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WELL-POSEDNESS FOR THE COUPLED BBM
SYSTEMS

Hongqiu Chen1,† and Cristina A. Haidau2

Abstract Consideration is given to initial value problem for systems of two
evolution equations of generalized BBM-type coupled through nonlinearity
described in (1.3). It is shown that the problem is always locally well-posed in
the L2-based Sobolev spaces Hs(R)×Hs(R) for s ≥ 0. Under exact conditions
on A, · · · , F, the local well-posedness theory extends globally, and bounds for
the growth in time of relevant norms of solutions corresponding to very general
auxiliary data are derived.
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1. Introduction

It is well known that the regularized long wave of small amplitude equation, aka,
BBM equation

ηt + ηx − ηxxt + ηηx = 0, (1.1)

where η = η(x, t) is a real-valued function defined for (x, t) ∈ R × R+, is globally
well posed if the initial condition η(x, 0) lies in Sobolev space Hs = Hs(R) for
any s ≥ 0, see Benjamin etc [1], Bona and Tzvetkov [8], Bona and Chen [2], Bona
etc [3], [4] and Chen [9]. However, if η is considered to be complex-valued function,
write it in real part and imaginary part as η = u+ iv, then (1.1) can be represented
as the following system of equations,ut + ux − uxxt + (

1

2
u2 − 1

2
v2)x = 0,

vt + vx − vxxt + (uv)x = 0.
(1.2)

Our preliminary numerical results show that solutions of (1.2) blow up in finite
time very quickly for small Gaussian initial data. Of course, if the minus sign − in
front 1

2v
2 is replaced with plus +, it is two BBM equations of dependent variables

u+ v and u− v. In other words, the system can be decoupled. Hence the problem
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is globally well posed in Hs × Hs for all s ≥ 0. This leads us to a more general
system of equations

ut + ux − uxxt + (Au2 +Buv + Cv2)x = 0,

vt + vx − vxxt + (Du2 + Euv + Fv2)x = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x)

(1.3)

for consideration, where A,B,C.D,E and F are real numbers. The aim of the
current work is to understand a wide range of condition on A, · · · , F which makes
the system globally well posed.

It is worth pointing out that the KdV-KdV system
ut + uxxx + (Au2 +Buv + Cv2)x = 0,

vt + vxxx + (Du2 + Euv + Fv2)x = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x)

(1.4)

was introduced and studied by Bona, Cohen and Wang [6]. They show that for any
s > − 3

4 , if the initial data

u0(x), v0(x) ∈ Hs(R), (1.5)

then (1.4) is well-posed locally in time. That is to say, (1.4) has a unique solution
(u, v) ∈ C

(
[0, T ];Hs(R) × Hs(R)

)
for some finite number T > 0. Moreover, they

show that system (1.4) is globally well-posed if the system of linear equations{
2Ba+ (E − 2A)b− 4Dc = 0,

4Ca+ (2F −B)b− 2Ec = 0
(1.6)

has a nontrivial solution (a, b, c) such that 4ac − b2 > 0, i.e. the solution u, v ∈
C([0,∞);Hs(R) ×HsR)). In more recent paper [5], Bona, Chen and Karakashian
pointed out that global well-posedness holds true as well when 4ac− b2 = 0.

In this current work, we like to bring the theory for (1.3) closely into line with
that appearing in Bona etc [6]. What we show is that system (1.3) is locally well-
posed if u0, v0 ∈ Hs(R) for any s ≥ 0. Moreover, we show that the length of time T
only depends on L2(R)-norms of the initial data ∥u0∥L2(R) and ∥v0∥L2(R). If (1.6)
has one non-trivial solution (a, b, c) with property 4ac−b2 ≥ 0, then the time interval
for the solution can be extended to [0,∞). Moreover, we have bound growth in time
of ∥u(·, t)∥Hs(R), ∥v(·, t)∥Hs(R) for any s ≥ 0.

Unlike a single KdV equation, system (1.3) does not have infinite number of
invariants, hence, when global well-posedness occurs, except s = 1, we do not ex-
pect Sobolev norms ∥(u(·, t), v(·, t))∥Hs(Rs)×Hs(R) of solutions (u, v) to be uniformly
bounded for t ∈ [0,∞).

Here is our main results in a rough statement.

Theorem 1.1. If algebraic equations (1.6) has a non zero solution (a, b, c) such
that 4ac − b2 > 0, then (1.3) is globally well-posed in Hs × Hs for any s ≥ 0.
However, the bounds structure is different as follows.

∥(u(·, t), v(·, t))∥Hs×Hs ≤ cs(1 + t)
2
3 (s−1)+ 1

3 (s−⌊s⌋) if s ≥ 1,

∥(u(·, t), v(·, t))∥Hs×Hs ≤ cs,1e
cst if

1

4
< s < 1,

∥(u(·, t), v(·, t))∥Hs×Hs ≤ cs,1e
cst

2

if 0 ≤ s ≤ 1

4
,
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where cs and cs,1 are constants which depend only on the corresponding Sobolev
norms of the initial data.

Theorem 1.2. If system of algebraic equations (1.6) has a non zero solution (a, b, c)
such that 4ac− b2 = 0, then (1.3) is globally well-posed in Hs ×Hs for any s ≥ 0.
Here is the bound structure based on segment where s lies:

∥(u(·, t), v(·, t))∥Hs×Hs ≤ cs,1e
cs,2t if s ≥ 1,

∥(u(·, t), v(·, t))∥Hs×Hs ≤ cs,1e
ecs,2t

if
1

4
< s < 1,

∥(u(·, t), v(·, t))∥Hs×Hs ≤ cs,1e
ecs,2t2

if 0 ≤ s ≤ 1

4
,

where cs,1, cs,2 are constants dependent only on the corresponding Sobolev norms of
the initial data ∥u0∥Hs , ∥v0∥Hs .

Remark. For s < 0, the problem is not expected to be locally well posed since a
single BBM equation was shown not to be well posed, see Bona and Tzvetkov [8]
and Bona and Dai [7].

Remark. The single KdV-equation has infinite number of invariants, so the upper
bounds for norms of the solution in Sobolev spaces Hs can be shown to be uniformly
bounded in time for s ≥ 0 being integers. However, the single BBM-equation has
only three invariants, one of them is useful to show H1 norm of the solution to be
uniformly bounded. For s > 1, the current techniques cannot show the uniform
boundedness of Hs norm of the solution. On the other hand, numerical evidences
suggested that Hs norm of the solution is uniformly bounded. For time being,
it is not expected that the results for system (1.3) better than that of the single
BBM-equation.

The plan of the remainder of the paper is as follows. In Section 3, the initial
value problem (1.3) is converted into an equivalent system of integral equations.
Then local well-posedness is first deduced for the L2 × L2 case by applying the
contraction-mapping principle and then extended to Hs(R) × Hs(R) for s ≥ 0
by bootstrapping. Section 4 is concerned with global well-posedness. Conserved
quantities are introduced at the beginning of the section and the conditions on the
coefficients A,B, · · · , F under which the invariants exist are determined. These
will be used to derive a priori bounds that lead to global well-posedness. Following
the idea in Chen [9], the growth bounds of relative norms of solutions in time are
obtained for the case Hs × Hs separately when s ≥ 1 and 0 ≤ s < 1, which also
conclude the proof of the global well-posedness for these cases as well.

2. Notation

The notational conventions and function-space designations used in this paper are
set out here. Cb = Cb(R) is a Banach space of uniformly bounded and continuous
functions defined on the real number line R with the standard norm. For 1 ≤
p < ∞, Lp = Lp(R) connotes the pth-power Lebesque-integrable functions with
the usual modification for the case p = ∞. The norm of a function f ∈ Lr with
1 ≤ r ≤ ∞ is written |f |r while the Lr × Lr-norm of a pair (f, g) of such functions
is written |(f, g)|Lr×Lr = |f |r + |g|r. In general, if X and Y are Banach spaces, then
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their Cartesian product X × Y is a Banach space with a product norm defined by
∥(f, g)∥X×Y = ∥f∥X + ∥g∥Y .

The Sobolev class Hs = Hs(R) for s ≥ 0 is the class of measurable functions

f whose Fourier transform f̂(ξ) is a measurable function, square integrable with

respect to the measure (1 + ξ2)
1
2 sdξ, where

f̂(ξ) =

∫ ∞

−∞
f(x)e−ixξdx.

