SOME NEW SEQUENCE SPACES DERIVED BY THE COMPOSITION OF BINOMIAL MATRIX AND DOUBLE BAND MATRIX

Abdulcabbar Sönmez^{1,†}

Abstract In this paper, we construct three new sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$ and mention some inclusion relations, where G is generalized difference matrix. Moreover, we give Schauder basis of the spaces $b_0^{r,s}(G)$ and $b_c^{r,s}(G)$. Afterward, we determine $\alpha -$, $\beta -$ and γ -duals of those spaces. Finally, we characterize some matrix classes related to the space $b_c^{r,s}(G)$.

Keywords Matrix transformations, matrix domain, schauder basis, $\alpha -$, $\beta -$ and γ -duals, matrix classes.

MSC(2010) 40C05, 40H05, 46B45.

1. Rudiments And Notations

The set of all real or complex valued sequences is symbolized with w. w is a vector space under point-wise addition and scalar multiplication. A sequence space is an arbitrary vector subspace of w. ℓ_{∞}, c_0, c and ℓ_p are symbolic of all bounded, null, convergent and absolutely *p*-summable sequence spaces, respectively, where $1 \leq p < \infty$.

A K-space is a sequence space X provided each of the maps $p_n : X \to \mathbb{C}$ defined by $p_n(x) = x_n$ is continuous for all $n \in \mathbb{N}$. A *BK*-space is a Banach space X which has the property of K-space [11].

The sequence spaces ℓ_{∞}, c_0 and c are BK-spaces according to their usual supnorm defined by $||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|$ and ℓ_p is a BK- space with its *p*-norm defined

by

$$||x||_{\ell_p} = \left(\sum_{k=0}^{\infty} |x_k|^p\right)^{\frac{1}{p}}$$

where $1 \leq p < \infty$.

Let $A = (a_{nk})$ be an infinite matrix with complex entries, X and Y be two sequence spaces and $x = (x_k) \in w$. Then, the A- transform of x is defined by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k \tag{1.1}$$

[†]the corresponding author. Email somez@erciyes.edu.tr(A. Sönmez)

¹Department Of Mathematics, Erciyes University, Talas Street, Melikgazi,

³⁸⁰³⁹ Kayseri, Turkey

and is assumed to be convergent for all $n \in \mathbb{N}$, the domain of A is defined by

$$X_A = \left\{ x = (x_k) \in w : Ax \in X \right\}$$
(1.2)

which is also a sequence space, and the class of all infinite matrices A is defined by

$$(X:Y) = \left\{ A = (a_{nk}) : Ax \in Y \text{ for all } x \in X \right\}$$

[23]. An infinite matrix $A = (a_{nk})$ is called a triangle provided the entries $a_{nk} = 0$ for k > n and $a_{nn} \neq 0$ for all $n, k \in \mathbb{N}$.

The spaces of all bounded and convergent series are defined by the matrix domain of the summation matrix $S = (s_{nk})$ as follows:

$$bs = (\ell_{\infty})_S$$
 and $cs = c_S$

respectively, where $S = (s_{nk})$ is defined by

$$s_{nk} = \begin{cases} 1 , 0 \le k \le n \\ 0 , k > n \end{cases}$$

for all $n, k \in \mathbb{N}$. Here and in what follows, unless stated otherwise, any term with negative subscript is assumed to be zero and the summation without limits runs from 0 to ∞ .

The theory of matrix transformation has a great importance in the theory of summability which was obtained by Cesàro, Norlund, Borel,.... As a consequence of this, lots of authors have constructed new sequence spaces by taking advantage of the matrix domains of infinite matrices. For example: $(\ell_{\infty})_{N_q}$ and c_{N_q} in [22], X_p and X_{∞} in [19], $c_0(\Delta), c(\Delta)$ and $\ell_{\infty}(\Delta)$ in [15], $c_0(\Delta^2), c(\Delta^2)$ and $\ell_{\infty}(\Delta^2)$ in [12], e_0^r , e_c^r in [1], e_p^r and e_{∞}^r in [2] and [18], $e_0^r(\Delta)$ and $e_c^r(\Delta)$ and $e_{\infty}^r(\Delta)$ in [3], $e_0^r(\Delta^m)$, $e_c^r(\Delta^m)$ and $e_{\infty}^r(\Delta^m)$ in [20], $e_0^r(B^{(m)}), e_c^r(B^{(m)})$ and $e_{\infty}^r(B^{(m)})$ in [13], $e_0^r(\Delta, p)$, $e_c^r(\Delta, p)$ and $e_{\infty}(\Delta, p)$ in [14], $c_0^{\lambda}(G^m)$ and $c^{\lambda}(G^m)$ in [5], $\ell_p^{\lambda}(G^m)$ and $\ell_{\infty}^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$

In this paper, we construct three new sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$ and mention some inclusion relations, where G is generalized difference matrix. Moreover, we give Schauder basis of the spaces $b_0^{r,s}(G)$ and $b_c^{r,s}(G)$. Afterward, we determine $\alpha -$, $\beta -$ and γ -duals of those spaces. Finally, we characterize some matrix classes related to the space $b_c^{r,s}(G)$.

2. Some New Sequence Spaces

In this part, we give some informations concerning previous studies of Binomial matrix and Euler matrix, and construct three new sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$. Furthermore, we show that the sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$ are linearly isomorphic to the spaces c_0 , c and ℓ_{∞} , respectively and mention some inclusion relations.

