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COMPARING THE EFFICIENCY OF
WOLBACHIA DRIVEN AEDES MOSQUITO

SUPPRESSION STRATEGIES∗

Mugen Huang1, Linchao Hu2 and Bo Zheng3,4,†

Abstract Wolbachia is an endosymbiotic bacterium which manipulates host
reproduction by cytoplasmic incompatibility, and restrains the transmission of
dengue virus in Aedes mosquitoes. A novel strategy for dengue control involves
releasing Wolbachia infected males into nature to suppress wild Aedes mosquito
population. We develop a model of delay differential equations, integrating
larval density-dependent competition and diapausing eggs, to compare the
efficiency of different suppression strategies. The global asymptotical stability
of the complete suppression state identifies the releasing amount threshold
ascertaining suppression. Based on the experimental data for Aedes albopictus
population in Guangzhou, our simulations show that the mosquito density in
the highest peak season can be reduced by more than 95% when the number
of released males is above the releasing threshold. The best time to initiate
the suppression is in early March, lasting until the end of June, followed by
the parallel releasing policy from July to November. However, the egg bank
has neglectable effects on the control of dengue vector in Guangzhou.

Keywords Dengue fever, Wolbachia, cytoplasmic incompatibility, popula-
tion suppression strategy.
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1. Introduction
Dengue fever, a mosquito-borne febrile disease caused by a flavivirus with four
serotypes, is regarded as one of the most severe arbovirus diseases. In the past 50
years, dengue incidence has increased 30 fold, with over 390 million people infected
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annually in the tropical and subtropical regions worldwide [1, 29]. Dengue fever
reemerged in Guangdong Province in 1979 after being absent for about 30 years
in mainland China [30]. Since then, it has got worse both in extent and severity,
and cases have been reported in Guangdong every year [30]. An unprecedented
outbreak of dengue fever occurred in Guangdong, especially in Guangzhou, in 2014.
The dengue cases were more than 10 times of the total cases in previous 10 years
with 6 death cases [16]. Dengue was characterized as an imported epidemic disease
and was not confirmed as an endemic in mainland China [29]. Although the current
vector control strategies, including insecticide spraying and community-based source
reduction, has taken some effect in a short time period, innovative prevention and
control methods with long-term effect are still needed to control dengue. Wolbachia,
an endosymbiotic bacterium which can block the replication of dengue virus in Aedes
mosquitoes, has become a new weapon to combat dengue. This is feasible because
Wolbachia can manipulate the host reproduction by cytoplasmic incompatibility
(CI): Eggs produced from wild females mating with Wolbachia infected males do
not hatch. This makes Wolbachia infected males be the killer of wild females.
In Guangzhou, Wolbachia-infected Aedes albopictus males have been reared in a
factory, and been released in several isolated natural or residential areas since March,
2015. The CI mechanism has suppressed more than 95% of wild Aedes albopictus
population, the main vector of dengue in China in these areas [27].

To assess and compare the efficiency of different mosquito suppression strategies,
we develop a mathematical model integrating density-dependent competition among
immature stages of Aedes mosquitoes since it has been frequently documented that
intraspecific competition increased the mortality rate in larval stage, lengthened
their development time, and influenced the female size (wing length) and fecundity
[19, 20, 25, 26]. Our model consists of delay differential equations by considering
the waiting time from mating to eclosion of mosquitoes, usually about 7∼20 days
[15,18,19].

To proceed, let A(t) be the size of adult mosquitoes, and L(t) be the size of larvae
at time t. The wild population is invaded by released male mosquitoes, denoted
by R(t), carrying a Wolbachia strain that can induce complete CI. As a maternally
transmitted bacterium [28,31], there exist no Wolbachia-infected females. Let τ1 be
the average waiting time from the eclosion to the hatching of first instar larvae, and
τ2 the average development time of larvae and pupae. Then the average duration in
one reproduction cycle is τ1 + τ2. We assume that the fecundity is proportional to
the number of female adults, and the rates of stage transitions, from eggs to larvae,
and from larvae to pupae, are proportional to the population sizes in the previous
stage. Let β denote the average number of larvae produced by one female adult
without the interference of CI. As in classical studies [4, 8–12, 14, 23, 32–35], the
probability of CI is the number of released infected males over the total number of
males R(t)/(R(t) +A(t)/2). Thus, the birth function of larvae is given by βA2(t−
τ1)/[2(A(t− τ1) + 2R(t− τ1))]. To incorporate the strong intraspecific competition
in the larval stage, we introduce a density-dependent competition function

f(L) = m

(
1 +

L

KL

)
L (1.1)

to account for the death of larvae, where m > 0 is the constant minimum larval
mortality rate, and KL measures the carrying capacity in a unit breeding area for
larvae [3, 22]. Let µ denote the pupation rate of larvae, and α denote the eclosion
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rate of pupae. Since adult mosquitoes only weakly density restricted, we use the
mortality rate δ > 0 to describe the death of adults. This leads to the model

dL(t)

dt
=
β

2
· A2(t− τ1)

A(t− τ1) + 2R(t− τ1)
−m

(
1 +

L(t)

KL

)
L(t)− µL(t),

dA(t)

dt
= αµL(t− τ2)− δA(t).