We will simply use Hs rather than Hs(R) unless emphasis on the domain of def-

inition of the functions is needed. A pair of functions (u, v) or

u

v

 is denoted

a bold-faced letter v some time. When v ∈ Hs × Hs, its norm is defined as
∥v∥s×s = ∥(u, v)∥Hs×Hs = ∥u∥s + ∥v∥s. In special case s = 0, so Hs = L2, we
simply write the corresponding norm as ∥v∥ = ∥(u, v)∥ = ∥u∥ + ∥v∥. If X is any
Banach space and T > 0 given, C(0, T ;X) is the class of continuous maps from
[0, T ] into X with its usual norm

∥u∥C(0,T ;X) = sup
t∈[0,T ]

∥u(t)∥X .

The subspace C1(0, T ;X) of the elements of C(0, T ;X) for which the limit

u′(t) = lim
h→0

u(t+ h)− u(t)

h

exists in C(0, T ;X), is also a Banach space with the obvious norm. For k ∈ N the
spaces Ck(0, T ;X) are defined inductively and by analogy. For convenience and
when there couldn’t be any confusion created,∫ ∞

−∞
f(x) dx is replaced by

∫
f(x) dx.

3. Local Well-posedness

The analysis for (1.3) begins with local well-posedness in a reasonably broad set of
functional classes. To accomplish this, the given system is converted to an equivalent
system of integral equations.

Let the bold faced letter v denote the vector

v =

u

v


of dependent variables u and v, v0 the vector

v0 =

u0

v0


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of initial data and G the vector of non-linearities

G = G(u, v) = G(v) =

P (u, v)

Q(u, v)

 =

Au2 +Buv + Cv2

Du2 + Euv + Fv2

 .

Then the system (1.3) can be written as{
vt + vx − vxxt +Gx = 0,

v(x, 0) = v0(x).
(3.1)

Rearranging the equation as

vt − vxxt = −vx −Gx,

or
(I − ∂2

x)vt = −∂x(v +G).

Inverting the operator (I − ∂2
x) subject to boundness at ±∞ leads to

vt(x, t) = −(I − ∂2
x)

−1∂x
[
v(x, t) +G(v(x, t))

]
=

∫
K(x− y)

[
v(y, t) +G(v(y, t))

]
dy,

(3.2)

where the kernel K is applied to the vectors v and G(v) componentwise and

K(x) =
1

2
sgn(x)e−|x| whose Fourier transform is K̂(ξ) =

−iξ

1 + ξ2
. (3.3)

In (3.2), integrating with respect to t leads to the integral equations

v(x, t) = v0(x) +

∫ t

0

∫
K(x− y)

[
v(y, t) +G

(
v(y, t)

)]
dydt. (3.4)

Define an operator K as

Kf(x) = K ∗ f(x) =
∫

K(x− y)f(y) dy, (3.5)

then (3.4) can be written as,

v(x, t) = v0(x) +

∫ t

0

K
[
v +G

(
v
)]
(x, t) dt. (3.6)

Or, what is the same,
u(x, t) =u0(x) +

∫ t

0

K
(
u+Au2 +Buv + Cv2

)
(x, t) dt

v(x, t) =v0(x) +

∫ t

0

K
(
v +Du2 + Euv + Fv2

)
(x, t) dt.

(3.7)

Write the integral expression in terms of operator form,

v(x, t) = Av(x, t) := v0(x) +

∫ t

0

K
[
v +G(v)

]
(x, t)dt, (3.8)

a solution to system (3.7) becomes a fixed-point of the operator A. Hence, it is
sufficient to show that A is a contraction mapping on a complete metric space.
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Proposition 3.1. The operator K maps Hs to Hs+1 continuously. However, for
f, g ∈ Hs, if 0 ≤ s ≤ 1

4 , then K(fg) ∈ Hs+ 1
2−ϵ ∩ Cb for any ϵ > 0; if 1

4 < s ≤ 1
2 ,

then K(fg) ∈ H1.

Proof. That the operator K maps Hs to Hs+1 continuously is obvious since

∥Kf∥2s+1 =

∫
(1 + ξ2)s+1

∣∣ −iξ

1 + ξ2
f̂(ξ)

∣∣2 dξ ≤ ∥f∥2s. (3.9)

If 0 ≤ s ≤ 1
4 , H

s is not an algebra, when f, g ∈ Hs, the product fg is not
necessarily in Hs, so K(fg) is not expected to be in Hs+1. However, it is smoother
than both f and g. Let r < 1

2 + s, then∫
(1 + ξ2)r|K̂fg(ξ)|2 dξ =

∫
(1 + ξ2)r

∣∣ iξ

1 + ξ2
∣∣2|f̂ ∗ ĝ(ξ)|2 dξ.

=

∫
(1 + ξ2)r−2|ξ|2−2s|ξ|2s |f̂ ∗ ĝ(ξ)|2 dξ.

Since |ξ|2s ≤ |ξ − η|2s + |η|2s,

|ξ|2s |f̂ ∗ ĝ(ξ)|2 = |ξ|2s
∫

|f̂(ξ − η)ĝ(η)|2 dη

≤
∫

|ξ − η|2s|f̂(ξ − η)ĝ(η)|2 dη +

∫
|η|2s|f̂(ξ − η)ĝ(η)|2 dη

≤ ∥f∥2s∥g∥2 + ∥f∥2∥g∥2s.

It follows that∫
(1 + ξ2)r|K̂fg(ξ)|2 dξ ≤

∫
(1 + ξ2)r−2|ξ|2−2s dξ

(
∥f∥2s∥g∥2 + ∥f∥2∥g∥2s

)
.

The fact that r < 1
2 + s implies that the integral c =

∫
(1 + ξ2)r−2|ξ|2−2s dξ < ∞,

that is to say, K(fg) ∈ H
1
2+s−ϵ ⊂ Hs for any ϵ > 0 with

∥K(fg)∥ 1
2+s−ϵ ≤

(∫
(1 + ξ2)s−

3
2−ϵ|ξ|2−2s dξ

) 1
2
(
∥f∥s∥g∥+ ∥f∥∥g∥s

)
. (3.10)

By Young’s inequality,

|K(fg)|∞ = |K ∗ (fg)|∞ ≤ |K|∞|fg|1 ≤ ∥f∥∥g∥, (3.11)

it implies that K(fg) ∈ Cb. Hence, the second part of the proposition is established.
It remains to show the last part.

If 1
4 < s < 1, f, g ∈ Hs implies fg ∈ L2 due to Hs is embedded in L4 continu-

ously, hence K(fg) ∈ H1 with

∥K(fg)∥1 ≤ ∥fg∥ ≤ κ∥f∥s∥g∥s (3.12)

where κ is an embedding constant from Hs to L4.
The proof is complete.
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Theorem 3.1. (Local well posedness in L2 × L2) If v0 ∈ L2 × L2, then there is a
positive number T = T (∥v0∥) such that the operator A has a fixed point, v say, in
C(0, T ;L2)× C(0;T ;L2). Moreover,

w = v − v0 (3.13)

lies in C(0, T ;Hr ∩ Cb) ∩ C(0, T ;Hr × Cb) for any r < 1
2 and

z = v − v0 − tK ∗
(
v0 +G(v0)

)
(3.14)

lies in C(0, T ;H1)× C(0, T ;H1).

Proof. From the last proposition regarding properties of the operator K, if v ∈
L2 × L2, then Kv ∈ H1 × H1 and K(G(v)) ∈ H

1
2−ϵ × H

1
2−ϵ for any ϵ > 0

with ∥K(G(v))∥ 1
2−ϵ ≤ c∥v∥ for some constant c. Hence, the operator A maps

C(0, T ;L2)× C(0, T ;L2) to itself for any T > 0. Choose

T =
1

2(1 + 1
4 max{|A|, 1

2 |B|, 1
2 |C|, 1

2 |D|, 1
2 |E|, |F |}) ∥v0∥

, (3.15)

an elementary calculation shows that A is a contraction mapping on the complete
metric space

XT = {(u, v) : u, v ∈ C(0, T ;L2), max
0≤t≤T

∥(u(·, t), v(·, t))∥ ≤ 2∥v0∥}.

The same is to say that integral equation (3.4), (3.6), (3.7) or (3.8) has a unique
solution v in XT . The first part of the theorem is established.