To define sequence spaces, the Euler matrix was first used by Altay, Başar and Mursaleen in [1] and [2]. They defined the Euler sequence spaces e_0^r and e_c^r and e_{∞}^r as follows:

$$e_0^r = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=0}^n {n \choose k} (1-r)^{n-k} r^k x_k = 0 \right\},$$

$$e_c^r = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=0}^n {n \choose k} (1-r)^{n-k} r^k x_k \text{ exists} \right\}$$

and

$$e_{\infty}^{r} = \left\{ x = (x_{k}) \in w : \sup_{n \in \mathbb{N}} \left| \sum_{k=0}^{n} {n \choose k} (1-r)^{n-k} r^{k} x_{k} \right| < \infty \right\}.$$

Afterward, Altay and Polat defined the sequence spaces $e_0^r(\Delta)$ and $e_c^r(\Delta)$ and $e_c^r(\Delta)$ in [3] and improved Altay, Başar and Mursaleen's work as follows:

$$e_0^r(\Delta) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=0}^n {n \choose k} (1-r)^{n-k} r^k (x_k - x_{k-1}) = 0 \right\},\$$
$$e_c^r(\Delta) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=0}^n {n \choose k} (1-r)^{n-k} r^k (x_k - x_{k-1}) \text{ exists} \right\}$$

and

$$e_{\infty}^{r}(\Delta) = \left\{ x = (x_{k}) \in w : \sup_{n \in \mathbb{N}} \left| \sum_{k=0}^{n} {n \choose k} (1-r)^{n-k} r^{k} (x_{k} - x_{k-1}) \right| < \infty \right\},\$$

where Δ is difference matrix.

Recently, Bişgin has defined the Binomial sequence spaces $b_0^{r,s}$, $b_c^{r,s}$ and $b_{\infty}^{r,s}$ in [7], [8], [9] and [10], and has generalized Altay, Başar and Mursaleen's work as follows:

$$b_0^{r,s} = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \frac{1}{(r+s)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k = 0 \right\},\$$

$$b_c^{r,s} = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \frac{1}{(r+s)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \text{ exists} \right\}$$

and

$$b_{\infty}^{r,s} = \left\{ x = (x_k) \in w : \sup_{n \in \mathbb{N}} \left| \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k x_k \right| < \infty \right\},$$

where the Binomial matrix $B^{r,s} = (b_{nk}^{r,s})$ is defined by

$$b_{nk}^{r,s} = \begin{cases} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} r^k, & 0 \le k \le n \\ 0, & k > n \end{cases}$$

for all $n, k \in \mathbb{N}, r, s \in \mathbb{R}$ and s.r > 0. Unless stated otherwise, we henceforth suppose that s.r > 0.

Here, we would like to touch on a point, if we take s+r=1 , we obtain the Euler sequence spaces e_0^r , $e_c^r,$ and $e_\infty^r.$

Afterward, Meng and Song defined the Binomial difference sequence spaces $b_0^{r,s}(\Delta)$, $b_c^{r,s}(\Delta)$ and $b_{\infty}^{r,s}(\Delta)$ in [17](in case of m = 1) and improved Bişgin's work as follows:

$$b_0^{r,s}(\Delta) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k (x_k - x_{k-1}) = 0 \right\},$$

$$b_c^{r,s}(\Delta) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k (x_k - x_{k-1}) \text{ exists} \right\}$$

and

$$b_{\infty}^{r,s}(\Delta) = \left\{ x = (x_k) \in w : \sup_{n \in \mathbb{N}} \left| \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k (x_k - x_{k-1}) \right| < \infty \right\}.$$

Now, we define the sequence spaces $b^{r,s}_0(G),\, b^{r,s}_c(G)$ and $b^{r,s}_\infty(G)$ by

$$b_0^{r,s}(G) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \frac{1}{(r+s)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k (ux_k + vx_{k-1}) = 0 \right\},$$
$$b_c^{r,s}(G) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \frac{1}{(r+s)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k (ux_k + vx_{k-1}) \text{ exists} \right\}$$

and

$$b_{\infty}^{r,s}(G) = \left\{ x = (x_k) \in w : \sup_{n \in \mathbb{N}} \left| \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k (ux_k + vx_{k-1}) \right| < \infty \right\}$$

where $G = (g_{nk})$ is generalized difference matrix and is defined by

$$g_{nk} = \begin{cases} u , k = n \\ v , k = n - 1 \\ 0 , otherwise \end{cases}$$

for all $n, k \in \mathbb{N}$ and $u, v \in \mathbb{R} \setminus \{0\}$. Here, if we take u = 1 and v = -1, we obtain the difference matrix Δ .

By considering the notation of (1.2) we can redefine the sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$, by the matrix domain of the generalized difference matrix G as follows:

$$b_0^{r,s}(G) = (b_0^{r,s})_G, \ b_c^{r,s}(G) = (b_c^{r,s})_G \text{ and } b_\infty^{r,s}(G) = (b_\infty^{r,s})_G.$$
 (2.1)

Moreover, by defining a triangle matrix $H^{r,s,u,v} = (h_{nk}^{r,s,u,v}) = B^{r,s}G$ such that

$$h_{nk}^{r,s,u,v} = \begin{cases} \frac{s^{n-k-1}r^k}{(r+s)^n} \left[us\binom{n}{k} + vr\binom{n}{k+1} \right], \ 0 \le k \le n \\ 0, \ k > n \end{cases}$$

for all $n, k \in \mathbb{N}$, the sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$, and $b_{\infty}^{r,s}(G)$ can be rearranged by means of the $H^{r,s,u,v} = (h_{nk}^{r,s,u,v})$ matrix as follows:

$$b_0^{r,s}(G) = (c_0)_{H^{r,s,u,v}}, \ b_c^{r,s}(G) = c_{H^{r,s,u,v}} \text{ and } b_\infty^{r,s}(G) = (\ell_\infty)_{H^{r,s,u,v}}.$$
 (2.2)

In this way , for a given arbitrary sequence $x = (x_k)$, the $H^{r,s,u,v}$ -transform of x is defined by

$$y_k = (H^{r,s,u,v}x)_k = \frac{1}{(r+s)^k} \sum_{i=0}^k {\binom{k}{i}} s^{k-i} r^i (ux_i + vx_{i-1})$$
(2.3)

for all $k \in \mathbb{N}$, or, by considering another representation , the sequence $y = (y_k)$ can rewritten as follows:

$$y_k = (H^{r,s,u,v}x)_k = \frac{1}{(r+s)^k} \sum_{i=0}^k \left[us\binom{k}{i} + vr\binom{k}{i+1} \right] s^{k-i-1}r^i x_i$$
(2.4)

for all $k \in \mathbb{N}$.

