SOME NEW SEQUENCE SPACES DERIVED BY THE COMPOSITION OF BINOMIAL MATRIX AND DOUBLE BAND MATRIX

Abdulcabbar Sönmez ${ }^{1, \dagger}$

Abstract

In this paper, we construct three new sequence spaces $b_{0}^{r, s}(G)$, $b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$ and mention some inclusion relations, where G is generalized difference matrix. Moreover, we give Schauder basis of the spaces $b_{0}^{r, s}(G)$ and $b_{c}^{r, s}(G)$. Afterward, we determine $\alpha-, \beta$ - and γ-duals of those spaces. Finally, we characterize some matrix classes related to the space $b_{c}^{r, s}(G)$.

Keywords Matrix transformations, matrix domain, schauder basis, $\alpha-, \beta-$ and γ-duals, matrix classes.

MSC(2010) 40C05, 40H05, 46B45.

1. Rudiments And Notations

The set of all real or complex valued sequences is symbolized with $w . w$ is a vector space under point-wise addition and scalar multiplication. A sequence space is an arbitrary vector subspace of $w . \ell_{\infty}, c_{0}, c$ and ℓ_{p} are symbolic of all bounded, null, convergent and absolutely p-summable sequence spaces, respectively, where $1 \leq p<\infty$.

A K-space is a sequence space X provided each of the maps $p_{n}: X \rightarrow \mathbb{C}$ defined by $p_{n}(x)=x_{n}$ is continuous for all $n \in \mathbb{N}$. A $B K$-space is a Banach space X which has the property of K-space [11].

The sequence spaces ℓ_{∞}, c_{0} and c are $B K$-spaces according to their usual supnorm defined by $\|x\|_{\infty}=\sup _{k \in \mathbb{N}}\left|x_{k}\right|$ and ℓ_{p} is a $B K$ - space with its p-norm defined by

$$
\|x\|_{\ell_{p}}=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

where $1 \leq p<\infty$.
Let $A=\left(a_{n k}\right)$ be an infinite matrix with complex entries, X and Y be two sequence spaces , and $x=\left(x_{k}\right) \in w$. Then, the A - transform of x is defined by

$$
\begin{equation*}
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k} \tag{1.1}
\end{equation*}
$$

[^0]and is assumed to be convergent for all $n \in \mathbb{N}$, the domain of A is defined by
\[

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\} \tag{1.2}
\end{equation*}
$$

\]

which is also a sequence space, and the class of all infinite matrices A is defined by

$$
(X: Y)=\left\{A=\left(a_{n k}\right): A x \in Y \text { for all } x \in X\right\}
$$

[23]. An infinite matrix $A=\left(a_{n k}\right)$ is called a triangle provided the entries $a_{n k}=0$ for $k>n$ and $a_{n n} \neq 0$ for all $n, k \in \mathbb{N}$.

The spaces of all bounded and convergent series are defined by the matrix domain of the summation matrix $S=\left(s_{n k}\right)$ as follows:

$$
b s=\left(\ell_{\infty}\right)_{S} \text { and } c s=c_{S}
$$

respectively, where $S=\left(s_{n k}\right)$ is defined by

$$
s_{n k}=\left\{\begin{array}{l}
1,0 \leq k \leq n \\
0, k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$. Here and in what follows, unless stated otherwise,any term with negative subscript is assumed to be zero and the summation without limits runs from 0 to ∞.

The theory of matrix transformation has a great importance in the theory of summability which was obtained by Cesàro, Norlund, Borel,.... As a consequence of this, lots of authors have constructed new sequence spaces by taking advantage of the matrix domains of infinite matrices. For example: $\left(\ell_{\infty}\right)_{N_{q}}$ and $c_{N_{q}}$ in [22], X_{p} and X_{∞} in [19], $c_{0}(\Delta), c(\Delta)$ and $\ell_{\infty}(\Delta)$ in [15], $c_{0}\left(\Delta^{2}\right), c\left(\Delta^{2}\right)^{q}$ and $\ell_{\infty}\left(\Delta^{2}\right)$ in [12], e_{0}^{r}, e_{c}^{r} in [1], e_{p}^{r} and e_{∞}^{r} in [2] and [18], $e_{0}^{r}(\Delta)$ and $e_{c}^{r}(\Delta)$ and $e_{\infty}^{r}(\Delta)$ in [3], $e_{0}^{r}\left(\Delta^{m}\right)$, $e_{c}^{r}\left(\Delta^{m}\right)$ and $e_{\infty}^{r}\left(\Delta^{m}\right)$ in [20], $e_{0}^{r}\left(B^{(m)}\right), e_{c}^{r}\left(B^{(m)}\right)$ and $e_{\infty}^{r}\left(B^{(m)}\right)$ in [13], $e_{0}^{r}(\Delta, p)$, $e_{c}^{r}(\Delta, p)$ and $e_{\infty}(\Delta, p)$ in [14], $c_{0}^{\lambda}\left(G^{m}\right)$ and $c^{\lambda}\left(G^{m}\right)$ in [5], $\ell_{p}^{\lambda}\left(G^{m}\right)$ and $\ell_{\infty}^{\lambda}\left(G^{m}\right)$ in [6].

In this paper, we construct three new sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$ and mention some inclusion relations, where G is generalized difference matrix. Moreover, we give Schauder basis of the spaces $b_{0}^{r, s}(G)$ and $b_{c}^{r, s}(G)$. Afterward, we determine $\alpha-, \beta$ - and γ-duals of those spaces. Finally, we characterize some matrix classes related to the space $b_{c}^{r, s}(G)$.

2. Some New Sequence Spaces

In this part, we give some informations concerning previous studies of Binomial matrix and Euler matrix, and construct three new sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$. Furthermore, we show that the sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$ are linearly isomorphic to the spaces c_{0}, c and ℓ_{∞}, respectively and mention some inclusion relations.