To show the second part, reorganize equation (3.8) as follows,

v(x, t)− v0(x) =

∫ t

0

K
[
v +G

(
v
)]
(x, t) dt.

Since v ∈ C(0, T ;L2)×C(0, T ;L2), and the two components of G(v) are quadratic
form of v, the proposition 3.1 shows that

K
[
v +G

(
v
)]

∈ C(0, T ;Hr ∩ Cb)× C(0, T ;Hr ∩ Cb)

for any r < 1
2 . Hence, w = v − v0 lies in C(0, T ;Hr ∩ Cb) × C(0, T ;Hr ∩ Cb).

Estimate (3.13) is established.
Substitute v(x, t) with w(x, t) + v0(x) in (3.6), it obtains

w(x, t) =tK ∗
(
v0(x) +G(v0(x))

)
+

∫ t

0

K ∗
[
w +

Pu(u0, v0) Pv(u0, v0)

Qu(u0, v0) Qv(u0, v0)

w +G
(
w
)]
(x, t) dt.

(3.16)

Since Pu(u0, v0), Pv(u0, v0), Qu(u0, v0) and Qv(u0, v0) are linear combinations of
u0 and v0, the fact that w(·, t) ∈ Hr ×Hr ∩ Cb × Cb implies that the terms in the
square bracket belongs to L2×L2, hence the integrant is a member of C(0, T ;H1)×
C(0, T ;H1). Namely the expression in (3.14) lies in C(0, T ;H1)× C(0, T ;H1).

The theorem is established.
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Theorem 3.2. (Local well posedness in Hs × Hs for any s ≥ 0.) For any given
s ≥ 0, if the initial condition v0 = (u0, v0) ∈ Hs × Hs, the solution v = (u, v)
obtained in Theorem 3.1 lies in C(0, T ;Hs)×C(0, T ;Hs) where T only depends on
∥v0∥.

Proof. We commence with the result of Theorem 3.1 that system (1.3) has a
unique distributional solution v ∈ C(0, T ;L2) × C(0, T ;L2) where T is given in
(3.15) and

v − v0 − tK ∗
(
v0 +G(v0)

)
∈ C(0, T ;H1)× C(0, T ;H1).

What is same, in terms of its two components,

u− u0 − tK
(
u0 + P (u0, v0)

)
∈ C(0, T ;H1),

v − v0 − tK
(
v0 +Q(u0, v0)

)
∈ C(0, T ;H1).

When 0 ≤ s ≤ 1
4 , by Proposition 3.1,

K
(
u0 + P (u0, v0)

)
, K

(
v0 +Q(u0, v0)

)
∈ C(0, T ;Hs+ 1

2−ϵ)

for any small ϵ > 0. It follows immediately that

u− u0 =
{
u− u0 − tK

(
u0 + P (u0, v0))

}
+ tK

(
u0 + P (u0, v0)

)
and

v − v0 =
{
v − v0 − tK

(
v0 +Q(u0, v0))

}
+ tK

(
u0 + P (u0, v0)

)
belong to C(0, T ;Hs+ 1

2−ϵ). Therefore,

v = (v − v0) + v0 ∈ C(0, T ;Hs)× C(0, T ;Hs).

When 1
4 < s < 1, G(v0) ∈ L2×L2 due to Hs ⊂ L4 continuously. The smoothing

property of K, stated in Proposition 3.1, asserts that K
(
v0 +G(v0)

)
∈ H1 ×H1.

Hence v − v0 ∈ C(0, T ;H1 ×H1), therefore,

v = (v − v0) + v0 ∈ C(0, T ;Hs)× C(0, T ;Hs).

If s ≥ 1, then v = (v − v0) + v0 ∈ H1 ×H1. So

v − v0 =

∫ t

0

K
(
v +G(v)

)
dt

lies in C(0, T ;H2)× C(0, T ;H2). Inductively,

v − v0 =

∫ t

0

K
(
v +G(v)

)
dt ∈ C(0, T ;H⌊s⌋+1)× C(0, T ;H⌊s⌋+1).

Therefore,

v = v0 +

∫ t

0

K
(
v +G(v)

)
dt ∈ C(0, T ;Hs)× C(0, T ;Hs).

The theorem is asserted.
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4. Global well-posedness under 4ac− b2 ≥ 0.

Throughout this section, it is assumed that (1.6) has a non-trivial solution (a, b, c)
such that 4ac− b2 ≥ 0.

4.1. Invariants

System (1.3) is locally well posed for all constant coefficients A, · · · , F. To pass to
a global theory, the technique here demands a priori information on growth bound
in time of solutions in relevant spatial norms. Following steps in Bona etc [6], we
look for sufficient conditions on A,B, · · · , F which provide helpful information in
order to build global well-posedness.

In Bona etc [6], it is shown that (1.4) alway has a Hamiltonian structure, the
similar calculation shows it is true for (1.3). Here are two important invariants

Ω(u, v) =

∫ ∞

−∞
(au2 + buv + cv2 + au2

x + buxvx + cv2x) dx (4.1)

and

Θ(u, v) =

∫ ∞

−∞

(
au2

x + buxvx + cv2x −R(u, v)
)
dx, (4.2)

where

R(u, v) =
α

3
u3 +

1

2
βu2v +

1

2
γuv2 +

δ

3
v3, (4.3)

(a, b, c) is a non-trivial solution of (1.6) and, α, β, γ, δ are given by

α = 2aA+ bD, β = bA+ 2cD, γ = 2aC + bF, δ = bC + 2cF. (4.4)

β and γ can be also represented in terms of B and E as

β = aB +
1

2
bE, γ =

1

2
bB + cE. (4.5)

Notice that,2a b

b 2c

G(v) =

2a b

b 2c

P (u, v)

Q(u, v)

 = ∇R(u, v). (4.6)

4.2. Global well-posedness under 4ac− b2 > 0.

Theorem 4.1. If system of algebraic equations (1.6) has a non zero solution (a, b, c)
such that 4ac− b2 > 0 and the initial condition v0 ∈ Hs×Hs where s ≥ 1, then the
distributional solution v = (u, v) in Theorem 3.2 has the following growth bound in
time t:

∥v(·, t)∥s×s ≤ cs(1 + t)
2
3 (s−1)+ 1

3 (s−⌊s⌋), (4.7)

where cs is a constant which depends on ∥u0∥s and ∥v0∥s. Therefore, (1.3) is well
posed globally in time, v(·, t) ∈ C(0,∞;Hs ×Hs).
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Proof. We begin with s ≥ 1 being an integer. Without loss of generality, demand
a, c > 0, hence the matrix

N =

2a b

b 2c

 (4.8)

is positive definite. Multiply (3.1) by N , it leads to that

∂t(I − ∂xx)Nv +Nvx + ∂x∇R(u, v) = 0, (4.9)

where R is defined in (4.3) and∇ is gradient of the cubic polynomial R with resepect
to u and v.

Starting with estimating H1 ×H1 norm of v by taking L2 × L2 inner product
of (4.9) with v as follows,

⟨∂t(I − ∂xx)Nv,v⟩+ ⟨Nvx,v⟩+ ⟨∂x∇R(u, v),v⟩ = 0,

apparently, the last two inner products are equal to zero, that is to say,

1

2

d

dt
(∥N 1

2v∥2 + ∥N 1
2vx∥2)

=
d

dt

∫
(au2 + buv + cv2 + au2

x + buxvx + cv2x) dx

=0.

(4.10)

It readily follows that

∥N 1
2v∥2 + ∥N 1

2vx∥2 = ∥N 1
2v0∥2 + ∥N 1

2v0
′∥2. (4.11)

The strict positive definite property of N implies

∥v(·, t)∥1 = ∥N− 1
2N 1

2v∥1 ≤ λ∗∥N 1
2v∥1 = λ∗∥N 1

2v0∥1, (4.12)

and
∥v(·, t)∥1 = ∥N− 1

2N 1
2v∥1 ≥ λ∗∥N

1
2v∥1 = λ∗∥N

1
2v0∥1, (4.13)

where λ∗, λ
∗ > 0 depend only on a, b and c. That is to say, the H1 × H1-norm

of the solution v = (u, v) is equivalent to that of N 1
2v, hence uniformly bounded.

