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Abstract In this paper, we establish the existence of infinitely many so-
lutions for a class of non-autonomous second-order systems with impulsive
effects. Our technique is based on the Fountain Theorem of Bartsch and the
Symmetric Mountain Pass Lemma due to Kajikiya.
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1. Introduction and main results
We consider the existence of infinitely many periodic solutions for the following
second-order Hamiltonian systems with impulsive effects

ü(t) + V (t)u(t) +∇W (t, u(t)) = 0, a.e. t ∈ [0, T ],

∆(u̇i(tj)) = u̇i(t+j )− u̇i(t−j ) = Iij(u
i(tj)), i = 1, 2, · · · , N, j = 1, 2, · · · , l,

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

(1.1)

where T > 0, V (t) is an N × N symmetric matrix, continuous and T -periodic in
t. u(t) = (u1(t), u2(t), · · · , uN (t)), tj , j = 1, 2, · · · , l, are the instants where the
impulses occur and 0 = t0 < t1 < t2 < · · · < tl < tl+1 = T, Ii,j : R → R (i =
1, 2, · · · , N, j = 1, 2, · · · , l) are continuous and W (t, x) : [0, T ] × RN → R is T -
periodic in t for all x ∈ RN and satisfies the following assumption:

(A) W (t, x) is measurable in t for each x ∈ RN and continuously differential in x
for a.e. t ∈ [0, T ] and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|W (t, x)| ≤ a(|x|)b(t), |∇W (t, x)| ≤ a(|x|)b(t)
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for all x ∈ RN and a.e. t ∈ [0, T ], where ∇W (t, x) denotes the gradient of
W (t, x) in x.

As a special case of dynamical systems, Hamiltonian systems are very important
in the various applications in mechanics, electronics, economics and so on. In 1978,
Rabinowitz [20] published his pioneer paper for the existence of periodic solutions
for Hamiltonian systems via the critical point theory. From then on, there has been
a vast literature on the study of existence and multiplicity of periodic solutions for
Hamiltonian systems, see [4, 8, 13,14,21,24,25] and the references therein.

In recent years, some classical methods and techniques such as the coincidence
degree theory, upper and lower solutions method, iterative technique, fixed point
theory have been applied to study the impulsive differential equations by many
researchers, due to its widely application in various problems of technology and
science, see [3, 7, 9, 10, 12, 16, 17, 22, 23, 26, 28–30] and the references therein. Espe-
cially, Nieto and O’Regan [16] presented a new approach via variational methods
and critical point theory to study the existence of solutions to impulsive problems.

In the present paper, we are interested in the existence of infinitely many so-
lutions of problem (1.1) under some new conditions. With the aid of variational
methods, we get the multiplicity results for both superquadratic and subquadratic
cases, which generalize and sharply improve the results in [7, 23]. Moreover, our
proofs are much simpler.

1.1. The superquadratic case
By applying a variant of Fountain Theorem (see [31]), Sun, Chen and Nieto [23]
proved the existence of infinitely many solutions for system (1.1), where W (t, x) is
even in x. The following theorem was obtained.

Theorem 1.1 (Theorem 1.1, [23]). Assume the following conditions hold:
(V1) V (t) = (vij(t)) is a symmetric matrix with vij ∈ L∞([0, T ]) for every t ∈ [0, T ].

(V2) There exists a positive constant ν such that V (t)u ·u ≥ ν|u|2 for every u ∈ RN

and a.e. in [0, T ].

(H0) Iij (i = 1, 2, · · · , N, j = 1, 2, · · · , l) are odd and satisfy∫ s

0

Iij(t)dt ≥ 0 for all s ∈ R.

(H1)
2

∫ s

0

Iij(t)dt− Iij(s)s ≥ 0 for all s ∈ R.

(H2) There exist constants aij , bij > 0 and γij ∈ [0, 1) such that

|Iij(s)| ≤ aij + bij |s|γij for s ∈ R.

(H3) lim
|x|→+∞

W (t,x)
|x|2 = +∞ uniformly for t ∈ [0, T ].

(H4) W (t, 0) ≡ 0, 0 ≤W (t, x) = o(|x|2) as |x| → 0 uniformly for t ∈ [0, T ].
(H5) There exist constants α > 1, 1 < β < 1+ α−1

α , c1, c2 > 0 and L > 0 such that

(∇W (t, x), x)− 2W (t, x) ≥ c1|x|α, |∇W (t, x)| ≤ c2|x|β

for every t ∈ [0, T ] and x ∈ RN with |x| ≥ L.
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(H6) W (t,−x) =W (t, x) for all x ∈ RN and a.e. t ∈ [0, T ].