To define sequence spaces, the Euler matrix was first used by Altay, Başar and Mursaleen in [1] and [2]. They defined the Euler sequence spaces e_{0}^{r} and e_{c}^{r} and e_{∞}^{r} as follows:

$$
e_{0}^{r}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k}=0\right\},
$$

$$
e_{c}^{r}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k} \text { exists }\right\}
$$

and

$$
e_{\infty}^{r}=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k}\right|<\infty\right\}
$$

Afterward, Altay and Polat defined the sequence spaces $e_{0}^{r}(\Delta)$ and $e_{c}^{r}(\Delta)$ and $e_{\infty}^{r}(\Delta)$ in [3] and improved Altay, Başar and Mursaleen's work as follows:

$$
\begin{aligned}
& e_{0}^{r}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k}\left(x_{k}-x_{k-1}\right)=0\right\} \\
& e_{c}^{r}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k}\left(x_{k}-x_{k-1}\right) \text { exists }\right\}
\end{aligned}
$$

and

$$
e_{\infty}^{r}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k}\left(x_{k}-x_{k-1}\right)\right|<\infty\right\}
$$

where Δ is difference matrix.
Recently, Bişgin has defined the Binomial sequence spaces $b_{0}^{r, s}, b_{c}^{r, s}$ and $b_{\infty}^{r, s}$ in [7], [8], [9] and [10], and has generalized Altay, Başar and Mursaleen's work as follows:

$$
\begin{gathered}
b_{0}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}=0\right\} \\
b_{c}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k} \text { exists }\right\}
\end{gathered}
$$

and

$$
b_{\infty}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|<\infty\right\}
$$

where the Binomial matrix $B^{r, s}=\left(b_{n k}^{r, s}\right)$ is defined by

$$
b_{n k}^{r, s}= \begin{cases}\frac{1}{(s+r)^{n}}\binom{n}{k} s^{n-k} r^{k}, & 0 \leq k \leq n \\ 0, & k>n\end{cases}
$$

for all $n, k \in \mathbb{N}, r, s \in \mathbb{R}$ and $s . r>0$. Unless stated otherwise, we henceforth suppose that s.r>0.

Here, we would like to touch on a point, if we take $s+r=1$, we obtain the Euler sequence spaces e_{0}^{r}, e_{c}^{r}, and e_{∞}^{r}.

Afterward, Meng and Song defined the Binomial difference sequence spaces $b_{0}^{r, s}(\Delta), b_{c}^{r, s}(\Delta)$ and $b_{\infty}^{r, s}(\Delta)$ in [17](in case of $m=1$) and improved Bissgin's work as follows:

$$
b_{0}^{r, s}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(x_{k}-x_{k-1}\right)=0\right\}
$$

$$
b_{c}^{r, s}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(x_{k}-x_{k-1}\right) \text { exists }\right\}
$$

and

$$
b_{\infty}^{r, s}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(x_{k}-x_{k-1}\right)\right|<\infty\right\}
$$

Now, we define the sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$ by

$$
\begin{aligned}
b_{0}^{r, s}(G) & =\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right)=0\right\}, \\
b_{c}^{r, s}(G) & =\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right) \text { exists }\right\}
\end{aligned}
$$

and

$$
b_{\infty}^{r, s}(G)=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right)\right|<\infty\right\},
$$

where $G=\left(g_{n k}\right)$ is generalized difference matrix and is defined by

$$
g_{n k}=\left\{\begin{array}{l}
u, k=n \\
v, k=n-1 \\
0, \text { otherwise }
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$ and $u, v \in \mathbb{R} \backslash\{0\}$. Here, if we take $u=1$ and $v=-1$, we obtain the difference matrix Δ.

By considering the notation of (1.2) we can redefine the sequence spaces $b_{0}^{r, s}(G)$, $b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$, by the matrix domain of the generalized difference matrix G as follows:

$$
\begin{equation*}
b_{0}^{r, s}(G)=\left(b_{0}^{r, s}\right)_{G}, b_{c}^{r, s}(G)=\left(b_{c}^{r, s}\right)_{G} \text { and } b_{\infty}^{r, s}(G)=\left(b_{\infty}^{r, s}\right)_{G} . \tag{2.1}
\end{equation*}
$$

Moreover, by defining a triangle matrix $H^{r, s, u, v}=\left(h_{n k}^{r, s, u, v}\right)=B^{r, s} G$ such that

$$
h_{n k}^{r, s, u, v}= \begin{cases}\frac{s^{n-k-1} r^{k}}{(r+s)^{n}}\left[u s\binom{n}{k}+v r\binom{n}{k+1}\right], & 0 \leq k \leq n \\ 0 & , k>n\end{cases}
$$

for all $n, k \in \mathbb{N}$, the sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$, and $b_{\infty}^{r, s}(G)$ can be rearranged by means of the $H^{r, s, u, v}=\left(h_{n k}^{r, s, u, v}\right)$ matrix as follows:

$$
\begin{equation*}
b_{0}^{r, s}(G)=\left(c_{0}\right)_{H^{r, s, u, v}}, b_{c}^{r, s}(G)=c_{H^{r, s, u, v}} \text { and } b_{\infty}^{r, s}(G)=\left(\ell_{\infty}\right)_{H^{r, s, u, v}} \tag{2.2}
\end{equation*}
$$

In this way ,for a given arbitrary sequence $x=\left(x_{k}\right)$, the $H^{r, s, u, v}$-transform of x is defined by

$$
\begin{equation*}
y_{k}=\left(H^{r, s, u, v} x\right)_{k}=\frac{1}{(r+s)^{k}} \sum_{i=0}^{k}\binom{k}{i} s^{k-i} r^{i}\left(u x_{i}+v x_{i-1}\right) \tag{2.3}
\end{equation*}
$$

for all $k \in \mathbb{N}$, or, by considering another representation, the sequence $y=\left(y_{k}\right)$ can rewritten as follows:

$$
\begin{equation*}
y_{k}=\left(H^{r, s, u, v} x\right)_{k}=\frac{1}{(r+s)^{k}} \sum_{i=0}^{k}\left[u s\binom{k}{i}+v r\binom{k}{i+1}\right] s^{k-i-1} r^{i} x_{i} \tag{2.4}
\end{equation*}
$$

for all $k \in \mathbb{N}$.
Theorem 2.1. The sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$, and $b_{\infty}^{r, s}(G)$ are BK-spaces in accordance with their norms defined by

$$
\|x\|_{b_{0}^{r, s}(G)}=\|x\|_{b_{c}^{r, s}(G)}=\|x\|_{b_{\infty}^{r, s}(G)}=\left\|\left(H^{r, s, u, v} x\right)_{k}\right\|_{\infty}=\sup _{k \in \mathbb{N}}\left|\left(H^{r, s, u, v} x\right)_{k}\right| .
$$

Proof. we know already that the spaces c_{0}, c and ℓ_{∞} are BK-spaces with the norm $\|x\|_{\infty}=\sup _{k \in \mathbb{N}}\left|x_{k}\right|, H^{r, s, u, v}=\left(h_{n k}^{r, s, u, v}\right)$ is a triangle matrix and the state (2.2) holds. If we connect these results with Theorem 4.3.12 of Wilansky [23], we obtain that the sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$, and $b_{\infty}^{r, s}(G)$ are $B K$-spaces. This completes the proof of the theorem.