Estimate (4.7) is true for s = 1.
Take L2 × L2 inner product of (4.9) with −vxx,

⟨∂t(I − ∂xx)Nv,−vxx⟩+ ⟨Nvx,−vxx⟩+ ⟨∂x∇R(u, v),−vxx⟩ = 0.

A simple calculation shows < Nvx,−vxx >= 0, whence,

1

2

d

dt
(∥N 1

2vx∥2 + ∥N 1
2vxx∥2)

=
d

dt

∫
(au2

x + buxvx + cv2x + au2
xx + buxxvxx + cv2xx) dx

=

∫ (
uxx∂xRu(u, v) + vxx∂xRv(u, v)

)
dx

=

∫ (
uxx(αu

2 + βuv +
1

2
γv2)x + vxx(

1

2
βu2 + γuv + δv2)x

)
dx.
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Following idea in Chen [9], integrations by parts a few times, upon simplification,
it yields that

1

2

d

dt
(∥N 1

2vx∥2 + ∥N 1
2vxx∥2)

=−
∫ (

αu3
x +

3

2
βu2

xvx +
3

2
γuxv

2
x + δv3x

)
dx

=− 3

∫
R(ux, vx) dx

≤max
{
|α|, 3

2
|β|, 3

2
|γ|, |δ|

}
(|ux|∞ + |vx|∞)(∥ux∥2 + ∥vx∥2)

≤max
{
|α|, 3

2
|β|, 3

2
|γ|, |δ|

}
(∥ux∥2 + ∥vx∥2)

3
2 (∥uxx∥

1
2 + ∥vxx∥

1
2 ).

This together with (4.12) and (4.13) implies that

d

dt
(∥N 1

2vx∥2 + ∥N 1
2vxx∥2) ≤ c1 (∥N

1
2vx∥2 + ∥N 1

2vxx∥2)
1
4 ,

where c1 is a constant only dependent on ∥v0∥1. Solving this inequality yields,

(∥N 1
2vx∥2 + ∥N 1

2vxx∥2)
1
2 ≤

(
∥N 1

2v′
0∥

3
2
1 + c1t

) 2
3

.

This with (4.12) and (4.13) indicates

∥v(·, t)∥2 ≤ c2(1 + t)
2
3 . (4.14)

Suppose that the estimate (4.7) is true for j = 3, 4, · · · , s− 1, i.e.

∥v(·, t)∥j ≤ cj(1 + t)
2
3 (j−1) (4.15)

where constant cj only depends on ∥v0∥j . Then, take L2×L2 inner product of (4.9)

with (−1)s−1∂
2(s−1)
x v(x, t), it obtains

1

2

d

dt
(∥N 1

2 ∂s−1
x v∥2 + ∥N 1

2 ∂s
xv∥2)

=
d

dt

∫ (
a(∂s−1

x u)2 + b∂s−1
x u∂s−1

x v + c(∂s−1
x v)2 + a(∂s

xu)
2 + b∂s

xu∂
s
xv + c(∂s

xv)
2
)
dx

=(−1)s
∫ (

∂2(s−1)
x u∂xRu(u, v) + ∂s−1

x vRv(u, v)
)
dx

=(−1)s
∫ (

α(u2)x∂
2(s−1)
x u+ β(uv)x∂

2(s−1)
x u+

1

2
β(u2)x∂

2(s−1)
x v

+
1

2
γ(v2)x∂

2(s−1)
x u+ γ(uv)x∂

2(s−1)
x v + δ(v2)x∂

2(s−1)
x v

)
dx.

Integrations by parts s− 1 times, it transpires that

1

2

d

dt
(∥N 1

2 ∂s−1
x v∥2 + ∥N 1

2 ∂s
xv∥2)

=− α

∫
∂s
x(u

2)∂s−1
x u dx− 1

2
β

∫ (
2∂s

x(uv)x∂
s−1
x u+ ∂s

x(u
2)∂s−1

x v
)
dx

− 1

2
γ

∫ (
∂s
x(v

2)∂s−1
x u+ 2∂s

x(uv)∂
s−1
x v

)
dx− δ

∫
∂s
x(v

2)∂s−1
x v dx.

(4.16)
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To analyze the α-term, apply the Leibnitz formula, it follows∫
∂s
x(u

2)∂s−1
x u dx

=

∫
2u∂s

xu∂
s−1
x u dx+

s−1∑
j=1

(
s

j

)∫
∂j
xu∂

s−j
x u∂s−1

x u dx

=−
∫

ux(∂
s−1
x u)2 dx+

s−2∑
j=2

(
s

j

)∫
∂j
xu∂

s−j
x u∂s−1

x u dx+ 2s

∫
ux(∂

s−1
x u)2 dx

=(2s− 1)

∫
ux(∂

s−1
x u)2 dx+

s−2∑
j=2

(
s

j

)∫
∂j
xu∂

s−j
x u∂s−1

x u dx.

We have

|
∫

∂s
x(u

2)∂s−1
x u dx|

≤(2s− 1)|ux(·, t)|∞∥∂s−1
x u(·, t)∥2 +Σs−2

j=2

(
s

j

)
|∂j

xu(·, t)|∞∥∂s−j
x u(·, t)∥∥∂s−1

x u(·, t)∥

≤(2s− 1)∥ux∥
1
2 ∥uxx∥

1
2 ∥∂s−1

x u∥2

+Σs−2
j=2

(
s

j

)
∥∂j

xu∥
1
2 ∥∂j+1

x u∥ 1
2 ∥∂s−j

x u(·, t)∥∥∂s−1
x u(·, t)∥.

By inductive assumption (4.15), the first term in the last two lines is bounded by a

constant multiplying (1 + t)
1
3 (1 + t)

4
3 (s−2) = (1 + t)

4
3 s−

7
3 , and for j = 2, · · · , s− 2,

j-terms are bounded by a constant times (1 + t)
1
3 (j−1)(1 + t)

1
3 j(1 + t)

2
3 (s−1−j)(1 +

t)
2
3 (s−2) = (1 + t)

4
3 s−

7
3 as well, whence,

|
∫

∂s
x(u

2)∂s−1
x u dx| ≤ c(1 + t)

4
3 s−

7
3 , (4.17)

where c is constants independent of t.
For the β-term in (4.16),∫ (

2∂s
x(uv)x∂

s−1
x u+ ∂s

x(u
2)∂s−1

x v
)
dx

=
s∑

j=0

(
s

j

)∫ (
2∂j

xu∂
s−j
x v∂s−1

x u+ ∂j
xu∂

s−j
x u∂s−1

x v
)
dx

=

∫ (
2u∂s

xv∂
s−1
x u+ 2v∂s

xu∂
s−1
x u+ 2u∂s

xu∂
s−1
x v

)
dx

+
s−1∑
j=1

(
s

j

)∫ (
2∂j

xu∂
s−j
x v∂s−1

x u+ ∂j
xu∂

s−j
x u∂s−1

x v
)
dx

=−
∫

2ux∂
s−1
x u∂s−1

x v dx+ vx(∂
s−1
x u)2

)
dx,

+
s−1∑
j=1

(
s

j

)∫ (
2∂j

xu∂
s−j
x v∂s−1

x u+ ∂j
xu∂

s−j
x u∂s−1

x v
)
.
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Hence,

|
∫ (

2∂s
x(uv)x∂

s−1
x u+ ∂s

x(u
2)∂s−1

x v
)
dx|

≤2|ux|∞∥∂s−1
x u∥∥∂s−1

x v∥+ |vx|∞∥∂s−1
x u∥2

+
s−1∑
j=1

(
s

j

)(
2|∂j

xu|∞∥∂s−j
x v∥∥∂s−1

x u∥+ |∂j
xu|∞∥∂s−j

x u∥∥∂s−1
x v∥

)
≤2∥ux∥

1
2 ∥uxx∥

1
2 ∥∂s−1

x u∥∥∂s−1
x v∥+ ∥vx∥

1
2 ∥vxx∥

1
2 ∂s−1

x u∥2

+
s−1∑
j=1

(
s

j

)(
2∥∂j

xu∥
1
2 ∥∂j+1

x u∥ 1
2 ∥∂s−j

x v∥∥∂s−1
x u∥+∥∂j

xu∥
1
2 ∥∂j+1

x u∥ 1
2 ∥∂s−j

x u∥∥∂s−1
x v∥

)
.