Then problem (1.1) has infinitely many solutions.

In [7], Chen and He established the following result for system (1.1), which
improves Theorem 1.1.

Theorem 1.2 (Theorem 1.4, [7]). Suppose that (V1), (H0), (H2), (H3), (H6) hold.
Assume the following conditions hold:

(V ′
2) There exists ν′ ≥ 0 such that V (t)u · u ≥ −ν′|u|2 for every u ∈ RN and a.e.

in [0, T ].

(H′
1) There exists L0 > 0 such that

2

∫ s

0

Iij(t)dt− Iij(s)s ≥ 0 for |s| ≥ L0.

(H′
5) There exist constants λ > 2, µ > λ− 2 such that

lim inf
|x|→+∞

(∇W (t, x), x)− 2W (t, x)

|x|µ
> 0

and
lim sup
|x|→+∞

W (t, x)

|x|λ
< +∞

uniformly for a.e. t ∈ [0, T ].

Then problem (1.1) has infinitely many solutions.

Here, applying the Fountain Theorem due to Bartsch (see [2, Theorem 2.5]
and [27, Theorem 3.6]), we obtain the existence of infinitely many solutions for
problem (1.1) with some more general conditions, which generalizes and improves
upon the results mentioned above. The following theorem is established.

Theorem 1.3. Assume that conditions (H0), (H′
1), (H2), (H3), (H6) hold and

W (t, x) satisfies the following condition:

(H7) There exist constants a1 > 0 and L1 > L0 such that

(∇W (t, x), x)− 2W (t, x) ≥ a1
|x|2

W (t, x)

for all x ∈ RN with |x| ≥ L1 and a.e. t ∈ [0, T ].

Then problem (1.1) has infinitely many solutions.

Remark 1.1. Clearly, condition (H7) is weaker than (H5) and (H′
5). Moreover,

conditions (V1), (V2), (V ′
2) and (H4) are removed. So, our Theorem 1.3 extends

Theorem 1.1 and Theorem 1.2. There are functions W (t, x) satisfying our assump-
tions of Theorem 1.3 and not satisfying the conditions of Theorem 1.1 and Theorem
1.2. For example, set

W (t, x) = |x|2 ln(1 + |x|2) + sin(|x|2)− ln(1 + |x|2)

for all x ∈ RN and a.e. t ∈ [0, T ]. Then, W does not satisfy the result mentioned
above. But W satisfies Theorem 1.3 with a1 = 1.
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1.2. The subquadratic case
Sun, Chen and Nieto studied systems (1.1) that are asymptotically case and sub-
quadratic case. Applying the minimax technique, they obtained the two following
theorems.

Theorem 1.4 (Theorem 1.2, [23]). Assume that the following conditions are satis-
fied:
(S1) Iij(i = 1, 2, · · · , N, j = 1, 2, · · · , l) are odd and satisfy Iij(s)s ≥ 0 for all

s ∈ R.
(S2) There exist constant bij > 0 and γij ∈ [0, 1) such that

|Iij(s)| ≤ bij |s|γij for s ∈ R.

(S3) W (t, x) = ρ
2 |x|

2 + F (t, x), where F (t, x) is even in x, ρ is a positive constant
and not a spectrum point of − d2

dt2 + V and F (t, 0) ≡ 0.

(S4) There exist δ1, δ2 ∈ [1, 2) with δ1 < min1≤i≤N, 1≤j≤l{γij} + 1 and d1, d2 > 0
such that

d1|x|δ1 ≤ F (t, x), |∇F (t, x)| ≤ d2|u|δ2−1

for all (t, u) ∈ [0, T ]× RN .

Then problem (1.1) has infinitely many solutions.

Theorem 1.5 (Theorem 1.3, [23]). Suppose that (S1), (S2) and (H6) hold. Assume
that W satisfies (A) and the following conditions:
(J1) W (t, 0) ≡ 0 for any t ∈ [0, T ].

(J2) There are constants k1 > 0 and ζ1 ∈ [1, 2) with ζ1 < min1≤i≤N, 1≤j≤l{γij}+1
such that

W (t, x) ≥ k1|x|ζ1 for any (t, x) ∈ [0, T ]× RN .