Theorem 2.2. The sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$, and $b_{\infty}^{r, s}(G)$ are linearly isomorphic to the sequence spaces c_{0}, c and ℓ_{∞}, respectively, namely, $b_{0}^{r, s}(G) \cong c_{0}$, $b_{c}^{r, s}(G) \cong c$ and $b_{\infty}^{r, s}(G) \cong \ell_{\infty}$.
Proof. To keep away from the usage of similar statements, the proof of theorem is given for only the sequence space $b_{0}^{r, s}(G)$. For this purpose, we should show the existence of a linear bijection between the spaces $b_{0}^{r, s}(G)$ and c_{0}.Consider the transformation L defined by $L: b_{0}^{r, s}(G) \longrightarrow c_{0}, L(x)=H^{r, s, u, v} x$. Then, according to definition of the transformation L, it is obvious that $L(x)=H^{r, s, u, v} x \in c_{0}$ for all $x \in b_{0}^{r, s}(G)$. Moreover, it is trivial that L is linear and $x=0$ whenever $L(x)=0$. Therefore, L is injective.

For a given arbitrary sequence $y=\left(y_{k}\right) \in c_{0}$, we define the sequence $x=\left(x_{n}\right)$ by

$$
x_{n}=\frac{1}{u} \sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i}\right] y_{k}
$$

for all $n \in \mathbb{N}$. Then, we get

$$
\begin{aligned}
\left(H^{r, s, u, v} x\right)_{n} & =\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right) \\
& =\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} \sum_{j=0}^{k}\binom{k}{j}(-s)^{k-j}(r+s)^{j} r^{-k} y_{j} \\
& =y_{n}
\end{aligned}
$$

for all $n \in \mathbb{N}$, that is

$$
\lim _{n \rightarrow \infty}\left(H^{r, s, u, v} x\right)_{n}=\lim _{n \rightarrow \infty} y_{n}=0
$$

Therefore, we obtain that $x=\left(x_{k}\right) \in b_{0}^{r, s}(G)$ and $L(x)=y$, namely L is surjective. Furthermore, we have for every $x \in b_{0}^{r, s}(G)$ that

$$
\|L(x)\|_{\infty}=\left\|H^{r, s, u, v} x\right\|_{\infty}=\|x\|_{b_{0}^{r, s}(G)}
$$

So, L is norm preserving. Consequently, L is a linear bijection. This fact shows us that the sequence spaces $b_{0}^{r, s}(G)$ and c_{0} are linearly isomorphic. This completes the proof.
Theorem 2.3. The inclusions $\hat{c_{0}} \subset b_{0}^{r, s}(G), \hat{c} \subset b_{c}^{r, s}(G)$ and $\hat{\ell_{\infty}} \subset b_{\infty}^{r, s}(G)$ are strict, where $\hat{c_{0}}, \hat{c}$ and $\hat{\ell_{\infty}}$ are defined in [16].

Proof. To avoid the repetition of similar expression, we give the proof of theorem for only the inclusion $\hat{\ell_{\infty}} \subset b_{\infty}^{r, s}(G)$.

For a given arbitrary sequence $x=\left(x_{k}\right) \in \hat{\ell_{\infty}}$, we have that

$$
\begin{aligned}
\|x\|_{b_{\infty}^{r, s}(G)} & =\left\|H^{r, s, u, v} x\right\|_{\infty} \\
& =\sup _{n \in \mathbb{N}}\left|\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right)\right| \\
& \leq \sup _{n \in \mathbb{N}}\left|u x_{n}+v x_{n-1}\right| \cdot \sup _{n \in \mathbb{N}}\left|\frac{1}{(r+s)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\right| \\
& =\|x\|_{\ell_{\infty}} .
\end{aligned}
$$

This means that $x=\left(x_{k}\right) \in b_{\infty}^{r, s}(G)$, namely the inclusion $\hat{\ell_{\infty}} \subset b_{\infty}^{r, s}(G)$ holds. Now we define a sequence $x=\left(x_{k}\right)$ such that $x_{k}=\frac{1}{u} \sum_{i=0}^{k}\left(-\frac{v}{u}\right)^{k-i}\left(-\frac{s+r}{r}\right)^{i}$ for all $k \in \mathbb{N}$. Then $G x=\left(\left(-\frac{s+r}{r}\right)^{k}\right) \notin \ell_{\infty}$ but $H^{r, s, u, v} x=\left(\left(-\frac{r}{r+s}\right)^{k}\right) \in \ell_{\infty}$. As a consequence, $x=\left(x_{k}\right) \in b_{\infty}^{r, s}(G) \backslash \hat{\ell_{\infty}}$. This shows that the inclusion $\hat{\ell_{\infty}} \subset b_{\infty}^{r, s}(G)$ is strict. This completes the proof.

Theorem 2.4. The inclusions $b_{0}^{r, s}(G) \subset b_{c}^{r, s}(G) \subset b_{\infty}^{r, s}(G)$ strictly hold.
Proof. It is well known that every null sequence is also convergent and every convergent sequence is also bounded.So, the inclusions $b_{0}^{r, s}(G) \subset b_{c}^{r, s}(G) \subset b_{\infty}^{r, s}(G)$ hold. Now we define two sequences $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ such that $x_{k}=\frac{1-\left(-\frac{v}{u}\right)^{k+1}}{u+v}$ and $y_{k}=\frac{1}{u} \sum_{i=0}^{k}\left(-\frac{v}{u}\right)^{k-i}\left(-\frac{r+2 s}{r}\right)^{i}$ for all $k \in \mathbb{N}$. Then we can observe that $H^{r, s, u, v} x=e \in c \backslash c_{0}$ and $H^{r, s, u, v} y=\left((-1)^{k}\right) \in \ell_{\infty} \backslash c$, namely $x=\left(x_{k}\right) \in$ $b_{c}^{r, s}(G) \backslash b_{0}^{r, s}(G)$ and $y=\left(y_{k}\right) \in b_{\infty}^{r, s}(G) \backslash b_{c}^{r, s}(G)$. These two facts show that the inclusions $b_{0}^{r, s}(G) \subset b_{c}^{r, s}(G) \subset b_{\infty}^{r, s}(G)$ are strict. This completes the proof.