Again, by inductive assumption (4.15),

|
∫ (

2∂s
x(uv)x∂

s−1
x u+ ∂s

x(u
2)∂s−1

x v
)
dx| ≤ c(1 + t)

4
3 s−

7
3 , (4.18)

where c is constants independent of t.
Similarly, for γ, δ-terms,

|
∫ (

∂s
x(v

2)∂s−1
x u+ 2∂s

x(uv)∂
s−1
x v

)
dx|

≤2∥vx∥
1
2 ∥vxx∥

1
2 ∥∂s−1

x v∥∥∂s−1
x u∥+ ∥ux∥

1
2 ∥uxx∥

1
2 ∥∂s−1

x v∥2

+
k∑

j=1

(
s

j

)(
2∥∂j

xv∥
1
2 ∥∂j+1

x v∥ 1
2 ∥∂s−j

x u∥∥∂s−1
x v∥+∥∂j

xv∥
1
2 ∥∂j+1

x v∥ 1
2 ∥∂s−j

x v∥∥∂s−1
x u∥

)
≤c(1 + t)

4
3 s−

7
3 ,

(4.19)

and

|
∫

∂s
x(v

2)x∂
s−1
x v dx|

≤(2s− 1)∥vx∥
1
2 ∥vxx∥

1
2 ∥∂s−1

x v∥2,

+Σs−2
j=2

(
s

j

)
∥∂j

xv∥
1
2 ∥∂j+1

x v∥ 1
2 ∥∂s−j

x v(·, t)∥∥∂s−1
x v(·, t)∥

≤c(1 + t)
4
3 s−

7
3 .

(4.20)

Combination of (4.16), (4.17) through (4.20) leads to

1

2

d

dt
(∥N 1

2 ∂s−1
x v∥2 + ∥N 1

2 ∂s
xv∥2)

≤cs−1(1 + t)
1
3 (j−1)+ 1

3 j+
2
3 (s−1−j)+ 2

3 (s−2)

=cs−1(1 + t)
4
3 s−

7
3

(4.21)

where cs−1 is a constant only dependent on ∥v0∥s−1. Integrate with respect to t, it
gives,

∥N 1
2 ∂s−1

x v∥2 + ∥N 1
2 ∂s

xv∥2 ≤ ∥N 1
2 ∂s−1

x v0∥2 + ∥N 1
2 ∂s

xv0∥
2 + cs−1(1 + t)

4
3 (s−1).

(4.22)
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This together with (4.11) shows that

∥v(·, t)∥s ≤ cs(1 + t)
2
3 (s−1), (4.23)

where cs is a constant only dependent on ∥v0∥s. The theorem has been proved for
s being a positive integer.

Consideration remains to the case that s > 1 is non-integer. Denote n = ⌊s⌋
and σ = s − n, so that n ≥ 1 is an integer and 0 < σ < 1. Reorganize in (1.3) as
follows, 

uxxt = ut + ux + (Au2 +Buv + Cv2)x,

vxxt = vt + vx + (Du2 + Euv + Fv2)x,

u(x, 0) = u0(x), v(x, 0) = v0(x),

integrate with respect to t, it obtains the following two relations

∂xx
(
u(x, t)− u0(x)

)
= u(x, t)− u0(x) +

∫ t

0

(u+Au2 +Buv + Cv2)x dt,

∂xx
(
v(x, t)− v0(x)

)
= v(x, t)− v0(x) +

∫ t

0

(v +Du2 + Euv + Fv2)x dt.

It is a simple observation that u − u0, v − v0 are one order smoother than u, v
in spatial variable x. As we just showed that u, v ∈ C(0,∞;Hn), and u − u0,
v − v0 ∈ C(0,∞;Hn+1), take derivative with respect to x n − 1 times, it yields
following forms

∂n+1
x

(
u(x, t)− u0(x)

)
= ∂n−1

x

(
u(x, t)− u0(x)

)
+

∫ t

0

∂n
x (u+Au2 +Buv + Cv2) dt,

∂n+1
x

(
v(x, t)− v0(x)

)
= ∂n−1

x

(
v(x, t)− v0(x)

)
+

∫ t

0

∂n
x (v +Du2 + Euv + Fv2) dt.

We immediately have estimates below

∥∂n+1
x

(
u(·, t)− u0(·)

)
∥ ≤ ∥∂n−1

x

(
u(·, t)− u0(·)

)
∥

+

∫ t

0

∥∂n
x (u+Au2 +Buv + Cv2)∥ dt,

∥∂n+1
x

(
v(·, t)− v0(·)

)
∥ ≤ ∥∂n−1

x

(
v(·, t)− v0(·)

)
∥

+

∫ t

0

∥∂n
x (v +Du2 + Euv + Fv2)∥ dt.

(4.24)

A little more detailed estimates on ∥∂n
xu

2∥, ∥∂n
x (uv)∥ and ∥∂n

x v
2∥ are needed:

∥∂n
x (uv)∥ =∥

n∑
j=0

(
n

j

)
∂j
xu∂

n−j
x v∥

≤∥u∂n
x v∥+ ∥v∂n

x∥+
n−1∑
j=1

(
n

j

)
∥∂j

xu∂
n−j
x v∥

≤|u|∞∥∂n
x v∥+ |v|∞∥∂n

xu∥+
n−1∑
j=1

(
n

j

)
|∂j

xu|∞∥∂n−j
x v∥

≤|u|∞∥∂n
x v∥+ |v|∞∥∂n

xu∥+
n−1∑
j=1

(
n

j

)
∥∂j

xu∥
1
2 ∥∂j+1

x u∥ 1
2 ∥∂n−j

x v∥.
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Making use of (4.23), we have,

∥∂n
x (uv)∥ ≤ cn(1 + t)

2
3 (n−1) + cn(1 + t)

2
3n−1 ≤ cn(1 + t)

2
3 (n−1).

Take u = v, we have
∥∂n

x (u
2)∥ ≤ cn(1 + t)

2
3 (n−1)

and
∥∂n

x (v
2)∥ ≤ cn(1 + t)

2
3 (n−1).

Substitute these last three estimates into (4.24), it gets

∥∂n+1
x

(
u(·, t)− u0(·)

)
∥ ≤ cn(1 + t)

2
3n+

1
3

and
∥∂n+1

x

(
v(·, t)− v0(·)

)
∥ ≤ cn(1 + t)

2
3n+

1
3 .

Since ∥u(·, t)∥1 and ∥v(·, t)∥1 are uniformly bounded for t ≥ 0, we have

∥u(·, t)− u0(·)∥n+1 ≤ cn(1 + t)
2
3n+

1
3

and
∥v(·, t)− v0(·)∥n+1 ≤ cn(1 + t)

2
3n+

1
3 .

By interpolation theorem,

∥u(·, t)− u0(·)∥n+σ ≤ ∥u(·, t)− u0(·)∥1−σ
n ∥u(·, t)− u0(·)∥σn+1

≤ cn(1 + t)
2
3 (1−σ)(n−1)(1 + t)σ(

2
3n+

1
3 )

= cn(1 + t)
2
3 (n+σ−1)+ 1

3σ

= cn(1 + t)
2
3 (s−1)+ 1

3 (s−⌊s⌋),

and similarly,
∥v(·, t)− v0(·)∥n+σ ≤ cn(1 + t)

2
3 (s−1)+ 1

3 (s−⌊s⌋).

As s = n+ σ, it follows immediately that

∥u(·, t)∥s ≤ ∥u0∥s + ∥u(·, t)− u0(·)∥s ≤ cs(1 + t)
2
3 (s−1)+ 1

3 (s−⌊s⌋)

and
∥v(·, t)∥s ≤ ∥v0∥s + ∥v(·, t)− v0(·)∥n+1 ≤ cs(1 + t)

2
3 (s−1)+ 1

3 (s−⌊s⌋).

These two estimates are exactly that of (4.7).
The theorem has been established.
It remains to investigate global well-posedness for the case where 0 ≤ s < 1,

where regularity of data is below the energy level.

Theorem 4.2. If system of algebraic equations (1.6) has a non zero solution (a, b, c)
such that 4ac−b2 > 0, then (1.3) is globally well-posed in Hs×Hs for any 0 ≤ s < 1.
The growth bounds of relative norms of solutions in time is given below.