Theorem 2.1. The sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$, and $b_{\infty}^{r,s}(G)$ are BK-spaces in accordance with their norms defined by

$$\|x\|_{b_0^{r,s}(G)} = \|x\|_{b_c^{r,s}(G)} = \|x\|_{b_\infty^{r,s}(G)} = \|(H^{r,s,u,v}x)_k\|_{\infty} = \sup_{k \in \mathbb{N}} |(H^{r,s,u,v}x)_k|.$$

Proof. we know already that the spaces c_0 , c and ℓ_{∞} are BK-spaces with the norm $||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|, H^{r,s,u,v} = (h_{nk}^{r,s,u,v})$ is a triangle matrix and the state (2.2) holds. If we connect these results with Theorem 4.3.12 of Wilansky [23], we obtain that the sequence spaces $h^{r,s}(G) = h^{r,s}(G)$ and $h^{r,s}(G)$ are BK-spaces. This completes

the sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$, and $b_{\infty}^{r,s}(G)$ are BK-spaces. This completes the proof of the theorem.

Theorem 2.2. The sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$, and $b_{\infty}^{r,s}(G)$ are linearly isomorphic to the sequence spaces c_0 , c and ℓ_{∞} , respectively, namely, $b_0^{r,s}(G) \cong c_0$, $b_c^{r,s}(G) \cong c$ and $b_{\infty}^{r,s}(G) \cong \ell_{\infty}$.

Proof. To keep away from the usage of similar statements, the proof of theorem is given for only the sequence space $b_0^{r,s}(G)$. For this purpose, we should show the existence of a linear bijection between the spaces $b_0^{r,s}(G)$ and c_0 . Consider the transformation L defined by $L: b_0^{r,s}(G) \longrightarrow c_0$, $L(x) = H^{r,s,u,v}x$. Then, according to definition of the transformation L, it is obvious that $L(x) = H^{r,s,u,v}x \in c_0$ for all $x \in b_0^{r,s}(G)$. Moreover, it is trivial that L is linear and x = 0 whenever L(x) = 0. Therefore, L is injective.

For a given arbitrary sequence $y = (y_k) \in c_0$, we define the sequence $x = (x_n)$ by

$$x_{n} = \frac{1}{u} \sum_{k=0}^{n} \left[\sum_{i=k}^{n} \binom{i}{k} \left(-\frac{v}{u} \right)^{n-i} (-s)^{i-k} (r+s)^{k} r^{-i} \right] y_{k}$$

for all $n \in \mathbb{N}$. Then, we get

$$(H^{r,s,u,v}x)_n = \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k (ux_k + vx_{k-1})$$

= $\frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k \sum_{j=0}^k {k \choose j} (-s)^{k-j} (r+s)^j r^{-k} y_j$
= y_n

for all $n\in\mathbb{N}$, that is

$$\lim_{n \to \infty} (H^{r,s,u,v}x)_n = \lim_{n \to \infty} y_n = 0.$$

Therefore, we obtain that $x = (x_k) \in b_0^{r,s}(G)$ and L(x) = y, namely L is surjective. Furthermore, we have for every $x \in b_0^{r,s}(G)$ that

$$||L(x)||_{\infty} = ||H^{r,s,u,v}x||_{\infty} = ||x||_{b_0^{r,s}(G)}.$$

So, L is norm preserving. Consequently, L is a linear bijection. This fact shows us that the sequence spaces $b_0^{r,s}(G)$ and c_0 are linearly isomorphic. This completes the proof.

Theorem 2.3. The inclusions $\hat{c}_0 \subset b_0^{r,s}(G)$, $\hat{c} \subset b_c^{r,s}(G)$ and $\hat{\ell_{\infty}} \subset b_{\infty}^{r,s}(G)$ are strict, where \hat{c}_0 , \hat{c} and $\hat{\ell_{\infty}}$ are defined in [16].

Proof. To avoid the repetition of similar expression, we give the proof of theorem for only the inclusion $\hat{\ell_{\infty}} \subset b_{\infty}^{r,s}(G)$.

For a given arbitrary sequence $x = (x_k) \in \ell_{\infty}$, we have that

$$\begin{aligned} \|x\|_{b_{\infty}^{r,s}(G)} &= \|H^{r,s,u,v}x\|_{\infty} \\ &= \sup_{n \in \mathbb{N}} \left| \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k (ux_k + vx_{k-1}) \right| \\ &\leq \sup_{n \in \mathbb{N}} |ux_n + vx_{n-1}| \cdot \sup_{n \in \mathbb{N}} \left| \frac{1}{(r+s)^n} \sum_{k=0}^n {n \choose k} s^{n-k} r^k \right| \\ &= \|x\|_{\ell_{\infty}^{-}}. \end{aligned}$$

This means that $x = (x_k) \in b_{\infty}^{r,s}(G)$, namely the inclusion $\hat{\ell_{\infty}} \subset b_{\infty}^{r,s}(G)$ holds. Now we define a sequence $x = (x_k)$ such that $x_k = \frac{1}{u} \sum_{i=0}^k \left(-\frac{v}{u}\right)^{k-i} \left(-\frac{s+r}{r}\right)^i$ for all $k \in \mathbb{N}$. Then $Gx = \left(\left(-\frac{s+r}{r}\right)^k\right) \notin \ell_{\infty}$ but $H^{r,s,u,v}x = \left(\left(-\frac{r}{r+s}\right)^k\right) \in \ell_{\infty}$. As a consequence, $x = (x_k) \in b_{\infty}^{r,s}(G) \setminus \hat{\ell_{\infty}}$. This shows that the inclusion $\hat{\ell_{\infty}} \subset b_{\infty}^{r,s}(G)$ is strict. This completes the proof.

Theorem 2.4. The inclusions $b_0^{r,s}(G) \subset b_c^{r,s}(G) \subset b_{\infty}^{r,s}(G)$ strictly hold.

