric function space, which possesses compact embedding,
see [32]. In this paper, the integrability of k and the main assumption 1 < q < 2
to ensure the space E is compactly embedding in the weighted Lebesgue space (see
Lemma 2.1). Although the methods are used before, we need to study carefully
some properties of the term φ(x)u and the effect of the sublinear therm.

Remark 1.4. To the best of our knowledge, it seems that Theorem 1.1 is the first
result about the existence of multiple solutions for the nonhomogeneous Schrödinger-
Poisson equations on R3 with concave and convex terms. In [36], the authors get
the infinitely many solutions by using the variant fountain theorem established by
Zou [50]. However, since the nonhomogeneous term g(x) > 0, we only get two so-
lutions for the nonhomogeneous Schrödinger-Poisson equations on R3 with concave
and convex terms. If k(x) = h(x) ≡ 0, Theorem 1.1 is the result of [12]. So our
result generalized the results of [12].

The paper is organized as follows. In Section 2, we will introduce the variational
setting for the problem. In Section 3, we give the proof of Theorem 1.1. Throughout
this paper, the letters a, ai, C denote various positive constants. The norm on
Ls = Ls(R3) with 1 < s <∞ is given by ‖u‖ss =

∫
R3 |u|sdx.

2. Variational setting and preliminaries

In this section, we give the variational setting of the problem.
It is known that problem (1.2) can be reduced to a single equation see [14]. In

fact, for every u ∈ E, the Lax-Milgram theorem implies that there exists a unique
φu ∈ D1,2(R3) such that

−∆φu = u2, u ∈ R3, (2.1)

with

φu(x) =
1

4π

∫
R3

u2(y)

|x− y|
dy.

By (2.1), the Hölder inequality and the Sobolev inequality, we get∫
R3

|∇φu|2dx =

∫
R3

φuu
2dx ≤ ‖u‖212/5‖φu‖6 ≤ C‖u‖

2
12/5‖φu‖D,

then

‖φu‖D ≤ C‖u‖212/5,

and ∫
R3

φuu
2dx ≤ C‖u‖412/5 ≤ C‖u‖

4
E . (2.2)

Therefore, problem (1.2) can be reduced to the following equation:

−∆u+ V (x)u+ φuu = −k(x)|u|q−2u+ h(x)|u|p−2u+ g(x), x ∈ R3.

In this paper, we will apply the variational methods to prove our theorem. First,
we recall some results.
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Lemma 2.1 (Lemma 3.4, [49]). Under assumption (V0) and (V ), the embedding
E ↪→ Ls(R3) is compact for any s ∈ [2, 2∗).

We introduce the functional I : E → R defined by

I(u) =
1

2

∫
R3

(|∇u|2 + V (x)u2)dx+
1

4

∫
R3

φuu
2dx+

1

q

∫
R3

k(x)|u|qdx

− 1

p

∫
R3

h(x)|u|pdx−
∫
R3

g(x)udx. (2.3)

By (2.2) and the conditions of Theorem 1.1, all the integrals in (2.3) are well-defined
and in C1(E,R). Now, it is easy to verify that the weak solutions of (1.2) correspond
to the critical points of I : E → R with derivative given by

〈I ′(u), v〉 =

∫
R3

[∇u∇v + V (x)uv + φuuv + k(x)|u|q−2uv

− h(x)|u|p−2uv − g(x)v]dx.

Lemma 2.2. Let g ∈ L2(R3). Suppose (V0) and (V ) hold. Then there exist some
constants ρ, α,m0 > 0 such that I(u)|‖u‖E=ρ ≥ α for all g satisfying ‖g‖2 < m0.

Proof. Since φu ≥ 0, k(x) ≥ 0, using the Hölder inequality and H1(R3) ↪→
Ls(R3), s ∈ [2, 6],

I(u) ≥ 1

2
‖u‖2E −

|h|∞
p
‖u‖pp − ‖g‖L2‖u‖2

≥ 1

2
‖u‖2E − a2‖u‖

p
E −

1
√
a1
‖g‖L2‖u‖E

= ‖u‖E
(

1

2
‖u‖E − a2‖u‖p−1E − 1

√
a1
‖g‖2

)
,

where a1 is a lower bound of the potential V from (V0) and a2 > 0 is a constant.
Setting

g(t) =
1

2
t− a2tp−1, t ≥ 0,

we see that there exists a constant ρ > 0 such that maxt≥0g(t) = g(ρ) > 0. Taking
m0 := 1

2

√
a1g(ρ), then it follows that there exists a constant α > 0 such that

I(u)|‖u‖E=ρ ≥ α for all g satisfying ‖g‖2 < m0. The proof is complete.

Lemma 2.3. Suppose that (V0) and 1 < q < 2, 4 < p < 6 hold, then there exists a
function v ∈ E with ‖v‖E > ρ such that I(v) < 0, where ρ is given in Lemma 2.2.

Proof. Since 1 < q < 2, 4 < p < 6, h(x) ≥ 0, we have

I(tu) =
t2

2
‖u‖2E +

1

4

∫
R3

φtu(tu)2dx+
tq

q

∫
R3

k(x)|u|qdx

− tp

p

∫
R3

h(x)|u|pdx− t
∫
R3

g(x)udx

≤ t2

2
‖u‖2E +

t4

4
‖u‖4E +

tq

q

∫
R3

k(x)|u|qdx
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− tp

p

∫
R3

h(x)|u|pdx− t
∫
R3

g(x)udx

→ −∞, as t→ +∞,

for u ∈ E, u 6= 0. The lemma is proved by taking v = t0u with t0 > 0 large enough
and u 6= 0. The proof is complete.