Theorem 2.5. $c \subset b_{0}^{r, s}(G)$ strictly holds, whenever $u+v=0$.
Proof. It is obvious that $G x \in c_{0}$ whenever $x \in c$. Also, the Binomial matrix is regular when r.s>0. If we combine these two facts, we obtain that $B^{r, s} G x \in c_{0}$ whenever $x \in c$, namely $x \in b_{0}^{r, s}(G)$ whenever $x \in c$. So, the inclusion $c \subset b_{0}^{r, s}(G)$ holds. Now we define a sequence $x=\left(x_{k}\right)$ such that $x_{k}=(-1)^{k}\left[\frac{1-\left(\frac{v}{u}\right)^{k+1}}{u-v}\right]$ for all $k \in \mathbb{N}$. Then, we can see that $x=\left(x_{k}\right) \notin c$ but $H^{r, s, u, v} x=\left(\left(\frac{s-r}{s+r}\right)^{k}\right) \in c_{0}$, that is $x \in b_{0}^{r, s}(G)$. This result shows that the inclusion $c \subset b_{0}^{r, s}(G)$ is strict. This completes the proof.

3. The Schauder Basis And $\alpha-, \beta-$ and $\gamma-$ Duals

In this part, we give the Schauder basis of the Binomial difference sequence spaces $b_{0}^{r, s}(G)$ and $b_{c}^{r, s}(G)$. Moreover we determine $\alpha-, \beta-$ and $\gamma-$ duals of the sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$.

A sequence $u=\left(u_{k}\right)$ in the sequence space X is called a Schauder basis for a normed space $\left(X,\|\cdot\|_{X}\right)$ if, for every $x=\left(x_{k}\right) \in X$ there exists a unique sequence $\left(\lambda_{k}\right)$ of scalars such that $x=\sum_{k} \lambda_{k} u_{k}$; i.e. such that

$$
\lim _{n \rightarrow \infty}\left\|x-\sum_{k=0}^{n} \lambda_{k} u_{k}\right\|_{X} \longrightarrow 0
$$

Theorem 3.1. Let $\xi_{k}=\left(H^{r, s, u, v} x\right)_{k}$ for all $k \in \mathbb{N}$. For all fixed $k \in \mathbb{N}$, consider the sequences $d=\left(d_{k}\right)$ defined by $d_{k}=\frac{1-\left(-\frac{v}{u}\right)^{k+1}}{u+v}$ and $d^{(k)}(r, s, u, v)=$ $\left\{d_{n}^{(k)}(r, s, u, v)\right\}_{n \in \mathbb{N}}$ defined by

$$
d_{n}^{(k)}(r, s, u, v)= \begin{cases}0, & 0 \leq n<k \\ \frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i}, & k \leq n\end{cases}
$$

Then the following hold:
(a) The Schauder basis of the sequence space $b_{0}^{r, s}(G)$ is the sequence $\left\{d^{(k)}(r, s, u, v)\right\}_{k \in \mathbb{N}}$ and all $x=\left(x_{k}\right) \in b_{0}^{r, s}(G)$ can be uniquely written

$$
x=\sum_{k} \xi_{k} d^{(k)}(r, s, u, v)
$$

(b) The Schauder basis of the sequence space $b_{c}^{r, s}(G)$ is the set $\left\{d, d^{(0)}(r, s, u, v)\right.$, $\left.d^{(1)}(r, s, u, v), \ldots\right\}$ and all $x=\left(x_{k}\right) \in b_{c}^{r, s}(G)$ can be uniquely written

$$
x=l d+\sum_{k}\left[\xi_{k}-l\right] d^{(k)}(r, s, u, v)
$$

where $l=\lim _{k \rightarrow \infty}\left(H^{r, s, u, v} x\right)_{k}$.
Proof. One can easily see that $H^{r, s, u, v} d^{(k)}(r, s, u, v)=e^{(k)} \in c_{0}$ for all $k \in \mathbb{N}$, where $e^{(k)}$ is a sequence with 1 in the k th place and zeros elsewhere. Then we conclude that the inclusion $\left\{d^{(k)}(r, s, u, v)\right\} \subset b_{0}^{r, s}(G)$ holds .

Let $x=\left(x_{k}\right) \in b_{0}^{r, s}(G)$. We write

$$
x^{[m]}=\sum_{k=0}^{m} \xi_{k} d^{(k)}(r, s, u, v)
$$

for all $m \in \mathbb{N}$. Then, by applying the matrix $H^{r, s, u, v}=\left(h_{n k}^{r, s, u, v}\right)$ to $x^{[m]}$, we get

$$
H^{r, s, u, v} x^{[m]}=\sum_{k=0}^{m} \xi_{k} H^{r, s, u, v} d^{(k)}(r, s, u, v)=\sum_{k=0}^{m}\left(H^{r, s, u, v} x\right)_{k} e^{(k)}
$$

and

$$
\left\{H^{r, s, u, v}\left(x-x^{[m]}\right)\right\}_{n}= \begin{cases}0 & , 0 \leq n \leq m \\ \left(H^{r, s, u, v} x\right)_{n}, & n>m\end{cases}
$$

for all $n, m \in \mathbb{N}$. For every $\epsilon>0$ there exist $m_{0}=m_{0}^{(\epsilon)} \in \mathbb{N}$ such that

$$
\left|\left(H^{r, s, u, v} x\right)_{m}\right|<\frac{\epsilon}{2}
$$

for all $m_{0} \leq m$. On account of this

$$
\left\|x-x^{[m]}\right\|_{b_{0}^{r, s}(G)}=\sup _{m \leq n}\left|\left(H^{r, s, u, v} x\right)_{n}\right| \leq \sup _{m_{0} \leq n}\left|\left(H^{r, s, u, v} x\right)_{n}\right| \leq \frac{\epsilon}{2}<\epsilon
$$