Proof. It is well known that every null sequence is also convergent and every convergent sequence is also bounded. So, the inclusions $b_0^{r,s}(G) \subset b_c^{r,s}(G) \subset b_{\infty}^{r,s}(G)$ hold. Now we define two sequences $x = (x_k)$ and $y = (y_k)$ such that $x_k = \frac{1 - \left(-\frac{v}{u}\right)^{k+1}}{u+v}$ and $y_k = \frac{1}{u} \sum_{i=0}^k \left(-\frac{v}{u}\right)^{k-i} \left(-\frac{r+2s}{r}\right)^i$ for all $k \in \mathbb{N}$. Then we can observe that $H^{r,s,u,v}x = e \in c \setminus c_0$ and $H^{r,s,u,v}y = \left((-1)^k\right) \in \ell_{\infty} \setminus c$, namely $x = (x_k) \in b_c^{r,s}(G) \setminus b_0^{r,s}(G)$ and $y = (y_k) \in b_{\infty}^{r,s}(G) \setminus b_c^{r,s}(G)$. These two facts show that the inclusions $b_0^{r,s}(G) \subset b_c^{r,s}(G) \subset b_{\infty}^{r,s}(G)$ are strict. This completes the proof.

Theorem 2.5. $c \subset b_0^{r,s}(G)$ strictly holds, whenever u + v = 0.

Proof. It is obvious that $Gx \in c_0$ whenever $x \in c$. Also, the Binomial matrix is regular when r.s > 0. If we combine these two facts, we obtain that $B^{r,s}Gx \in c_0$ whenever $x \in c$, namely $x \in b_0^{r,s}(G)$ whenever $x \in c$. So, the inclusion $c \subset b_0^{r,s}(G)$ holds. Now we define a sequence $x = (x_k)$ such that $x_k = (-1)^k \left[\frac{1-\left(\frac{v}{u}\right)^{k+1}}{u-v}\right]$ for all $k \in \mathbb{N}$. Then, we can see that $x = (x_k) \notin c$ but $H^{r,s,u,v}x = \left(\left(\frac{s-r}{s+r}\right)^k\right) \in c_0$, that is $x \in b_0^{r,s}(G)$. This result shows that the inclusion $c \subset b_0^{r,s}(G)$ is strict. This completes the proof.

3. The Schauder Basis And α -, β - and γ -Duals

In this part, we give the Schauder basis of the Binomial difference sequence spaces $b_0^{r,s}(G)$ and $b_c^{r,s}(G)$. Moreover we determine $\alpha -$, $\beta -$ and $\gamma -$ duals of the sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$.

A sequence $u = (u_k)$ in the sequence space X is called a Schauder basis for a normed space $(X, \|.\|_X)$ if, for every $x = (x_k) \in X$ there exists a unique sequence (λ_k) of scalars such that $x = \sum_k \lambda_k u_k$; i.e. such that

$$\lim_{n \to \infty} \left\| x - \sum_{k=0}^n \lambda_k u_k \right\|_X \longrightarrow 0$$

Theorem 3.1. Let $\xi_k = (H^{r,s,u,v}x)_k$ for all $k \in \mathbb{N}$. For all fixed $k \in \mathbb{N}$, consider the sequences $d = (d_k)$ defined by $d_k = \frac{1 - \left(-\frac{v}{u}\right)^{k+1}}{u+v}$ and $d^{(k)}(r,s,u,v) = \left\{d_n^{(k)}(r,s,u,v)\right\}_{n \in \mathbb{N}}$ defined by

$$d_n^{(k)}(r,s,u,v) = \begin{cases} 0, & 0 \le n < k, \\ \frac{1}{u} \sum_{i=k}^n {i \choose k} \left(-\frac{v}{u}\right)^{n-i} (-s)^{i-k} (r+s)^k r^{-i}, k \le n. \end{cases}$$

Then the following hold:

(a) The Schauder basis of the sequence space $b_0^{r,s}(G)$ is the sequence $\{d^{(k)}(r,s,u,v)\}_{k\in\mathbb{N}}$ and all $x = (x_k) \in b_0^{r,s}(G)$ can be uniquely written

$$x = \sum_{k} \xi_k d^{(k)}(r, s, u, v).$$

(b) The Schauder basis of the sequence space $b_c^{r,s}(G)$ is the set $\{d, d^{(0)}(r, s, u, v), d^{(1)}(r, s, u, v), \ldots\}$ and all $x = (x_k) \in b_c^{r,s}(G)$ can be uniquely written

$$x = ld + \sum_{k} [\xi_k - l] d^{(k)}(r, s, u, v)$$

where $l = \lim_{k \to \infty} (H^{r,s,u,v}x)_k$.

Proof. One can easily see that $H^{r,s,u,v}d^{(k)}(r,s,u,v) = e^{(k)} \in c_0$ for all $k \in \mathbb{N}$, where $e^{(k)}$ is a sequence with 1 in the k th place and zeros elsewhere. Then we conclude that the inclusion $\{d^{(k)}(r,s,u,v)\} \subset b_0^{r,s}(G)$ holds.

Let $x = (x_k) \in b_0^{r,s}(G)$. We write

$$x^{[m]} = \sum_{k=0}^{m} \xi_k d^{(k)}(r, s, u, v)$$

for all $m \in \mathbb{N}$. Then, by applying the matrix $H^{r,s,u,v} = (h_{nk}^{r,s,u,v})$ to $x^{[m]}$, we get

$$H^{r,s,u,v}x^{[m]} = \sum_{k=0}^{m} \xi_k H^{r,s,u,v} d^{(k)}(r,s,u,v) = \sum_{k=0}^{m} (H^{r,s,u,v}x)_k e^{(k)}$$

and

$$\{H^{r,s,u,v}(x-x^{[m]})\}_n = \begin{cases} 0 , 0 \le n \le m \\ (H^{r,s,u,v}x)_n , n > m \end{cases}$$

for all $n, m \in \mathbb{N}$. For every $\epsilon > 0$ there exist $m_0 = m_0^{(\epsilon)} \in \mathbb{N}$ such that

$$|(H^{r,s,u,v}x)_m| < \frac{\epsilon}{2}$$

for all $m_0 \leq m$. On account of this

$$\|x - x^{[m]}\|_{b_0^{r,s}(G)} = \sup_{m \le n} \left| (H^{r,s,u,v}x)_n \right| \le \sup_{m_0 \le n} \left| (H^{r,s,u,v}x)_n \right| \le \frac{\epsilon}{2} < \epsilon$$