(J3) There exist constants k2 > 0 and ζ2 ∈ [1, 2) such that

|∇W (t, x)| ≤ k2|x|ζ2−1 for any (t, x) ∈ [0, T ]× RN .

Then problem (1.1) has infinitely many solutions.

Here, by means of the new version of the Symmetric Mountain Pass Lemma
established in [11], we obtain the following theorem, which unifies and significantly
improves upon Theorems 1.4 and 1.5.

Theorem 1.6. Assume that the following conditions hold:
(S ′

2) There exist constants δ3 > 0, bij > 0 and 1 < γ∗ = min1≤i≤N,1≤j≤l{γij} such
that

|Iij(s)| ≤ bij |s|γij and Iij(−s) = −Iij(s)
for |s| ≤ δ3, i = 1, 2, · · · , N, j = 1, 2, · · · , l.

(H8) W (t,−x) =W (t, x) for a.e. t ∈ [0, T ] and x ∈ RN with |x| ≤ δ3.
(H9) W (t, 0) ≡ 0 for a.e. t ∈ [0, T ] and

lim
|x|→0

W (t, x)

|x|2
= +∞ uniformly for a.e. t ∈ [0, T ].

Then problem (1.1) possesses infinitely many solutions.
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2. Proof of main results
Let us consider the functional ϕ on H1

T given by

ϕ(u) =
1

2

∫ T

0

|u̇|2dt− 1

2

∫ T

0

(V (t)u, u)dt−
∫ T

0

W (t, u)dt+

l∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(t)dt

for any u ∈ H1
T , where

H1
T =

{
u : [0, T ] → RN | u is absolutely continuous, u(0)=u(T ), u̇∈L2(0, T ;RN )

}
is a Hilbert space with the norm defined by

∥u∥ =

(∫ T

0

|u(t)|2dt+
∫ T

0

|u̇(t)|2dt

) 1
2

.

It follows from assumption (A) that the functional ϕ is continuously differentiable
on H1

T . Moreover, one has

⟨ϕ′(u), v⟩ =
∫ T

0

((u̇, v̇)− (V (t)u, v)− (∇W (t, u), v))dt+

l∑
j=1

N∑
i=1

Iij(u
i(tj))v

i(tj)

for all u, v ∈ H1
T . It is well known that the solutions of problem (1.1) correspond to

the critical points of ϕ. Since the embedding H1
T ↪→ C(0, T ;RN ) is compact, which

implies that
∥u∥∞ ≤ C∥u∥ (2.1)

for some C > 0 and all u ∈ H1
T , where ∥u∥∞ = maxt∈[0,T ] |u(t)| (see [14]). Letting

q(u) =

∫ T

0

(1/2)(|u̇|2 − (V (t)u, u))dt,

one has that

q(u) =(1/2)∥u∥2 − (1/2)

∫ T

0

((V (t) + I)u, u)dt

=(1/2)((I −K)u, u),

where K : H1
T → H1

T is the linear self-adjoint operator defined, applying Riesz
representation theorem, by∫ T

0

((V (t) + I)u, v)dt = (Ku, v), ∀u, v ∈ H1
T .

The compact imbedding of H1
T into C(0, T ;RN ) (see [14]) implies thatK is compact.

Using classical spectral theory, the following decomposition holds

H1
T = H− ⊕H0 ⊕H+,

where H0 = N(I −K), H− and H+ are such that, for some δ > 0,

q(u) ≤ −(δ/2)∥u∥2 if u ∈ H−,

q(u) ≥ (δ/2)∥u∥2 if u ∈ H+. (2.2)
Let X be a reflexive and separable Banach space. It is well known that there

exist {wn}n∈N ⊂ X, {ψn}n∈N ⊂ X∗ such that
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(1) ⟨ψn, wm⟩ = χn,m, where χn,m = 1 for n = m and χn,m = 0 for n ̸= m.
(2) span{wn|n ∈ N} = X, spanω

∗
{ψn|n ∈ N} = X∗.

Let Xj = Rwj , then X = ⊕j≥1Xj . We define

Yk = ⊕k
j=1Xj , Zk = ⊕∞

j=kXj .

Definition 2.1 (Palais-Smale condition, [14, 15, 18]). Let X be a Bananch space,
ϕ ∈ C1(X,R). The function ϕ satisfies the Palais-Smale condition if any sequence
{un} ⊂ X such that

{ϕ(un)} is bounded, ϕ′(un) → 0 as n→ ∞,

has a convergent subsequence.