for all $m_{0} \leq m$. This gives us that

$$
x=\sum_{k} \xi_{k} d^{(k)}(r, s, u, v)
$$

Now, we should show the uniqueness of this representation. We suppose that there exist an another representation of $x=\left(x_{k}\right)$ such that

$$
x=\sum_{k} \mu_{k} d^{(k)}(r, s, u, v)
$$

Then, by the continuity of the transformation, L defined in the proof of theorem 2.2 , we have

$$
\left(H^{r, s, u, v} x\right)_{n}=\sum_{k} \mu_{k}\left[H^{r, s, u, v} d^{(k)}(r, s, u, v)\right]_{n}=\sum_{k} \mu_{k} e_{n}^{(k)}=\mu_{n}
$$

for all $n \in \mathbb{N}$. This equality is in contradiction with the fact that $\left(H^{r, s, u, v} x\right)_{n}=\xi_{n}$ for all $n \in \mathbb{N}$. Therefore, all $x=\left(x_{k}\right) \in b_{0}^{r, s}(G)$ has a unique representation.
(b) From the part (a) we know that $\left\{d^{(k)}(r, s, u, v)\right\} \subset b_{0}^{r, s}(G)$ and also $H^{r, s, u, v} d=$ $e \in c$. Thus, the inclusion $\left\{d, d^{(k)}(r, s, u, v)\right\} \subset b_{c}^{r, s}(G)$ clearly holds. Given an arbitrary $x=\left(x_{k}\right) \in b_{c}^{r, s}(G)$, we constract a sequence $y=\left(y_{k}\right)$ such that $y=x-l d$, where $l=\lim _{k \rightarrow \infty} \xi_{k}$. Then it is clear that $y=\left(y_{k}\right) \in b_{0}^{r, s}(G)$ and by the part (a) $y=\left(y_{k}\right)$ has a unique representation. This leads us to $x=\left(x_{k}\right)$ has a unique representation of the form

$$
x=l d+\sum_{k}\left[\xi_{k}-l\right] d^{(k)}(r, s, u, v)
$$

This completes the proof of the theorem.
If we combine Theorem 2.1 and Theorem 3.1, we can give the next corollary.
Corollary 3.1. The sequence spaces $b_{0}^{r, s}(G)$ and $b_{c}^{r, s}(G)$ are separable.
A set defined by

$$
M(X, Y)=\left\{a=\left(a_{k}\right) \in w: a x=\left(a_{k} x_{k}\right) \in Y \text { for all } x=\left(x_{k}\right) \in X\right\}
$$

is called the multiplier space of the sequence spaces X and Y. Then, the $\alpha-, \beta-$ and γ-duals of the sequence space X are defined by the aid of the notion of multiplier space such that

$$
X^{\alpha}=M\left(X, \ell_{1}\right), \quad X^{\beta}=M(X, c s) \text { and } X^{\gamma}=M(X, b s),
$$

respectively.
Now, we continue with to quote lemma from Stieglitz and Tietz [21] which are needed in the next.

$$
\begin{gather*}
\sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|<\infty \tag{3.1}\\
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty \tag{3.2}\\
\lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} a_{n k}\right| \tag{3.3}\\
\lim _{n \rightarrow \infty} a_{n k}=\mu_{k} \text { for all } k \in \mathbb{N} \tag{3.4}\\
\lim _{n \rightarrow \infty} \sum_{k} a_{n k}=\mu \tag{3.5}
\end{gather*}
$$

where \mathcal{F} represents the set of all finite subsets of \mathbb{N}.
Lemma 3.1 ($[21])$. Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then the following statements hold:
(i) $A=\left(a_{n k}\right) \in\left(c_{0}: \ell_{1}\right)=\left(c: \ell_{1}\right)=\left(\ell_{\infty}: \ell_{1}\right) \Leftrightarrow(3.1)$ holds
(ii) $A=\left(a_{n k}\right) \in\left(c_{0}: \ell_{\infty}\right)=\left(c: \ell_{\infty}\right)=\left(\ell_{\infty}: \ell_{\infty}\right) \Leftrightarrow$ (3.2) holds
(iii) $A=\left(a_{n k}\right) \in\left(c_{0}: c\right) \Leftrightarrow(3.2)$ and (3.4) hold
(iv) $A=\left(a_{n k}\right) \in(c: c) \Leftrightarrow(3.2)$, (3.4) and (3.5) hold
(v) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}: c\right) \Leftrightarrow$ (3.3) and (3.4) hold
(vi) $A=\left(a_{n k}\right) \in\left(c: c_{0}\right) \Leftrightarrow(3.2)$, (3.4) and (3.5) hold with $\mu_{k}=0, \forall k \in \mathbb{N}$ and $\mu=0$

Theorem 3.2. The α-dual of the Binomial sequence spaces $b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ and $b_{\infty}^{r, s}(G)$ is the set
$d_{1}^{r, s, u, v}=\left\{a=\left(a_{k}\right) \in w: \sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} \frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right|<\infty\right\}$.
Proof. For given $a=\left(a_{n}\right) \in w$, by bearing in mind the sequence that is defined in the proof of Theorem 2.2, we can write
$a_{n} x_{n}=\sum_{k=0}^{n}\left[\frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right] y_{k}=\sum_{k=0}^{n} u_{n k}^{r, s, u, v} y_{k}=\left(U^{r, s, u, v} y\right)_{n}$
for all $n \in \mathbb{N}$. Then, $a x=\left(a_{n} x_{n}\right) \in \ell_{1}$ whenever $x=\left(x_{k}\right) \in b_{0}^{r, s}(G), b_{c}^{r, s}(G)$ or $b_{\infty}^{r, s}(G)$ if and only if $U^{r, s, u, v} y \in \ell_{1}$ whenever $y=\left(y_{k}\right) \in c_{0}, c$ or ℓ_{∞}. This shows us that $a=\left(a_{n}\right) \in\left\{b_{0}^{r, s}(G)\right\}^{\alpha}=\left\{b_{c}^{r, s}(G)\right\}^{\alpha}=\left\{b_{\infty}^{r, s}(G)\right\}^{\alpha}$ if and only if
$U^{r, s, u, v} \in\left(c_{0}: \ell_{1}\right)=\left(c: \ell_{1}\right)=\left(\ell_{\infty}: \ell_{1}\right)$. By combining this result and Lemma 3.1 (i), we deduce that
$a=\left(a_{n}\right) \in\left\{b_{0}^{r, s}(G)\right\}^{\alpha} \Leftrightarrow \sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} \frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right|<\infty$.
This means that $\left\{b_{0}^{r, s}(G)\right\}^{\alpha}=\left\{b_{c}^{r, s}(G)\right\}^{\alpha}=\left\{b_{\infty}^{r, s}(G)\right\}^{\alpha}=d_{1}^{r, s, u, v}$. This completes the proof of theorem.