for all $m_0 \leq m$. This gives us that

$$x = \sum_{k} \xi_k d^{(k)}(r, s, u, v).$$

Now, we should show the uniqueness of this representation. We suppose that there exist an another representation of $x = (x_k)$ such that

$$x = \sum_{k} \mu_k d^{(k)}(r, s, u, v).$$

Then, by the continuity of the transformation, L defined in the proof of theorem 2.2 , we have

$$(H^{r,s,u,v}x)_n = \sum_k \mu_k \left[H^{r,s,u,v} d^{(k)}(r,s,u,v) \right]_n = \sum_k \mu_k e_n^{(k)} = \mu_n$$

for all $n \in \mathbb{N}$. This equality is in contradiction with the fact that $(H^{r,s,u,v}x)_n = \xi_n$ for all $n \in \mathbb{N}$. Therefore, all $x = (x_k) \in b_0^{r,s}(G)$ has a unique representation. (b) From the part (a) we know that $\{d^{(k)}(r, s, u, v)\} \subset b_0^{r,s}(G)$ and also $H^{r,s,u,v}d =$

(b) From the part (a) we know that $\{d^{(k)}(r, s, u, v)\} \subset b_0^{r,s}(G)$ and also $H^{r,s,u,v}d = e \in c$. Thus, the inclusion $\{d, d^{(k)}(r, s, u, v)\} \subset b_c^{r,s}(G)$ clearly holds. Given an arbitrary $x = (x_k) \in b_c^{r,s}(G)$, we construct a sequence $y = (y_k)$ such that y = x - ld, where $l = \lim_{k \to \infty} \xi_k$. Then it is clear that $y = (y_k) \in b_0^{r,s}(G)$ and by the part (a) $y = (y_k)$ has a unique representation. This leads us to $x = (x_k)$ has a unique representation of the form

$$x = ld + \sum_{k} [\xi_k - l] d^{(k)}(r, s, u, v).$$

This completes the proof of the theorem.

If we combine Theorem 2.1 and Theorem 3.1, we can give the next corollary.

Corollary 3.1. The sequence spaces $b_0^{r,s}(G)$ and $b_c^{r,s}(G)$ are separable.

A set defined by

$$M(X,Y) = \left\{ a = (a_k) \in w : ax = (a_k x_k) \in Y \text{ for all } x = (x_k) \in X \right\}$$

is called the multiplier space of the sequence spaces X and Y. Then, the α -, β - and γ -duals of the sequence space X are defined by the aid of the notion of multiplier space such that

$$X^{\alpha} = M(X, \ell_1), \quad X^{\beta} = M(X, cs) \text{ and } X^{\gamma} = M(X, bs),$$

respectively.

Now, we continue with to quote lemma from Stieglitz and Tietz [21] which are needed in the next.

$$\sup_{K\in\mathcal{F}}\sum_{n}\left|\sum_{k\in K}a_{nk}\right|<\infty,\tag{3.1}$$

$$\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| < \infty, \tag{3.2}$$

$$\lim_{n \to \infty} \sum_{k} |a_{nk}| = \sum_{k} |\lim_{n \to \infty} a_{nk}|, \qquad (3.3)$$

$$\lim_{n \to \infty} a_{nk} = \mu_k \quad \text{for all} \quad k \in \mathbb{N}, \tag{3.4}$$

$$\lim_{n \to \infty} \sum_{k} a_{nk} = \mu, \tag{3.5}$$

where \mathcal{F} represents the set of all finite subsets of \mathbb{N} .

Lemma 3.1 ([21]). Let $A = (a_{nk})$ be an infinite matrix. Then the following statements hold:

- (i) $A = (a_{nk}) \in (c_0 : \ell_1) = (c : \ell_1) = (\ell_\infty : \ell_1) \Leftrightarrow (3.1)$ holds
- (*ii*) $A = (a_{nk}) \in (c_0 : \ell_\infty) = (c : \ell_\infty) = (\ell_\infty : \ell_\infty) \Leftrightarrow (3.2)$ holds
- (iii) $A = (a_{nk}) \in (c_0 : c) \Leftrightarrow (3.2)$ and (3.4) hold
- (iv) $A = (a_{nk}) \in (c:c) \Leftrightarrow (3.2), (3.4)$ and (3.5) hold
- (v) $A = (a_{nk}) \in (\ell_{\infty} : c) \Leftrightarrow (3.3)$ and (3.4) hold
- (vi) $A = (a_{nk}) \in (c:c_0) \Leftrightarrow (3.2)$, (3.4) and (3.5) hold with $\mu_k = 0, \forall k \in \mathbb{N}$ and $\mu = 0$

Theorem 3.2. The α - dual of the Binomial sequence spaces $b_0^{r,s}(G)$, $b_c^{r,s}(G)$ and $b_{\infty}^{r,s}(G)$ is the set

$$d_1^{r,s,u,v} = \left\{ a = (a_k) \in w : \sup_{K \in \mathcal{F}} \sum_n \left| \sum_{k \in K} \frac{1}{u} \sum_{i=k}^n \binom{i}{k} \left(-\frac{v}{u} \right)^{n-i} (-s)^{i-k} (r+s)^k r^{-i} a_n \right| < \infty \right\}.$$