Definition 2.2 (Cerami condition, [6, 15, 19]). Let X be a Bananch space, ϕ ∈
C1(X,R). The function ϕ satisfies the Cerami condition if any sequence {un} ⊂ X
such that

{ϕ(un)} is bounded, ϕ′(un)(1 + ∥un∥) → 0 as n→ ∞,

has a convergent subsequence.

Definition 2.3 ((PS)c condition, [5, 14, 15, 27]). Let X be a Bananch space, ϕ ∈
C1(X,R) and c ∈ R. The function ϕ satisfies the (PS)c condition if any sequence
{un} ⊂ X such that

ϕ(un) → c, ϕ′(un) → 0 as n→ ∞,

has a convergent subsequence.

Palais-Smale condition (PS-condition) was introduced by Palais and Smale in
[18]. This condition and some of its variants have been essential in the development
of critical point theory on Banach spaces or Banach manifolds, and are referred as
Palais-Smale-type conditions. It is clear that the PS-condition implies the (PS)c
condition for each c ∈ R. Cerami condition (condition (C)) was given by Cerami [6].
It is well known that condition (C) is weaker than PS-condition. In [2], Bartsch
established the Fountain Theorem (Theorem 2.5 in [2], Theorem 3.6 in [27]) under
the (PS)c condition. As shown in [1,15,19], the deformation lemma can be proved
with the weaker condition (C) replacing the usual PS-condition, and it turns out
that the Fountain Theorem is true under the condition (C). So, we have the following
Fountain Theorem.

Theorem 2.1 (Fountain Theorem, [2,27]). Assume that ϕ ∈ C1(X,R) satisfies the
condition (C), ϕ(−u) = ϕ(u). If for almost every k ∈ N, there exist ρk > rk > 0
such that

(A1)
ak := max

u∈Yk,∥u∥=ρk

ϕ(u) ≤ 0,

(A2)
bk := inf

u∈Zk,∥u∥=rk
ϕ(u) → ∞, k → ∞,

then ϕ has an unbounded sequence of critical values.
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To prove Theorem 1.6, we need the following Symmetric Mountain Pass Theorem
due to Kajikiya (see [11]). Before stating it, we first recall the definition of genus.
Let X be a Banach space and let A be a subset of X. A is said to be symmetric if
u ∈ A implies that −u ∈ A. For a closed symmetric set A, which does not contain
the origin, we define a genus γ(A) of A by the smallest integer k such that there
exists an odd continuous mapping from A to Rk\{0}. If such a k does not exist, we
define γ(A) = ∞. Moreover, we set γ(∅) = 0. Let Γk denote the family of closed
symmetric subsets A of X such that 0 ̸∈ A and γ(A) ≥ k. For the convenience of
the readers, we summarize the property of genus that will be used in the proof of
Theorem 1.6. We refer the readers to [21, proposition 7.5] for the proof of the next
proposition.

Proposition 2.1. Let A and B be closed symmetric subsets of X that do not
contain the origin. Then the following hold.

(i) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B).

(ii) If A ⊂ B, then γ(A) ≤ γ(B).

(iii) If A is compact, then γ(A) < +∞ and γ(Nδ(A)) = γ(A) for δ > 0 small
enough, where Nδ(A) = {x ∈ X : ∥x−A∥ ≤ δ}.

(iv) The n-dimensional sphere Sn has a genus of n+1 by the Borsuk-Ulam theorem.

We now state the Symmetric Mountain Pass Lemma.

Theorem 2.2 (Theorem 1, [11]). Let X be an infinite-dimensional Banach space
and let ϕ ∈ C1(X,R) satisfy the following conditions.

(1) ϕ(u) is even, bounded from below, ϕ(0) = 0 and ϕ satisfies the PS-condition.
(2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak

ϕ(u) < 0.

Then, ϕ possesses a sequence of critical points {uk} such that ϕ(uk) ≤ 0, uk ̸= 0
and limk→∞ uk = 0.

Now, we can demonstrate the proof of our results.

Proof of Theorem 1.3. First of all, we will prove that ϕ satisfies condition (C).
Let {un} be a sequence in H1

T such that

{ϕ(un)} is bounded and (1 + ∥un∥)∥ϕ′(un)∥ → 0 as n→ ∞.