Theorem 3.3. Let four sets $d_{2}^{r, s, u, v}, d_{3}^{r, s, u, v}, d_{4}^{r, s, u, v}$ and $d_{5}^{r, s, u, v}$ be given as follows:

$$
\begin{gathered}
d_{2}^{r, s, u, v}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k}\left|v_{n k}^{r, s, u, v}\right|<\infty\right\} \\
d_{3}^{r, s, u, v}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} v_{n k}^{r, s, u, v} \text { exists for all } k \in \mathbb{N}\right\}, \\
d_{4}^{r, s, u, v}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|v_{n k}^{r, s, u, v}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} v_{n k}^{r, s, u, v}\right|\right\}
\end{gathered}
$$

and

$$
d_{5}^{r, s, u, v}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k} v_{n k}^{r, s, u, v} \text { exists }\right\}
$$

where the matrix $V^{r, s, u, v}=\left(v_{n k}^{r, s, u, v}\right)$ is defined by means of the sequence $a=\left(a_{n}\right)$ by

$$
v_{n k}^{r, s, u, v}= \begin{cases}\frac{1}{u} \sum_{i=k}^{n} \sum_{j=k}^{i}\binom{j}{k}\left(-\frac{v}{u}\right)^{i-j}(-s)^{j-k}(r+s)^{k} r^{-j} a_{i}, & 0 \leq k \leq n \\ 0 & , k>n\end{cases}
$$

for all $n, k \in \mathbb{N}$. Then, the following hold:
(i) $\left\{b_{0}^{r, s}(G)\right\}^{\beta}=d_{2}^{r, s, u, v} \cap d_{3}^{r, s, u, v}$;
(ii) $\left\{b_{c}^{r, s}(G)\right\}^{\beta}=d_{2}^{r, s, u, v} \cap d_{3}^{r, s, u, v} \cap d_{5}^{r, s, u, v}$;
(iii) $\left\{b_{\infty}^{r, s}(G)\right\}^{\beta}=d_{3}^{r, s, u, v} \cap d_{4}^{r, s, u, v}$;
(iv) $\left\{b_{0}^{r, s}(G)\right\}^{\gamma}=\left\{b_{c}^{r, s}(G)\right\}^{\gamma}=\left\{b_{\infty}^{r, s}(G)\right\}^{\gamma}=d_{2}^{r, s, u, v}$.

Proof. Because of the parts (ii), (iii) and (iv) of theorem can be proved by using a similar way, we give the proof of theorem for only the part (i). Let $a=\left(a_{n}\right) \in w$ be given. Then by taking into account the sequence $x=\left(x_{k}\right)$ defined in the proof of Theorem 2.2 , we obtain

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n}\left[\frac{1}{u} \sum_{i=0}^{k} \sum_{j=i}^{k}\binom{j}{i}\left(-\frac{v}{u}\right)^{k-j}(-s)^{j-i}(r+s)^{i} r^{-j} y_{i}\right] a_{k} \\
& =\sum_{k=0}^{n}\left[\frac{1}{u} \sum_{i=k}^{n} \sum_{j=k}^{i}\binom{j}{k}\left(-\frac{v}{u}\right)^{i-j}(-s)^{j-k}(r+s)^{k} r^{-j} a_{i}\right] y_{k}=\left(V^{r, s, u, v} y\right)_{n}
\end{aligned}
$$

for all $n, k \in \mathbb{N}$. Then, $a x=\left(a_{n} x_{n}\right) \in c s$ whenever $x=\left(x_{k}\right) \in b_{0}^{r, s}(G)$ if and only if $V^{r, s, u, v} y \in c$ whenever $y \in c_{0}$. This result show us that $a=\left(a_{k}\right) \in\left\{b_{0}^{r, s}(G)\right\}^{\beta}$ if and only if $V^{r, s, u, v} \in\left(c_{0}: c\right)$. By combining this result and Lemma 3.1 (iii), we deduce that $a=\left(a_{k}\right) \in\left\{b_{0}^{r, s}(G)\right\}^{\beta}$ if and only if

$$
\sup _{n \in \mathbb{N}} \sum_{k}\left|v_{n k}^{r, s, u, v}\right|<\infty
$$

and

$$
\lim _{n \rightarrow \infty} v_{n k}^{r, s, u, v} \text { exists, for all } k \in \mathbb{N}
$$

namely, $\left\{b_{0}^{r, s}(G)\right\}^{\beta}=d_{2}^{r, s, u, v} \cap d_{3}^{r, s, u, v}$. This completes the proof of theorem.

4. The Matrix Transformations

In this part, we characterize some matrix classes related to the Binomial difference sequence space $b_{c}^{r, s}(G)$.

Now we give a lemma which is needed in the next corollaries.
Lemma 4.1 ([4]). Let X, Y be any two sequence spaces, A be an infinite matrix and E be a triangle matrix. Then, $A \in\left(X: Y_{E}\right) \Leftrightarrow E A \in(X: Y)$.