Proof. For given $a = (a_n) \in w$, by bearing in mind the sequence that is defined in the proof of Theorem 2.2, we can write

$$a_n x_n = \sum_{k=0}^n \left[\frac{1}{u} \sum_{i=k}^n \binom{i}{k} \left(-\frac{v}{u} \right)^{n-i} (-s)^{i-k} (r+s)^k r^{-i} a_n \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = (U^{r,s,u,v} y)_n (r+s)^k r^{-i} a_n \left[-\frac{v}{u} \right] y_k = \sum_{k=0}^n u_{nk}^{r,s,u,v} y_k = \sum_{k=0}^n u_{nk}^$$

for all $n \in \mathbb{N}$. Then, $ax = (a_n x_n) \in \ell_1$ whenever $x = (x_k) \in b_0^{r,s}(G)$, $b_c^{r,s}(G)$ or $b_{\infty}^{r,s}(G)$ if and only if $U^{r,s,u,v}y \in \ell_1$ whenever $y = (y_k) \in c_0$, c or ℓ_{∞} . This shows us that $a = (a_n) \in \left\{ b_0^{r,s}(G) \right\}^{\alpha} = \left\{ b_c^{r,s}(G) \right\}^{\alpha} = \left\{ b_{\infty}^{r,s}(G) \right\}^{\alpha}$ if and only if $U^{r,s,u,v} \in (c_0:\ell_1) = (c:\ell_1) = (\ell_{\infty}:\ell_1)$. By combining this result and Lemma 3.1 (i), we deduce that

$$a = (a_n) \in \left\{ b_0^{r,s}(G) \right\}^{\alpha} \Leftrightarrow \sup_{K \in \mathcal{F}} \sum_n \left| \sum_{k \in K} \frac{1}{u} \sum_{i=k}^n \binom{i}{k} \left(-\frac{v}{u} \right)^{n-i} (-s)^{i-k} (r+s)^k r^{-i} a_n \right| < \infty.$$

This means that $\left\{b_0^{r,s}(G)\right\}^{\alpha} = \left\{b_c^{r,s}(G)\right\}^{\alpha} = \left\{b_{\infty}^{r,s}(G)\right\}^{\alpha} = d_1^{r,s,u,v}$. This completes the proof of theorem.

Theorem 3.3. Let four sets $d_2^{r,s,u,v}, d_3^{r,s,u,v}, d_4^{r,s,u,v}$ and $d_5^{r,s,u,v}$ be given as follows:

$$d_{2}^{r,s,u,v} = \left\{ a = (a_{k}) \in w : \sup_{n \in \mathbb{N}} \sum_{k} |v_{nk}^{r,s,u,v}| < \infty \right\},$$

$$d_{3}^{r,s,u,v} = \left\{ a = (a_{k}) \in w : \lim_{n \to \infty} v_{nk}^{r,s,u,v} \text{ exists for all } k \in \mathbb{N} \right\},$$

$$d_{4}^{r,s,u,v} = \left\{ a = (a_{k}) \in w : \lim_{n \to \infty} \sum_{k} |v_{nk}^{r,s,u,v}| = \sum_{k} |\lim_{n \to \infty} v_{nk}^{r,s,u,v}| \right\}$$

and

$$d_5^{r,s,u,v} = \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_k v_{nk}^{r,s,u,v} \ exists \right\},$$

where the matrix $V^{r,s,u,v} = (v_{nk}^{r,s,u,v})$ is defined by means of the sequence $a = (a_n)$ by

$$v_{nk}^{r,s,u,v} = \begin{cases} \frac{1}{u} \sum_{i=k}^{n} \sum_{j=k}^{i} {j \choose k} \left(-\frac{v}{u} \right)^{i-j} (-s)^{j-k} (r+s)^{k} r^{-j} a_{i}, \ 0 \le k \le n \\ 0, \ k > n \end{cases}$$

for all $n, k \in \mathbb{N}$. Then, the following hold:

$$\begin{array}{l} (i) \ \left\{ b_0^{r,s}(G) \right\}^{\beta} = d_2^{r,s,u,v} \cap d_3^{r,s,u,v}; \\ (ii) \ \left\{ b_c^{r,s}(G) \right\}^{\beta} = d_2^{r,s,u,v} \cap d_3^{r,s,u,v} \cap d_5^{r,s,u,v}; \\ (iii) \ \left\{ b_{\infty}^{r,s}(G) \right\}^{\beta} = d_3^{r,s,u,v} \cap d_4^{r,s,u,v}; \\ (iv) \ \left\{ b_0^{r,s}(G) \right\}^{\gamma} = \left\{ b_c^{r,s}(G) \right\}^{\gamma} = \left\{ b_{\infty}^{r,s,u,v}. \right\}^{\gamma} = d_2^{r,s,u,v}. \end{array}$$

Proof. Because of the parts (ii), (iii) and (iv) of theorem can be proved by using a similar way, we give the proof of theorem for only the part (i). Let $a = (a_n) \in w$ be given. Then by taking into account the sequence $x = (x_k)$ defined in the proof of Theorem 2.2, we obtain

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} \left[\frac{1}{u} \sum_{i=0}^{k} \sum_{j=i}^{k} \binom{j}{i} \left(-\frac{v}{u} \right)^{k-j} (-s)^{j-i} (r+s)^i r^{-j} y_i \right] a_k$$
$$= \sum_{k=0}^{n} \left[\frac{1}{u} \sum_{i=k}^{n} \sum_{j=k}^{i} \binom{j}{k} \left(-\frac{v}{u} \right)^{i-j} (-s)^{j-k} (r+s)^k r^{-j} a_i \right] y_k = (V^{r,s,u,v} y)_n$$

for all $n, k \in \mathbb{N}$. Then, $ax = (a_n x_n) \in cs$ whenever $x = (x_k) \in b_0^{r,s}(G)$ if and only if $V^{r,s,u,v}y \in c$ whenever $y \in c_0$. This result show us that $a = (a_k) \in \left\{b_0^{r,s}(G)\right\}^{\beta}$ if and only if $V^{r,s,u,v} \in (c_0 : c)$. By combining this result and Lemma 3.1 (iii), we deduce that $a = (a_k) \in \left\{b_0^{r,s}(G)\right\}^{\beta}$ if and only if

$$\sup_{n\in\mathbb{N}}\sum_k |v_{nk}^{r,s,u,v}|<\infty$$

and

$$\lim_{n \to \infty} v_{nk}^{r,s,u,v} \text{ exists, for all } k \in \mathbb{N}$$

namely, $\left\{b_0^{r,s}(G)\right\}^{\beta} = d_2^{r,s,u,v} \cap d_3^{r,s,u,v}$. This completes the proof of theorem. \Box

4. The Matrix Transformations

In this part, we characterize some matrix classes related to the Binomial difference sequence space $b_c^{r,s}(G)$.