∥v(·, t)∥s×s ≤ cs,1e
cst if

1

4
< s < 1,

∥v(·, t)∥s×s ≤ cs,1e
cst

2

if 0 ≤ s ≤ 1

4
,

(4.25)

where cs, cs,1 are constants only dependent on the corresponding Sobolev norms of
the initial data ∥v0∥s.
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Proof. The local well-posedness is guaranteed by Theorem 3.2, and moreover, by
Theroem 3.1,

w = v − v0 ∈ C(0, T ;H1)× C(0, T ;H1) for
1

4
< s < 1,

and

z = v − v0 − tK ∗
(
v0 +G(v0)

)
∈ C(0, T ;H1)× C(0, T ;H1) for 0 ≤ s ≤ 1

4
,

where T = T (∥v0∥) is only dependent on L2 × L2-norm of the initial data. It is
sufficient to establish a prior bounds (4.25).

For the case 1
4 < s < 1, w = v − v0 satisfies the integral equation (3.16),

repeated here for readers’ convenience:

w(x, t) =tK ∗
(
v0 +G(v0)

)
(x)

+

∫ t

0

K ∗
[
w +

Pu(u0, v0) Pv(u0, v0)

Qu(u0, v0) Qv(u0, v0)

w +G
(
w
)]
(x, t) dt.

As the matrix N defined in (4.8) is positive definite and remember the relation (4.6)
between N and G, (3.16) is equivalent to

Nw(x, t) =tK ∗
(
Nv0 +NG(v0)

)
(x)

+

∫ t

0

K ∗
[
Nw +

Ruu(u0, v0) Ruv(u0, v0)

Rvu(u0, v0) Rvv(u0, v0)

w +∇R
(
w
)]
(x, t) dt,

(4.26)
where R is a cubic polynomial function given in (4.3). It is same as

(1− ∂xx)Nwt(x, t) = −∂x

(
Nv0(x) +∇R(v0(x))

)
− ∂x

[
Nw +

Ruu(u0, v0) Ruv(u0, v0)

Rvu(u0, v0) Rvv(u0, v0)

w +∇R
(
w
)]
(x, t)

with initial condition w(x, 0) = (0, 0). Take L2 × L2-inner product with w, it gets

1

2

d

dt
(∥N 1

2w(·, t)∥2 + ∥N 1
2wx(·, t)∥2)

=−
⟨
∂x

(
Nv0 +∇R(v0)

)
,w

⟩
−
⟨
∂x

[
Nw +

Ruu(u0, v0) Ruv(u0, v0)

Rvu(u0, v0) Rvv(u0, v0)

w
]
,w

⟩
− ⟨∂x∇R(w),w⟩.

Since

⟨∂xNw,w⟩ = ⟨∂x∇R(w),w⟩ = 0,
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and notice that ∥∇R(v0)∥ is bounded by a number times ∥v0∥2s due to that Hs is
continuously embedded in L4. It follows immediately

1

2

d

dt
∥N 1

2w(·, t)∥21
≤∥Nv0 +∇R(v0)∥∥wx∥+ 2max{|α|, |β|, |γ|, |δ|}(∥u0∥+ ∥v0∥)|w|∞∥wx∥

≤
(
∥Nv0∥+ ∥∇R(v0)∥

)
∥wx∥+ 2max{|α|, |β|, |γ|, |δ|}(∥u0∥+ ∥v0∥)|w|21

≤cs
(
∥N 1

2w(·, t)∥1 + ∥N 1
2w(·, t)∥21

)
,

where cs = c(∥v0∥s) is a constant only dependent on ∥v0∥s. Solving the last in-
equality yields

∥N 1
2w(·, t)∥1 ≤ ecst − 1. (4.27)

In consequence,

∥v(·, t)∥s ≤ ∥w(·, t)∥1 + ∥v0∥s ≤ λ∗∥N 1
2w(·, t)∥1 + ∥v0∥s,≤ cs,1e

cst. (4.28)

where λ∗ is given in (4.12). The first part of (4.23) is established. It remains to
show the second estimate, namely 0 ≤ s ≤ 1

4 .

Denote v1 = K
(
v0+G(v0)

)
. By Proposition 3.1, it lies in H

1
2+s−ϵ×H

1
2+s−ϵ ∩

Cb × Cb for any ϵ > 0 with

∥v1∥ 1
2+s−ϵ ≤ ∥v0∥+ c̃

(∫
(1 + ξ2)s−

3
2−ϵ|ξ|2−2s dξ

) 1
2 ∥v∥2s,

|v1|∞ ≤ ∥v0∥+
1

3
c̃ ∥v0∥2,

(4.29)

where the constant c̃ = 6max{|A|, |B|, · · · , |F |}.
Write z defined in (3.14) as

z = v − v0 − tK ∗
(
v0 +G(v0)

)
= w − tv1.

System (3.16) can be rewritten in terms of variable vector z as

z(x, t) =

∫ t

0

K ∗
[
z+tv1+

Pu(u0, v0) Pv(u0, v0)

Qu(u0, v0) Qv(u0, v0)

(z+tv1)+G
(
z+ tv1

)]
(x, t) dt

=

∫ t

0

K ∗
[
z+

Pu(v0 + tv1) Pv(v0 + tv1)

Qu(v0 + tv1) Qv(v0 + tv1)

 z+G
(
z
)]
(x, t) dt

+
1

2
t2K ∗

{
v1 +

Pu(v0) Pv(v0)

Qu(v0) Qv(v0)

v1

}
(x) +

1

3
t3K ∗G(v1)(x).

It is sufficient to estimate a prior bound ∥z(·, t)∥1.
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Notice that its equivalent differential equations are

zt + zx − zxxt + ∂xG(z) + ∂x

Pu(v0 + tv1) Pv(v0 + tv1)

Qu(v0 + tv1) Qv(v0 + tv1)

 z

+ t∂x

{
v1 +

Pu(v0) Pv(v0)

Qu(v0) Qv(u0)

v1

}
+ t2∂xG(v1) =

0

0


z(x, 0) =

0

0

 .

(4.30)

Multiply the system by the matrix N , and use the relation (4.6) between N and
G, it follows

(1−∂xx)Nzt + ∂x

[
Nz+

Ruu(v0 + tv1) Ruv(v0 + tv1)

Rvu(v0 + tv1) Rvv(v0 + tv1)

 z+∇R(z)
]

+ t∂x

{
Nv1 +

Ruu(u0, v0) Ruv(u0, v0)

Rvu(u0, v0) Rvv(u0, v0)

v1

}
+ t2∂x∇R(v1) =

0

0

 .

Take the L2 ×L2 inner product with z, use the property that < ∂xNz, z >= 0 and
< ∂x∇R(z), z >= 0, then after integrations by parts, we have

1

2

d

dt
∥N 1

2 z∥21 ≤ c̃1∥v0+tv1∥∥z∥21+c̃2(∥v1∥+∥v0∥|v1|∞)t∥z∥1+c̃3(∥v1∥|v1|∞))t2∥z∥1,

where c̃1, c̃2 and c̃3 are constants only dependent on a, b, c and α, · · · , δ. The estimate
(4.29) with positive definiteness of the matrix N implies that

1

2

d

dt
∥N 1

2 z∥21 ≤ c1(1 + t)∥N 1
2 z∥21 + c2t∥N

1
2 z∥1 + c3t

2∥N 1
2 z∥1,

where c1, c2 and c3 are constants only depend on ∥v0∥. Solving the differential
inequality, it follows that

∥N 1
2 z∥1 ≤ ec1(t+

1
2 t

2)

∫ t

0

(c2τ + c3τ
2)e−c1(τ+

1
2 τ

2) dτ.

Let c4 =
∫∞
0

(c2τ + c3τ
2)e−c1(τ+

1
2 τ

2) dτ, then

∥N 1
2 z∥1 ≤ c4e

c1(t+
1
2 t

2) ≤ c4e
1
2 c1ec1t

2

.

Since N 1
2 is a positive definite matrix, ∥N 1

2 z∥1 is equivalent to ∥z∥1. Thus

∥v(·, t)∥s ≤ ∥z(·, t)∥1 + ∥v0∥s + t∥v1∥s ≤ cs,1e
cst

2

for some constants cs,1 and cs which only depend on ∥v0∥s. The second part of
(4.23) is demonstrated, and the theorem is complete.
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4.3. Global well-posedness under 4ac− b2 = 0

Now we turn our attention to the case 4ac − b2 = 0, the quadratic form Ω(u, v) is
lack of strict positivity. The method in the last section fails. However, the system
(1.3) can be reduced to a single BBM equation and a perturbed BBM equation.