For simplicity of notation, we use the equalities below throughout the section 4.

$$
d_{n k}^{r, s, u, v}=\frac{1}{u} \sum_{i=k}^{\infty} \sum_{j=k}^{i}\binom{j}{k}\left(-\frac{v}{u}\right)^{i-j}(-s)^{j-k}(r+s)^{k} r^{-j} a_{n i}
$$

for all $n, k \in \mathbb{N}$.
Theorem 4.1. $A \in\left(b_{c}^{r, s}(G): \ell_{\infty}\right)$ if and only if

$$
\begin{gather*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|d_{n k}^{r, s, u, v}\right|<\infty, \tag{4.1}\\
d_{n k}^{r, s, u, v} \text { exist for all } n, k \in \mathbb{N}, \tag{4.2}\\
\sup _{m \in \mathbb{N}} \sum_{k}\left|\frac{1}{u} \sum_{i=k}^{m} \sum_{j=k}^{i}\binom{j}{k}\left(-\frac{v}{u}\right)^{i-j}(-s)^{j-k}(r+s)^{k} r^{-j} a_{n i}\right|<\infty(m \in \mathbb{N}), \tag{4.3}\\
\lim _{m \rightarrow \infty} \frac{1}{u} \sum_{i=k}^{m} \sum_{j=k}^{i}\binom{j}{k}\left(-\frac{v}{u}\right)^{i-j}(-s)^{j-k}(r+s)^{k} r^{-j} a_{n i} \text { exist for all } m \in \mathbb{N} . \tag{4.4}
\end{gather*}
$$

Proof. Assume that $A \in\left(b_{c}^{r, s}(G): \ell_{\infty}\right)$. Then, it is clear that $A x$ exists and belongs to ℓ_{∞} for every $x=\left(x_{k}\right) \in b_{c}^{r, s}(G)$.This leads us to $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{c}^{r, s}(G)\right\}^{\beta}$ for all $n \in \mathbb{N}$. By combining this fact and Theorem 3.3 (ii), we conclude that the conditions (4.2), (4.3) and (4.4) hold. If we consider the fact that $x=\left(\frac{1-\left(-\frac{v}{u}\right)^{k+1}}{u+v}\right) \in$ $b_{c}^{r, s}(G)$ and $A x \in \ell_{\infty}$ for all $x \in b_{c}^{r, s}(G)$, one can see that the condition (4.1) holds.

On the contrary assume that the conditions (4.1)-(4.4) hold.Let us take an arbitrary $x=\left(x_{k}\right) \in b_{c}^{r, s}(G)$ and take into account the equality

$$
\begin{align*}
& \sum_{k=0}^{m} a_{n k} x_{k}=\sum_{k=0}^{m}\left[\frac{1}{u} \sum_{i=0}^{k} \sum_{j=i}^{k}\binom{j}{i}\left(-\frac{v}{u}\right)^{k-j}(-s)^{j-i}(r+s)^{i} r^{-j} y_{i}\right] a_{n k} \\
& \sum_{k=0}^{m} a_{n k} x_{k}=\frac{1}{u} \sum_{k=0}^{m} \sum_{i=k}^{m}\left[\sum_{j=k}^{i}\binom{j}{k}\left(-\frac{v}{u}\right)^{i-j}(-s)^{j-k}(r+s)^{k} r^{-j}\right] a_{n i} y_{k} \tag{4.5}
\end{align*}
$$

for all $m, n \in \mathbb{N}$. Under our assumption if we take limit (4.5) side by side as $m \rightarrow \infty$ we obtain that

$$
\begin{equation*}
\sum_{k} a_{n k} x_{k}=\sum_{k} d_{n k}^{r, s, u, v} y_{k} \tag{4.6}
\end{equation*}
$$

for all $n \in \mathbb{N}$.Also by taking sup-norm (4.6) side by side, we have

$$
\|A x\|_{\infty} \leq \sup _{n \in \mathbb{N}} \sum_{k}\left|d_{n k}^{r, s, u, v}\right|\left|y_{k}\right| \leq\|y\|_{\infty} \cdot \sup _{n \in \mathbb{N}} \sum_{k}\left|d_{n k}^{r, s, u, v}\right|<\infty .
$$

Therefore $A x \in \ell_{\infty}$, namely $A \in\left(b_{c}^{r, s}(G): \ell_{\infty}\right)$. This completes the proof of theorem.

Theorem 4.2. $A \in\left(b_{c}^{r, s}(G): c\right)$ if and only if the conditions (4.1) - (4.4) hold, and

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \sum_{k} d_{n k}^{r, s, u, v}
\end{aligned}=\lambda, \quad \begin{aligned}
& \quad \text { for all } k \in \mathbb{N} . \tag{4.7}
\end{align*}
$$

Proof. Assume that $A \in\left(b_{c}^{r, s}(G): c\right)$. It is known that the inclusion $c \subset \ell_{\infty}$ holds. By combining the fact and Theorem 4.1, we deduce that the conditions (4.1)-(4.4) hold. Also it is obvious that $A x$ exists and belongs to c for all $x=$ $\left(x_{k}\right) \in b_{c}^{r, s}(G)$. Under this fact, if we choose two sequences $x=\left(\frac{1-\left(-\frac{v}{u}\right)^{k+1}}{u+v}\right)$ and $x=d^{(k)}(r, s, u, v)$, we obtain that the conditions (4.7) and (4.8) hold, where the sequence $x=d^{(k)}(r, s, u, v)$ is defined in the Theorem 3.1.

On the contrary, for a given $x=\left(x_{k}\right) \in b_{c}^{r, s}(G)$, assume that the conditions (4.1)-(4.4), (4.7) and (4.8) hold. Then by considering Theorem 3.3 (ii), one can say that $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{c}^{r, s}(G)\right\}^{\beta}$ for all $n \in \mathbb{N}$. This implies that $A x$ exists. From the conditions (4.1) and (4.8), we deduce that

$$
\sum_{k=0}^{m}\left|\lambda_{k}\right| \leq \sup _{n \in \mathbb{N}} \sum_{k}\left|d_{n k}^{r, s, u, v}\right|<\infty
$$

for every $m \in \mathbb{N}$. This shows us that $\left(\lambda_{k}\right) \in \ell_{1}$. So the series $\sum_{k} \lambda_{k} y_{k}$ absolute converges.