Then there exists a positive constant M0 such that

|ϕ(un)| ≤M0, (1 + ∥un∥)∥ϕ′(un)∥ ≤M0. (2.3)

By a standard argument, we only need to prove that {un} is a bounded sequence
in H1

T . Otherwise, we can assume that ∥un∥ → +∞ as n→ ∞. Let vn = un

∥un∥ , one
then has ∥vn∥ = 1. Going if necessary to a subsequence, we can suppose that

vn ⇀ v weakly in H1
T ,

vn → v strongly in C(0, T ;RN ) (2.4)

as n→ ∞.
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By (H2), (2.3) and (2.4), we obtain∣∣∣∣ ∫ T

0

W (t, un)

∥un∥2
dt− 1

2

∣∣∣∣
≤|ϕ(un)|

∥un∥2
+

1

2

∫ T

0

((V (t) + I)vn, vn)dt+

∑l
j=1

∑N
i=1

∫ ui(tj)

0
|Iij(t)|dt

∥un∥2

≤ M0

∥un∥2
+

1

2
(B0 + 1)T∥vn∥2∞ +

∑l
j=1

∑N
i=1(aij∥un∥∞ + bij∥un∥

γij+1
∞ )

∥un∥2
,

(2.5)

where B0 is a constant such that

|(V (t)x, x)| ≤ B0|x|2 ∀x ∈ RN . (2.6)

Here, we claim that v ̸≡ 0. Otherwise, if v ≡ 0, by (2.5), we have

lim
n→∞

∫ T

0

W (t, un)

∥un∥2
dt =

1

2
. (2.7)

From (H3), there exists a positive constant L2 > L1 such that

W (t, x) ≥ 0 (2.8)

for all x ∈ RN with |x| ≥ L2 and a.e. t ∈ [0, T ]. By assumption (A), one has

|W (t, x)| ≤ a2b(t), |∇W (t, x)| ≤ a2b(t) (2.9)

for all x ∈ RN with |x| ≤ L2 and a.e. t ∈ [0, T ], where a2 = max
0≤s≤L2

a(s). Hence, we
get from (2.8) and (2.9) that

W (t, x) ≥ −a2b(t) (2.10)

for all x ∈ RN and a.e. t ∈ [0, T ].
It follows from (H′

1) that there exist positive constant B1 such that

2

∫ s

0

Iij(t)dt− Iij(s)s ≥ −B1 for s ∈ R.

We deduce from (H7) and (2.9) that∫
{t||un(t)|≥L1}

|W (t, un)|
|un|2

dt

≤a−1
1

∫
{t||un(t)|≥L1}

((∇W (t, un), un)− 2W (t, un))dt

=a−1
1

∫ T

0

((∇W (t, un), un)− 2W (t, un))dt

− a−1
1

∫
{t||un(t)|<L1}

((∇W (t, un), un)− 2W (t, un))dt
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≤a−1
1 (2ϕ(un)− ⟨ϕ′(un), un⟩) + a−1

1 (L1 + 2)

∫
{t||un(t)|<L1}

a2b(t)dt

+

l∑
j=1

N∑
i=1

(
Iij(u

i(tj))u
i(tj)− 2

∫ ui(tj)

0

Iij(t)dt

)
≤a−1

1 (2ϕ(un)− ⟨ϕ′(un), un⟩) + a−1
1 (L1 + 2)a2∥b∥L1 + lNB1

≤3a−1
1 M0 + a−1

1 (L1 + 2)a2∥b∥L1 + lNB1.

Then, we obtain∣∣∣∣ ∫ T

0

W (t, un)

∥un∥2
dt

∣∣∣∣ ≤ ∫ T

0

|W (t, un)|
∥un∥2

dt

=

∫
{t||un(t)|≥L1}

|W (t, un)|
∥un∥2

dt+

∫
{t||un(t)|<L1}

|W (t, un)|
∥un∥2

dt

≤
∫
{t||un(t)|≥L1}

|W (t, un)|
|un|2

|vn|2dt+
a2∥b∥L1

∥un∥2

≤ ∥vn∥2∞
∫
{t||un(t)|≥L1}

|W (t, un)|
|un|2

dt+
a2∥b∥L1

∥un∥2

≤ ∥vn∥2∞(3a−1
1 M0 + a−1

1 (L1 + 2)a2∥b∥L1 + lNB1) +
a2∥b∥L1

∥un∥2

→ 0

as n → ∞, which is a contradiction to (2.7). So, v ̸≡ 0. Now, letting Ω = {t ∈
[0, T ] : |v(t)| > 0}, one has |Ω| > 0. Since ∥un∥ → +∞, one gets |un| → +∞ as
n→ ∞ for a.e. t ∈ Ω. From (H3), one sees

lim
n→+∞

W (t, un(t))

|un(t)|2
= +∞ a.e. on Ω.