Apparently a, c cannot be both zero, otherwise b = 0 and (a, b, c) = (0, 0, 0)
would be a trivial solution of (1.6). Without loss of generality, we may assume
a = 1 and introduce a new variable ũ(x, t) = u(x, t) + (b/2)v(x, t), then (1.3) is
rewritten as follows

ũt + ũx − ũxxt + (Ãũ2)x = 0,

vt + vx − vxxt + (Dũ2 + Ẽũv + F̃ v2)x = 0,

ũ(x, 0) = ũ0(x), v(x, 0) = v0(x),

(4.31)

where Ã = 2A + bD, Ẽ = E − bD, F̃ = b2

4 D − b
2E + F and ũ0 = u0 +

b
2v0. Drop

tildes, it obtains 
ut + ux − uxxt + (Au2)x = 0,

vt + vx − vxxt + (Du2 + Euv + Fv2)x = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x).

(4.32)

It is a special case of system (1.3) where P (u, v) = Au2, namely, one way coupled
BBM equation. Here is our results of global well-posedness for (4.32).

Theorem 4.3. System (4.32) is well posed globally in time in Hs × Hs for any
s ≥ 1. i.e the distributional solution v = (u, v) lies in C(0,∞;Hs ×Hs). Moreover,

∥u(·, t)∥s ≤ c(1 + t)
2
3 (s−1)+ 1

3 (s−⌊s⌋), (4.33)

∥v(·, t)∥s ≤ cs,1e
cs,2t. (4.34)

Proof. It is a known fact that the first equation, i.e. u-equation, is globally well-
posed in Hs for any s ≥ 1, and ∥u(·, t)∥1 = ∥u0∥1 is a constant, the estimate (4.33)
can be derived from Theorem 4.1, or see Chen [9].

To estimate (4.34), we start with calculating ∥v(·, t)∥1. In (4.32), multiply the
second equation by v and integrate over R with respect to x, upon integration by
parts and simplifications, it follows that

1

2

d

dt
∥v(·, t)∥21 =

∫
(Du2vx + Euvvx) dx ≤ |D|∥u∥21∥v∥1 + |E|∥u∥1∥v∥21,

or what is the same,
d

dt
∥v∥1 ≤ c1,2(1 + ∥v∥1),

where c1,2 is a constant only dependent on D,E and ∥u0∥1. Grownwall inequality
yields the following

∥v(·, t)∥1 ≤ (1 + ∥v0∥1)ec1,2t − 1 < (1 + ∥v0∥1)ec1,2t. (4.35)

Estimate (4.34) is true for s = 1.
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Our attention turns to estimate a priori bound of ∥v(·, t)∥s for s > 1. We use
mathematical induction. First consider that s is a positive integer and assume that
the estimate (4.34) is true for

∥v(·, t)∥j ≤ cj,1e
cj,2t for j = 2, · · · , s− 1. (4.36)

Rewrite the v-equation of (4.32) as follows,

vxxt = vt + vx + (Du2 + Euv + Fv2)x.

Integrate with respect to t over interva [0, t], it follows

∂xx(v(x, t)−v0(x)) = v(x, t)−v0(x)+

∫ t

0

∂x
(
v+Du2+Euv+Fv2

)
(x, τ) dτ. (4.37)

Taking the L2 norm yields

∥∂xx(v(·, t)−v0)∥≤∥v(·, t)−v0∥+
∫ t

0

(∥v∥1+|D|∥u∥21+|E|∥u∥1∥v∥1+|F |∥v∥21)(·, τ) dτ,

applying ∥u(·, t)∥1 = ∥u0∥|1, it transpires that,

∥∂xx(v(·, t)− v0)∥ ≤ c1,1e
c1,2t

where c1,1 and c1,2 are constants dependent only on ∥u0∥1 and ∥v0∥1. In (4.34),
take derivative with respect to x s− 2 times, it yields

∂s
x(v(x, t)− v0(x))

=∂s−2
x (v(x, t)− v0(x)) +

∫ t

0

∂s−1
x

(
v +Du2 + Euv + Fv2)

)
(x, τ) dτ

=∂s−2
x (v(x, t)− v0(x)) +

∫ t

0

∂s−1
x v(x, τ) dτ

+
s−1∑
j=0

(
s− 1

j

)∫ t

0

(
D∂j

xu∂
s−1−j
x u+ E∂j

xu∂
s−1−j
x v + F∂j

xv∂
s−1−j
x v

)
(x, τ) dτ.

(4.38)
Take L2(R) norm in the above expression,

∥∂s
x(v(·, t)− v0)∥

≤∥∂s−2
x (v(·, t)− v0)∥+

∫ t

0

∥∂s−1
x v(·, τ)∥ dτ

+
s−1∑
j=0

(
s− 1

j

)∫ t

0

∥∥D∂j
xu∂

s−j
x u+ E∂j

xu∂
s−1−j
x v + F∂j

xv∂
s−1−j
x v

∥∥(·, τ) dτ
≤∥v(·, t)− v0∥s−2 +

∫ t

0

∥v(·, τ)∥s−1 dτ

+ κ

∫ t

0

(
∥u(·, τ)∥2s−1 + ∥u(·, τ)∥s−1∥v(·, τ)∥s−1 + ∥v(·, τ)∥2s−1

)
dτ.

(4.39)
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where κ is a constant only dependent on D,E and F . As the integrants increasing
no faster than exponential, see (4.33) and inductive assumption (4.36), it is seen
that there are constants cs,1, cs,2 dependent on only ∥u0∥s an ∥v0∥s such that

∥v(·, t)∥s ≤ cs,1e
cs,2t. (4.40)

It indicates that (4.34) holds true for s to be a positive integer. What remains
is to show the estimates is true for s > 1 to be non-integer. Denote ⌊s⌋ = n, so
v ∈ C(0,∞;Hn) and ∥v(·, t)∥n is bounded by an exponential function, cn,1e

cn,2t,
say, with constants cn,1 and cn,2 dependent only on ∥u0∥n and ∥v0∥n.

Observe (4.34) again to see that v(·, t)−v0 lies in C(0,∞;Hn+1). Take derivative
with respect to x n− 1 times in (4.34), it yields

∂n+1
x (v(x, t)−v0(x))=∂n−1

x (v(x, t)− v0(x))

+

∫ t

0

∂n
x

(
v +Du2 + Euv + Fv2)

)
(x, τ) dτ

=∂s−1
x (v(x, t)− v0(x)) +

∫ t

0

∥∂n
x v(·, τ)∥ dτ

+

n∑
j=0

(
n

j

)∫ t

0

(
D∂j

xu∂
n−j
x u+E∂j

xu∂
n−j
x v+F∂j

xv∂
n−j
x v

)
(x, τ)dτ.

(4.41)
Take L2(R) norm in the above expression,

∥∂n+1
x (v(·, t)−v0)∥≤∥∂n−1

x (v(·, t)− v0)∥+
∫ t

0

∥∂n
x v(x, τ)∥ dτ

+
n∑

j=0

(
n

j

)∫ t

0

∥∥D∂j
xu∂

s−j
x u+E∂j

xu∂
n−j
x v+F∂j

xv∂
n−j
x v

∥∥(·, τ) dτ.
(4.42)

The same argument as that in the case where s > 1 is integer concludes

∥v(·, t)− v0∥n+1 ≤ cn,1e
cn,2t.

It follows readily that

∥v(·, t)∥s ≤ ∥v0∥s + ∥v(·, t)− v0∥n+1 ≤ cs,1e
cs,2t.

The estimate in (4.34) is shown, and the theorem is established.

Theorem 4.4. The problem (4.32) is well posed globally in time in Hs × Hs for
any 0 ≤ s < 1. Furthermore, the growth bounds of the Hs-norm in time is

∥u(·, t)∥s ≤ cs,1e
|A|∥u0∥t

∥v(·, t)∥s ≤ cs,1e
ecs,2t for

1

4
< s < 1, (4.43)

∥(u(·, t)∥s ≤ cs,1e
cs,2t

2

∥v(·, t)∥s ≤ cs,1e
ecs,2t2

for 0 ≤ s ≤ 1

4
, (4.44)

where cs,1, cs,2 are constants dependent only on the corresponding Sobolev norms of
the initial data ∥u0∥s, ∥v0∥s.
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Proof. Since the general system (1.3) is well posed locally in time in Hs ×Hs, to
show that time interval can be extended to infinity, it is sufficient to estimate the
upper bound of ∥v(·, t)∥s so that it does not blow up in any finite time.