Now, we substitute $a_{n k}-\lambda_{k}$ instead of $a_{n k}$ in the condition (4.6). Then, we have

$$
\begin{equation*}
\sum_{k}\left(a_{n k}-\lambda_{k}\right) x_{k}=\sum_{k} \frac{1}{u} \sum_{i=k}^{\infty} \sum_{j=i}^{k}\binom{j}{i}\left(-\frac{v}{u}\right)^{k-j}(-s)^{j-i}(r+s)^{i} r^{-j}\left(a_{n i}-\lambda_{i}\right) y_{k} \tag{4.9}
\end{equation*}
$$

for all $n \in \mathbb{N}$. If we combine (4.9) and Lemma 3.1 (vi), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k}\left(a_{n k}-\lambda_{k}\right) x_{k}=0 \tag{4.10}
\end{equation*}
$$

Lastly, if we unite the condition (4.10) and the fact $\left(\lambda_{k} y_{k}\right) \in \ell_{1}$, we conclude that $A x \in c$, that is $A \in\left(b_{c}^{r, s}(G): c\right)$. This completes the proof of theorem.

Now we can give some more results by taking into account the Lemma 4.1.
Corollary 4.1. Let us take $E=\left(e_{n k}\right)$ instead of $A=\left(a_{n k}\right)$ in the needed ones in Theorems 4.1 and 4.2, where $E=\left(e_{n k}\right)$ is defined by

$$
e_{n k}=a_{n k}-a_{n+1, k}
$$

for all $n, k \in \mathbb{N}$. Then, the necessary and sufficient conditions in order for $A=\left(a_{n k}\right)$ to belong to any one of the classes $\left(b_{c}^{r, s}(G): \ell_{\infty}(\Delta)\right)$ and $\left(b_{c}^{r, s}(G): c(\Delta)\right)$ are obtained.

Corollary 4.2. Let us take $Z^{\sigma, \mu}=\left(z_{n k}^{\sigma, \mu}\right)$ instead of $A=\left(a_{n k}\right)$ in the needed ones in Theorems 4.1 and 4.2, where $Z^{\sigma, \mu}=\left(z_{n k}^{\sigma, \mu}\right)$ is defined by

$$
z_{n k}^{\sigma, \mu}=\frac{1}{(\sigma+\mu)^{n}} \sum_{j=0}^{n}\binom{n}{j} \mu^{n-j} \sigma^{j} a_{j k}
$$

for all $n, k \in \mathbb{N}$, where $\sigma, \mu \in \mathbb{R}$ and $\sigma . \mu>0$ Then, the necessary and sufficient conditions in order for $A=\left(a_{n k}\right)$ to belong to any one of the classes $\left(b_{c}^{r, s}(G): b_{\infty}^{\sigma, \mu}\right)$ and $\left(b_{c}^{r, s}(G): b_{c}^{\sigma, \mu}\right)$ are obtained.

Corollary 4.3. Let us take $S=\left(s_{n k}\right)$ instead of $A=\left(a_{n k}\right)$ in the needed ones in Theorems 4.1 and 4.2, where $S=\left(s_{n k}\right)$ is defined by

$$
s_{n k}=\sum_{j=0}^{n} a_{j k}
$$

for all $n, k \in \mathbb{N}$. Then, the necessary and sufficient conditions in order that $A=$ $\left(a_{n k}\right)$ belongs to any of the classes $\left(b_{c}^{r, s}(G): b s\right)$ and $\left(b_{c}^{r, s}(G): c s\right)$ are obtained.

5. Conclusion

Since the double band matrix G reduces, in the special case $u=1, v=-1$, to the usual difference matrix Δ; our results are more general and more comprehensive than the corresponding results of Bişgin [7-10] and Meng and Song [17](in case of $m=1$).

Acknowledgements. We would like to express our thanks to the anonymous reviewers for their valuable comments.

References

[1] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., 2005, 57(1), 1-17.
[2] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_{p} and $\ell_{\infty} I$, Inform. Sci., 2006, 176(10), 1450-1462.
[3] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 2006, 30(2), 209-220.
[4] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 2003, 55(1), 136-147.
[5] M. C. Bisggin, A. Sönmez, Two new sequence spaces generated by the composition of m th order generalized difference matrix and lambda matrix, J. Inequal. Appl., 2014, 274(2014).
[6] M. C. Bisgin, Some notes on the sequence spaces $\ell_{p}^{\lambda}\left(G^{m}\right)$ and $\ell_{\infty}^{\lambda}\left(G^{m}\right)$, GU J. Sci., 2017, 30(1), 381-393.
[7] M. C. Bisgin, The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016, 309(2016).
[8] M. C. Bisgin, The Binomial sequence spaces which include the spaces ℓ_{p} and ℓ_{∞} and Geometric Properties, J. Inequal. Appl., 2016, 304(2016).
[9] M. C. Bisgin, Matrix transformations and compact operators on the binomial sequence spaces, Under Review.
[10] M. C. Bisgin, The binomial almost convergent and null sequence spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 2018, 67(1), 211-224.
[11] B. Choudhary, S. Nanda, Functional Analysis with Applications, John Wiley \& sons Inc., New Delhi, 1989.
[12] M. Et, On Some Difference Sequence Spaces, Turkish J. Math., 1993, 17, 18-24.
[13] E. E. Kara, M. Başarır, On compact operators and some Euler $B^{(m)}$-difference sequence spaces, J. Math. Anal. Appl., 2011, 379(2), 499-511.
[14] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler difference operators, Acta Sci. Math. (Szeged), 2010, 76, 87-100.
[15] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 1981, 24(2), 169176.
[16] M. Kiriş̧̧i, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 2010, 60(5), 1299-1309.
[17] J. Meng, M. Song, Binomial difference sequence spaces of order m, Adv. Difference Equ., 2017, 241(2017).
[18] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces ℓ_{p} and $\ell_{\infty} I I$, Nonlinear Anal., 2006, 65(3), 707-717.
[19] P. -N. Ng, P. -Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.), 1978, 20(2), 429-433.
[20] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed., 2007, 27(2), 254-266.
[21] M. Stieglitz, H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z., 1977, 154, 1-16.
[22] C. -S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 1978, 9, 269-274.
[23] A. Wilansky, Summability Throught Functional Analysis, in: North-Holland Mathematics Studies, vol. 85, Elsevier Science Publishers, Amsterdam, Newyork, Oxford, 1984.

[^0]: ${ }^{\dagger}$ the corresponding author. Email somez@erciyes.edu.tr(A. Sönmez)
 ${ }^{1}$ Department Of Mathematics, Erciyes University, Talas Street, Melikgazi, 38039 Kayseri, Turkey