Now we give a lemma which is needed in the next corollaries.

Lemma 4.1 ([4]). Let X, Y be any two sequence spaces, A be an infinite matrix and E be a triangle matrix. Then, $A \in (X : Y_E) \Leftrightarrow EA \in (X : Y)$.

For simplicity of notation, we use the equalities below throughout the section 4.

$$d_{nk}^{r,s,u,v} = \frac{1}{u} \sum_{i=k}^{\infty} \sum_{j=k}^{i} {j \choose k} \left(-\frac{v}{u} \right)^{i-j} (-s)^{j-k} (r+s)^{k} r^{-j} a_{ni}$$

for all $n, k \in \mathbb{N}$.

Theorem 4.1. $A \in (b_c^{r,s}(G) : \ell_{\infty})$ if and only if

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|d_{nk}^{r,s,u,v}\right|<\infty,\tag{4.1}$$

$$d_{nk}^{r,s,u,v} \text{ exist for all } n,k \in \mathbb{N},$$
(4.2)

$$\sup_{m \in \mathbb{N}} \sum_{k} \left| \frac{1}{u} \sum_{i=k}^{m} \sum_{j=k}^{i} {j \choose k} \left(-\frac{v}{u} \right)^{i-j} (-s)^{j-k} (r+s)^{k} r^{-j} a_{ni} \right| < \infty \ (m \in \mathbb{N}), \quad (4.3)$$

$$\lim_{m \to \infty} \frac{1}{u} \sum_{i=k}^{m} \sum_{j=k}^{i} \binom{j}{k} \left(-\frac{v}{u}\right)^{i-j} (-s)^{j-k} (r+s)^{k} r^{-j} a_{ni} \text{ exist for all } m \in \mathbb{N}.$$
(4.4)

Proof. Assume that $A \in (b_c^{r,s}(G) : \ell_{\infty})$. Then, it is clear that Ax exists and belongs to ℓ_{∞} for every $x = (x_k) \in b_c^{r,s}(G)$. This leads us to $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_c^{r,s}(G)\}^{\beta}$ for all $n \in \mathbb{N}$. By combining this fact and Theorem 3.3 (ii), we conclude that the conditions (4.2), (4.3) and (4.4) hold. If we consider the fact that $x = \left(\frac{1-\left(-\frac{v}{u}\right)^{k+1}}{u+v}\right) \in b_c^{r,s}(G)$ and $Ax \in \ell_{\infty}$ for all $x \in b_c^{r,s}(G)$, one can see that the condition (4.1) holds.

On the contrary assume that the conditions (4.1)-(4.4) hold.Let us take an arbitrary $x = (x_k) \in b_c^{r,s}(G)$ and take into account the equality

$$\sum_{k=0}^{m} a_{nk} x_k = \sum_{k=0}^{m} \left[\frac{1}{u} \sum_{i=0}^{k} \sum_{j=i}^{k} {j \choose i} \left(-\frac{v}{u} \right)^{k-j} (-s)^{j-i} (r+s)^i r^{-j} y_i \right] a_{nk},$$

$$\sum_{k=0}^{m} a_{nk} x_k = \frac{1}{u} \sum_{k=0}^{m} \sum_{i=k}^{m} \left[\sum_{j=k}^{i} {j \choose k} \left(-\frac{v}{u} \right)^{i-j} (-s)^{j-k} (r+s)^k r^{-j} \right] a_{ni} y_k \qquad (4.5)$$

for all $m, n \in \mathbb{N}$. Under our assumption if we take limit (4.5) side by side as $m \to \infty$ we obtain that

$$\sum_{k} a_{nk} x_k = \sum_{k} d_{nk}^{r,s,u,v} y_k \tag{4.6}$$

for all $n \in \mathbb{N}$. Also by taking sup-norm (4.6) side by side, we have

$$\|Ax\|_{\infty} \leq \sup_{n \in \mathbb{N}} \sum_{k} |d_{nk}^{r,s,u,v}| |y_k| \leq \|y\|_{\infty} \cdot \sup_{n \in \mathbb{N}} \sum_{k} |d_{nk}^{r,s,u,v}| < \infty.$$

Therefore $Ax \in \ell_{\infty}$, namely $A \in (b_c^{r,s}(G) : \ell_{\infty})$. This completes the proof of theorem.

Theorem 4.2. $A \in (b_c^{r,s}(G):c)$ if and only if the conditions (4.1) - (4.4) hold, and

$$\lim_{n \to \infty} \sum_{k} d_{nk}^{r,s,u,v} = \lambda, \tag{4.7}$$

$$\lim_{n \to \infty} d_{nk}^{r,s,u,v} = \lambda_k \quad \text{for all} \quad k \in \mathbb{N}.$$
(4.8)

Proof. Assume that $A \in (b_c^{r,s}(G) : c)$. It is known that the inclusion $c \subset \ell_{\infty}$ holds. By combining the fact and Theorem 4.1, we deduce that the conditions (4.1)–(4.4) hold. Also it is obvious that Ax exists and belongs to c for all $x = (x_k) \in b_c^{r,s}(G)$. Under this fact, if we choose two sequences $x = \left(\frac{1-\left(-\frac{v}{u}\right)^{k+1}}{u+v}\right)$ and $x = d^{(k)}(r, s, u, v)$, we obtain that the conditions (4.7) and (4.8) hold, where the sequence $x = d^{(k)}(r, s, u, v)$ is defined in the Theorem 3.1.

On the contrary, for a given $x = (x_k) \in b_c^{r,s}(G)$, assume that the conditions (4.1)–(4.4), (4.7) and (4.8) hold. Then by considering Theorem 3.3 (ii), one can say that $\{a_{nk}\}_{k\in\mathbb{N}} \in \{b_c^{r,s}(G)\}^{\beta}$ for all $n \in \mathbb{N}$. This implies that Ax exists. From the conditions (4.1) and (4.8), we deduce that

$$\sum_{k=0}^{m} |\lambda_k| \le \sup_{n \in \mathbb{N}} \sum_k |d_{nk}^{r,s,u,v}| < \infty$$

for every $m \in \mathbb{N}$. This shows us that $(\lambda_k) \in \ell_1$. So the series $\sum_k \lambda_k y_k$ absolute converges.