We conclude from (2.10) and Fatou Lemma, one has

lim inf
n→∞

∫ T

0

W (t, un)

∥un∥2
dt

≥ lim inf
n→∞

(∫
Ω

W (t, un)

|un|2
|vn|2dt−

a2
∥un∥2

∫
[0,T ]\Ω

b(t)dt

)
≥ lim inf

n→∞

(∫
Ω

W (t, un)

|un|2
|vn|2dt−

a2∥b∥L1

∥un∥2

)
= lim inf

n→∞

∫
Ω

W (t, un)

|un|2
|vn|2dt

=+∞,

which contradicts to (2.5). So, ∥un∥ is bounded. And, the condition (C) holds.
Let {ej}j∈N be a basis for H1

T and define Yk and Zk as in Theorem 2.1. Since
dim(Yk) < ∞, all the norms are equivalent. For each u ∈ Yk, there exists constant
Ck > 0 such that

∥u∥ ≤ Ck∥u∥L2 . (2.11)
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From condition (H3), there exists L3 > 0 such that

W (t, x) ≥ (1 +B0)C
2
k |x|2 (2.12)

for all |x| ≥ L3 and a.e. t ∈ [0, T ]. From assumption (A), one gets

|W (t, x)| ≤ a3b(t) (2.13)

for all x ∈ RN with |x| ≤ L3 and a.e. t ∈ [0, T ], where a3 = max
0≤s≤L3

a(s). Hence, we
obtain from (2.12) and (2.13) that

W (t, x) ≥ (1 +B0)C
2
k(|x|2 − L2

3)− a3b(t) (2.14)

for all x ∈ RN and a.e. t ∈ [0, T ].
Then, for u ∈ Yk, it follows from (2.6), (2.11) and (2.14) that

ϕ(u) =
1

2

∫ T

0

|u̇|2dt− 1

2

∫ T

0

(V (t)u, u)dt−
∫ T

0

W (t, u)dt

+

l∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(t)dt

≤1

2
∥u̇∥2L2 +

B0

2
∥u∥2L2 − (1 +B0)C

2
k(∥u∥2L2 − L2

3T ) + a3∥b∥L1

+

l∑
j=1

N∑
i=1

(aij∥u∥∞ + bij∥u∥γij+1
∞ )

≤1 +B0

2
∥u∥2 − (1 +B0)C

2
k∥u∥2L2 + (1 +B0)C

2
kL

2
3T + a3∥b∥L1

+

l∑
j=1

N∑
i=1

(aij∥u∥∞ + bij∥u∥γij+1
∞ )

≤− 1 +B0

2
∥u∥2 + (1 +B0)C

2
kL

2
3T + a3∥b∥L1

+

l∑
j=1

N∑
i=1

(aijC∥u∥+ bijC
γij+1∥u∥γij+1),

which implies that

ϕ(u) → −∞ as ∥u∥ → ∞, in Yk.

So, (A1) of Theorem 2.1 is satisfied for every ρk > 0 large enough.
Let us define

βk = sup
u∈Zk,∥u∥=1

∥u∥∞,

then
βk → 0 as k → ∞.

Obviously, one has 0 ≤ βk+1 ≤ βk, which yields βk → β∗ as k → ∞. For each k ≥ 0,
there exists uk ∈ Zk such that ∥uk∥ = 1 and ∥uk∥∞ > βk

2 . Since uk ∈ Zk, one sees
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uk ⇀ 0 in H1
T . By (2.1), we obtain uk → 0 in C([0, T ],RN ). Hence, it follows that

β∗ = 0.
Set rk = β−1

k , one has

rk → ∞ as k → ∞. (2.15)

Thus, for k large enough such that Zk ⊂ H+ and r2k ≥ 4δ−1a4∥b∥L1 , where a4 =
max
0≤s≤1

a(s). Then, for u ∈ Zk with ∥u∥ = rk, one sees ∥u∥∞ ≤ 1. So, by (H0) and
(2.2), we have

ϕ(u) =
1

2

∫ T

0

|u̇|2dt− 1

2

∫ T

0

(V (t)u, u)dt−
∫ T

0

W (t, u)dt

+

l∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(t)dt

≥δ∥u∥
2

2
−
∫ T

0

W (t, u)dt

≥δ∥u∥
2

2
− a4∥b∥L1

≥δr
2
k

4
.