Lemma 2.4. Assume that (V0), (V ), (K), (H), (G) hold, and {un} ⊂ E is a bound-
ed (PS) sequence of I, then {un} has a strongly convergent subsequence in E.

Proof. Consider a sequence {un} in E which satisfies

I(un)→ c, I ′(un)→ 0, sup
n
‖un‖E < +∞.

Going if necessary to a subsequence, we can assume that un ⇀ u in E. In view of
Lemma 2.1, un → u in Ls(R3) for any s ∈ [2, 2∗). By the derivative of I, we easily
obtain

‖un − u‖2E =〈I ′(un)− I ′(u), un − u〉 −
∫
R3

k(x)(|un|q−1 − |u|q−1)(un − u)dx

+

∫
R3

h(x)(|un|p−1−|u|p−1)(un−u)dx−
∫
R3

(φun
un−φuu)(un−u)dx.

It is clear that

〈I ′(un)− I ′(u), un − u〉 → 0 as n→∞. (2.4)

By the Hölder inequality and the Sobolev inequality, we have∣∣∣∣∫
R3

φun
un(un − u)dx

∣∣∣∣ ≤ ‖φun
‖6‖un‖12/5‖un − u‖12/5

≤ C1‖φun
‖D‖un‖12/5‖un − u‖12/5

≤ C2‖un‖312/5‖un − u‖12/5 → 0,

since un → u in Ls(R3) for any s ∈ [2, 2∗). We obtain∫
R3

φun
un(un − u)dx→ 0 as n→∞. (2.5)

Similarly we can also obtain∫
R3

φuu(un − u)dx→ 0 as n→∞. (2.6)

By 4 < p < 6, (H) and the Hölder inequality, one has∣∣∣∣∫
R3

h(x)(|un|p−1 − |u|p−1)(un − u)dx

∣∣∣∣ ≤ |h|∞(‖un‖p−1p + ‖u‖p−1p )‖un − u‖p

→ 0 as n→∞. (2.7)

By 1 < q < 2, (K) and the Hölder inequality, one has∫
R3

k(x)|un|q−1(un − u)dx =

∫
R3

k(x)
q−1
q k(x)

1
q |un|q−1(un − u)dx
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≤ |k|1−
1
q

∞

[∫
R3

(
k(x)

1
q |un|q−1

) 6
6−q

dx

] 6−q
6
(∫

R3

(un − u)
6
q dx

) q
6

≤ |k|1−
1
q

∞

(∫
R3

k(x)
6

6−q dx

) 6−q
6 ·

1
q
(∫

R3

|un|
6q

6−q dx

) 6−q
6q (q−1)

‖un − u‖ 6
q

(2.8)

= |k|1−
1
q

∞ ‖k(x)‖
1
q
6

6−q

‖un‖q−16q
6−q

‖un − u‖ 6
q
→ 0 as n→∞,

since 3 < 6
q < 6, un → u in Ls(R3) for any s ∈ [2, 2∗).

Similarly, we also obtain∫
R3

k(x)|u|q−1(un − u)dx→ 0 as n→∞. (2.9)

Therefore, by (2.5)-(2.9), we get ‖un − u‖E → 0. The proof is complete.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into two steps.
Step 1 There exists a function u0 ∈ E such that I ′(u0) = 0 and I(u0) < 0.
Since g ∈ L2(R3) and g > 0, we can choose a function ψ ∈ E such that∫

R3

g(x)ψ(x)dx > 0.

Hence, we have

I(tψ) ≤ 1

2
t2‖ψ‖2E +

t4

4
‖ψ‖4E+

tq

q

∫
R3

k(x)|ψ|qdx− tp

p

∫
R3

h(x)|ψ|pdx−t
∫
R3

g(x)ψdx

< 0 for t > 0 small enough.

Thus, we obtain

c0 = inf{I(u) : u ∈ Bρ} < 0,

where ρ > 0 is given by Lemma 2.2, Bρ = {u ∈ E : ‖u‖E < ρ}. By the Ekeland’s
variational principle [25,42], there exists a sequence {un} ⊂ Bρ such that

c0 ≤ I(un) < c0 +
1

n
,

and

I(w) ≥ I(un)− 1

n
‖w − un‖E

for all w ∈ Bρ. Then by a standard procedure, we can show that {un} is a bound-
ed Palais-Smale sequence of I. Therefore Lemma 2.4 implies that there exists a
function u0 ∈ E such that I ′(u0) = 0 and I(u0) = c0 < 0.

Step 2 There exists a function ũ0 ∈ E such that I ′(ũ0) = 0 and I(ũ0) > 0.
From Lemmas 2.2, 2.3 and the Mountain Pass Theorem, there is a sequence

{un} ⊂ E such that

I(un)→ c̃0 > 0, and I ′(un)→ 0.
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In view of Lemma 2.4, we only need to check that {un} is bounded in E.

c̃0 + 1 + ‖u‖E ≥ I(un)− 1

4
〈I ′(un), un〉

=
1

4
‖un‖2E + (

1

q
− 1

4
)

∫
R3

k(x)|un|qdx+ (
1

4
− 1

p
)

∫
R3

h(x)|un|pdx

− 3

4

∫
R3

g(x)undx

≥ 1

4
‖un‖2E −

3

4
‖g‖2‖un‖2

for n large enough. Since ‖g‖2 < m0, it follows from 1 < q < 2, 4 < p < 6 that
{un} is bounded in E. The proof is complete.
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