We begin with 1
4 < s < 1, so w = v− v0 ∈ C(0, T ;H1 ×H1) satisfies (3.16), or

its alternative form as follows,

(1− ∂xx)wt(x, t) =−∂x

(
v0(x) +G(v0(x)

)
−∂x

[
w +

Pu(u0, v0) Pv(u0, v0)

Qu(u0, v0) Qv(u0, v0)

w +

P (w)

Q(w)

]
(x, t),

where G =

P

Q

 and P (u, v) = Au2, Q(u, v) = Du2 + Euv + Fv2. Let two

components of the vector w be w1 and w2, then the last system can be written
component-wise as follows,

w1t + w1x − w1xxt + (Aw2
1)x + 2A(u0w1)x + (u0 +Au2

0)x = 0,

w2t + w2x − w2xxt + F (w2
2)x +

(
(Qv(u0, v0) + Ew1)w2

)
x

+
(
Qu(u0, v0)w1 +Dw2

1 + v0 +Q(u0, v0)
)
x
= 0,

w1(x, 0) = 0, w2(x, 0) = 0.

(4.45)

Take the L2 inner product of w1 equation with w1, after integrations by parts and
simplification, it yields

1

2

d

dt
∥w1(·, t)∥21 =

∫ (
2Au0w1w1x + (u0 +Au2

0)w1x

)
dx

≤|A|∥u0∥∥w1(·, t)∥21 + ∥u0 +Au2
0∥∥w1x(·, t)∥1

≤|A|∥u0∥∥w1(·, t)∥21 + (∥u0∥+ κ|A|∥u0∥2s)∥w1x(·, t)∥1,

(4.46)

where κ is an embedding constant of Hs ⊂ L4. Solve this inequality, it obtains,

∥u(·, t)− u0∥1 = ∥w1(·, t)∥1 ≤ cs,1e
|A|∥u0∥t (4.47)

where cs,1 is a constant dependent only on ∥u0∥s. It transpires that

∥u(·, t)∥s ≤ ∥u(·, t)− u0∥1 + ∥u0∥s.

The first estiamte in (4.43) follows.

Take the L2 inner product of w2 equation with w2, similar calculations as above
leads to

1

2

d

dt
∥w2(·, t)∥21

≤
∥∥∥Qv(u0, v0)+Ew1)

∥∥∥∥w2(·, t)∥21+
∥∥∥Qu(u0, v0)w1+Dw2

1+v0+Q(u0, v0)
∥∥∥∥w2(·, t)∥1

≤c
(
∥v0∥2s + |E|cs,1e|A|∥u0∥t

)
∥w2(·, t)∥21+c

(
∥v0∥2s + ∥v0∥s + e2|A|∥u0∥t

)
∥w2(·, t)∥1
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where c is a constant only dependent on ∥u0∥s. What is the same,

d

dt
∥w2(·, t)∥1

≤ c
(
∥v0∥2s + |E|cs,1e|A|∥u0∥t

)
∥w2(·, t)∥1 + c

(
∥v0∥2s + ∥v0∥s + e2|A|∥u0∥t

)
.

It follows readily that

∥v(·, t)− v0)∥1 = ∥w2(·, t)∥1 ≤ cs,1e
ecs,2t

. (4.48)

This finishes off (4.43).
The attention is now turned to 0 ≤ s ≤ 1

4 . By Theorem 3.1, there is T > 0
dependent on ∥u0∥ and ∥v0∥ such that

z = v − v0 − tK ∗
(
v0 +G(v0)

)
lies in C(0, T ;H1 ×H1) and satisfy equations (4.30), i.e.

zt + zx − zxxt + ∂xG(z) + ∂x

Pu(v0 + tv1) Pv(v0 + tv1)

Qu(v0 + tv1) Qv(u0 + tv1)

 z

+ t∂x

{
v1 +

Pu(v0) Pv(v0)

Qu(u0) Qv(v0)

v1

}
+ t2∂xG(v1) = 0,

z(x, 0) = 0,

(4.49)

where the vector v1 =

u1

v1

 is given as

v1=K∗
(
v0+G(v0)

)
=K∗

u0+P (u0, v0)

v0+Q(u0, v0)

=

 K ∗ (u0 +Au2
0)

K ∗ (v0 +Du2
0 + Eu0v0 + Fv20)

 .

Let ξ and η be two components of vector z i.e.

ξ = u− u0 − tK ∗ (u0 +Au2
0),

η = v − v0 − tK ∗ (v0 +Du2
0 + Eu0v0 + Fv20),

(4.50)

then they both lie in C(0, T ;H1) and satisfy the following

ξt + ξx − ξ2xxt +A(ξ2)x + 2A((u0 + tu1)ξ)x +
(
t(u1 + 2Au0u1) +At2u2

1

)
x
= 0,

ηt + ηx − ηxxt + F (η2)x +
(
(Qv(u0 + tu1, v0 + tv1) + Eξ)η

)
x

+
(
Qu(u0 + tu1, v0 + tv1)ξ +Dξ2

)
x

+ t
{
v1 +Qu(u0, v0)u1 +Qv(u0, v0)v1

}
x
+ t2Q(u1, v1)x = 0,

ξ(x, 0) = η(x, 0) = 0.
(4.51)
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The same tedious calculations as those for w1 and w2 provide the following
estimates:

1

2

d

dt
∥ξ(·, t)∥21 = ∥2A((u0 + tu1)∥∥ξ(·, t)∥21 +

∥∥∥t(u1 + 2Au0u1) +At2u2
1

∥∥∥∥ξ(·, t)∥1.
Since v1 ∈ L2 ∩ Cb, see (4.29), we have

d

dt
∥ξ(·, t)∥1 ≤ c1(1 + t)∥ξ(·, t)∥1 + c2t(1 + t),

where constants c1 and c2 depend only on ∥u0∥. Solving the inequality, we have

∥ξ(·, t)∥1 ≤ ec1(t+
1
2 t

2) + c2e
c1(t+

1
2 t

2)

∫ t

0

e−c1(τ+
1
2 τ

2)τ(1 + τ)d τ

≤ e
1
2 c1ec1t

2

+ c2e
1
2 c1

∫ ∞

0

e−c1(τ+
1
2 τ

2)τ(1 + τ)d τ ec1t
2

= κ1e
c1t

2

in which κ1 = e
1
2 c1 + c2e

1
2 c1

∫∞
0

e−c1(τ+
1
2 τ

2)τ(1 + τ)d τ is a constant. And

1

2

d

dt
∥η(·, t)∥21 ≤

∥∥∥Qv(u0 + tu1, v0 + tv1) + Eξ)
∥∥∥∥η(·, t)∥21

+
∥∥∥Qu(u0 + tu1, v0 + tv1)ξ +Dξ2

∥∥∥∥η(·, t)∥1
+ t

∥∥∥v1 +Qu(u0, v0)u1 +Qv(u0, v0)v1

∥∥∥∥η(·, t)∥1
+ t2∥Q(u1, v1)∥∥η(·, t)∥.

Upon simplification and making use of the last property of ∥ξ(·, t)∥1,

d

dt
∥η(·, t)∥1 ≤

(
∥Qv(u0 + tu1, v0 + tv1)∥+ |E|κ1e

c1t
2
)
∥η(·, t)∥1

+ ∥Qu(u0 + tu1, v0 + tv1)∥κ1e
c1t

2

+ |D|κ1e
2c1t

2

+ t
∥∥∥v1 +Qu(u0, v0)u1 +Qv(u0, v0)v1

∥∥∥
+ t2∥Q(u1, v1)∥.

Solving it, we get

∥η(·, t)∥1 ≤ κ2e
ecst2

. (4.52)

From definition (4.50),

∥u(·, t)∥s ≤ ∥ξ(·, t)∥s + ∥u0 + tu1∥s ≤ ∥ξ(·, t)∥1 + ∥u0 + tu1∥s,

and

∥v(·, t)∥s ≤ ∥η(·, t)∥s + ∥v0 + tv1∥s ≤ ∥η(·, t)∥1 + ∥v0 + tv1∥s.

They imply the estimate (4.44).

The theorem is complete.
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