Therefore, it follows from (2.15) and the above expression that

inf
u∈Zk,∥u∥=rk

ϕ(u) → ∞, k → ∞.

And, relation (A2) is proved. Hence, the proof is completed by using the Fountain
theorem. □

Proof of Theorem 1.6. We consider the following truncated functional

ψ(u) =
1

2
∥u∥2 − h(∥u∥)

(
1

2

∫ T

0

|u|2dt+ 1

2

∫ T

0

(V (t)u, u)dt+

∫ T

0

W (t, u)dt

−
l∑

j=1

N∑
i=1

∫ ui(tj)

0

Iij(t)dt

)

for any u ∈ H1
T , where h : R+ → [0, 1] is a non-increasing C1 function such that

h(t) =

1, 0 ≤ s ≤ δ3/(2C),

0, s ≥ δ3/C.

Obviously, ψ ∈ C1(H1
T ,R) and ψ(0) = 0. Since

ϕ(u) = ψ(u) for ∥u∥ ≤ δ3/(2C).

Hence, if we can get that ψ possesses a sequence of critical points {uk} such that

ψ(uk) ≤ 0, uk ̸= 0 and uk → 0 as k → ∞,
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then for the k large enough, the critical points of ψ satisfying ∥uk∥ ≤ δ3/(2C) are
just critical points of ϕ. So, the conclusion of Theorem 1.6 holds.

By (2.1), if ∥u∥ ≤ δ3/C, we have

|u(t)| ≤ ∥u∥∞ ≤ C∥u∥ ≤ δ3 ∀t ∈ [0, T ].

It follows from (S ′
2) and (H8) that

ψ(−u) = ψ(u) (2.16)

for u ∈ H1
T with ∥u∥ ≤ δ3/C. When ∥u∥ ≥ δ3/C, one has

ψ(u) =
1

2
∥u∥2. (2.17)

Combining this with (2.16) implies

ψ(−u) = ψ(u) for all u ∈ H1
T .

On the other hand, expression (2.17) yields

ψ(u) → +∞ as ∥u∥ → ∞.

Hence, ψ is bounded from below and satisfies the PS-condition.
From condition (H9), there exists δ4 > 0 such that

W (t, x) ≥ (1 +B0)C
2
k |x|2 (2.18)

for all |x| ≤ δ4 and a.e. t ∈ [0, T ], where B0 refers to (2.6). So, for u ∈ Yk with

∥u∥ = θk :=
1

2
min

{
1, δ3/(2C), δ4/C,

(
1 +B0

4
∑l

j=1

∑N
i=1 bijC

γij+1

)γ∗−1}
,

it follows from (S ′
2) and (2.18) that

ϕ(u) =
1

2

∫ T

0

|u̇|2dt− 1

2

∫ T

0

(V (t)u, u)dt−
∫ T

0

W (t, u)dt

+

l∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(t)dt

≤1 +B0

2
∥u∥2 − (1 +B0)C

2
k∥u∥2L2 +

l∑
j=1

N∑
i=1

bij∥u∥γij+1
∞

≤− 1 +B0

2
∥u∥2 +

l∑
j=1

N∑
i=1

bijC
γij+1∥u∥γij+1

≤− 1 +B0

2
∥u∥2 +

l∑
j=1

N∑
i=1

bijC
γij+1∥u∥γ

∗+1

≤− 1 +B0

4
∥u∥2,
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which implies

{u ∈ Yk | ∥u∥ = θk} ⊂
{
u ∈ H1

T

∣∣∣∣ ψ(u) ≤ −1 +B0

4
θ2k

}
.

Now, taking
Ak =

{
u ∈ H1

T : ψ(u) ≤ −1 +B0

4
θ2k

}
,

by Proposition 2.1 one sees that

γ(Ak) ≥ γ({u ∈ Yk|∥u∥ = θk}) ≥ k.

So, we get Ak ∈ Γk and

sup
u∈Ak

ψ(u) ≤ −1 +B0

4
θ2k < 0.

Then, Theorem 1.6 follows from Theorem 2.2 and the proof is complete. □
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