Now, we substitute $a_{nk} - \lambda_k$ instead of a_{nk} in the condition (4.6). Then, we have

$$\sum_{k} (a_{nk} - \lambda_k) x_k = \sum_{k} \frac{1}{u} \sum_{i=k}^{\infty} \sum_{j=i}^{k} {j \choose i} \left(-\frac{v}{u}\right)^{k-j} (-s)^{j-i} (r+s)^i r^{-j} (a_{ni} - \lambda_i) y_k$$
(4.9)

for all $n \in \mathbb{N}$. If we combine (4.9) and Lemma 3.1 (vi), we obtain

$$\lim_{n \to \infty} \sum_{k} (a_{nk} - \lambda_k) x_k = 0.$$
(4.10)

Lastly, if we unite the condition (4.10) and the fact $(\lambda_k y_k) \in \ell_1$, we conclude that $Ax \in c$, that is $A \in (b_c^{r,s}(G) : c)$. This completes the proof of theorem. \Box

Now we can give some more results by taking into account the Lemma 4.1.

Corollary 4.1. Let us take $E = (e_{nk})$ instead of $A = (a_{nk})$ in the needed ones in Theorems 4.1 and 4.2, where $E = (e_{nk})$ is defined by

$$e_{nk} = a_{nk} - a_{n+1,k}$$

for all $n, k \in \mathbb{N}$. Then, the necessary and sufficient conditions in order for $A = (a_{nk})$ to belong to any one of the classes $(b_c^{r,s}(G) : \ell_{\infty}(\Delta))$ and $(b_c^{r,s}(G) : c(\Delta))$ are obtained.

Corollary 4.2. Let us take $Z^{\sigma,\mu} = (z_{nk}^{\sigma,\mu})$ instead of $A = (a_{nk})$ in the needed ones in Theorems 4.1 and 4.2, where $Z^{\sigma,\mu} = (z_{nk}^{\sigma,\mu})$ is defined by

$$z_{nk}^{\sigma,\mu} = \frac{1}{(\sigma+\mu)^n} \sum_{j=0}^n {n \choose j} \mu^{n-j} \sigma^j a_{jk}$$

for all $n, k \in \mathbb{N}$, where $\sigma, \mu \in \mathbb{R}$ and $\sigma, \mu > 0$ Then, the necessary and sufficient conditions in order for $A = (a_{nk})$ to belong to any one of the classes $(b_c^{r,s}(G) : b_{\infty}^{\sigma,\mu})$ and $(b_c^{r,s}(G) : b_c^{\sigma,\mu})$ are obtained.

Corollary 4.3. Let us take $S = (s_{nk})$ instead of $A = (a_{nk})$ in the needed ones in Theorems 4.1 and 4.2, where $S = (s_{nk})$ is defined by

$$s_{nk} = \sum_{j=0}^{n} a_{jk}$$

for all $n, k \in \mathbb{N}$. Then, the necessary and sufficient conditions in order that $A = (a_{nk})$ belongs to any of the classes $(b_c^{r,s}(G) : b_s)$ and $(b_c^{r,s}(G) : c_s)$ are obtained.

5. Conclusion

Since the double band matrix G reduces, in the special case u = 1, v = -1, to the usual difference matrix Δ ; our results are more general and more comprehensive than the corresponding results of Bişgin [7–10] and Meng and Song [17](in case of m = 1).

Acknowledgements. We would like to express our thanks to the anonymous reviewers for their valuable comments.

References

- B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., 2005, 57(1), 1–17.
- [2] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_∞ I, Inform. Sci., 2006, 176(10), 1450–1462.

- [3] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 2006, 30(2), 209–220.
- [4] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 2003, 55(1), 136–147.
- [5] M. C. Bişgin, A. Sönmez, Two new sequence spaces generated by the composition of m th order generalized difference matrix and lambda matrix, J. Inequal. Appl., 2014, 274(2014).
- [6] M. C. Bişgin, Some notes on the sequence spaces ℓ^λ_p(G^m) and ℓ^λ_∞(G^m), GU J. Sci., 2017, 30(1), 381–393.
- [7] M. C. Bişgin, The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016, 309(2016).
- [8] M. C. Bişgin, The Binomial sequence spaces which include the spaces ℓ_p and ℓ_{∞} and Geometric Properties, J. Inequal. Appl., 2016, 304(2016).
- [9] M. C. Bişgin, Matrix transformations and compact operators on the binomial sequence spaces, Under Review.
- [10] M. C. Bişgin, The binomial almost convergent and null sequence spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 2018, 67(1), 211–224.
- [11] B. Choudhary, S. Nanda, Functional Analysis with Applications, John Wiley & sons Inc., New Delhi, 1989.
- [12] M. Et, On Some Difference Sequence Spaces, Turkish J. Math., 1993, 17, 18–24.
- [13] E. E. Kara, M. Başarır, On compact operators and some Euler B^(m)-difference sequence spaces, J. Math. Anal. Appl., 2011, 379(2), 499–511.
- [14] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler difference operators, Acta Sci. Math. (Szeged), 2010, 76, 87–100.
- [15] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 1981, 24(2), 169– 176.
- [16] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 2010, 60(5), 1299–1309.
- [17] J. Meng, M. Song, Binomial difference sequence spaces of order m, Adv. Difference Equ., 2017, 241(2017).
- [18] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} II, Nonlinear Anal., 2006, 65(3), 707–717.
- [19] P. -N. Ng, P. -Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.), 1978, 20(2), 429–433.
- [20] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed., 2007, 27(2), 254–266.
- [21] M. Stieglitz, H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z., 1977, 154, 1–16.
- [22] C.-S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 1978, 9, 269–274.
- [23] A. Wilansky, Summability Throught Functional Analysis, in: North-Holland Mathematics Studies, vol. 85, Elsevier Science Publishers, Amsterdam, Newyork, Oxford, 1984.