(1.2)

Wolbachia infected Aedes albopictus males mate with wild females effectively
for about three days after released. In the field trial of mosquito suppression in
Guangzhou, the infected males are released every three days such that the loss of
crossable infected males in the field is compensated by new releasing, and keeps
the number of copulatory infected males in wild almost a constant. This motivates
us to use a fixed releasing policy in the model which manages the abundance of
released Wolbachia-infected males a constant independent of the population size of
wild mosquitoes. Let R(t) ≡ R. Upon rescaling the parameters in (1.2),

α→ m+ µ

δ
α, τ1 → (m+ µ)τ1, τ2 → (m+ µ)τ2, R→ 2m

µKL
R,

b =
βµ

2(m+ µ)2
, x(t) =

m

(m+ µ)KL
L(

t

m+ µ
), y(t) =

m

µKL
A(

t

m+ µ
),

(1.3)

(1.2) can be rewritten as
dx(t)

dt
=

by2(t− τ1)

y(t− τ1) +R
− x(t)(1 + x(t)),

dy(t)

dt
=

δ

m+ µ
(αx(t− τ2)− y(t)).

(1.4)

We study the dynamics of (1.4) supplemented with the initial value functions

x(t) = ϕ(t) > 0, y(t) = φ(t) > 0, t ∈ [−max{τ1, τ2}, 0]. (1.5)

The stability analysis of the equilibria of (1.4) is provided in Section 2. We
establish the releasing threshold over which the wild mosquito population will be
eliminated eventually. Since the life table parameters are sensitive to temperature
and precipitation, there is an apparent gap between this theoretical threshold level
and the releasing threshold in the field trial for mosquito suppression. We fill up
this gap in Section 3. In conformity to the daily meteorological data in Guangzhou,
we divide one year into five periods, and estimate the life table parameters of Aedes
albopictus in each period based on the field data. Our analysis shows that the
model (1.4) captures several critical features of the seasonal abundance of natural
Aedes albopictus population in Guangzhou [15, 18, 19]. To measure the mosquito
suppression efficiency, we use suppression rate γ ∈ [0, 1], a ratio of the Aedes number
of suppressed population over the wild Aedes number, recorded at the day when the
last and highest peak of the natural population is observed [13]. The simulation
shows that if the released amount of infected males is no less than the releasing
threshold, then the mosquito density in the highest peak season can be reduced by
more than 95%.

Different from the fixed releasing policy, the parallel releasing policy manages
the released number of infected males to stay in a constant ratio to the density of
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wild mosquitoes. For the parallel releasing policy, by letting r = R(t)/A(t), and
renaming L as x, A as y, and β/2 as b, we rewrite (1.2) as

dx(t)

dt
=

b

1 + 2r
y(t− τ1)−m

(
1 +

x(t)

KL

)
x(t)− µx(t),

dy(t)

dt
= αµx(t− τ2)− δy(t).

(1.6)

It is very interesting to assess and compare the suppression efficiency of the two
releasing policies. By comparing the suppression dynamics of (1.4) and (1.6), for a
similar suppression effect, our analysis shows that the more efficient and economical
suppression strategy is highly dependent on the abundance of wild Aedes population.
The fixed releasing policy needs less released number of males than the parallel
releasing policy when the wild Aedes albopictus population is large, while the parallel
releasing policy needs less infected males than that of the fixed releasing policy when
the wild Aedes albopictus population is small. Since Aedes albopictus adults grow
rapidly in the Spring and reach their first peak at about the end of May, the optimal
time point to initiate the suppression is the beginning of March. By integrating
the two releasing policies, the most efficient and economical suppression strategy
is utilizing the fixed releasing policy from March to June, and then the parallel
releasing policy from July to November. We use different initial larval numbers
with same initial adult numbers to characterize the influence of egg bank on the
suppression dynamics. Although a large amount of initial larvae will change the
wild Aedes population dynamics before July hugely, our analysis shows that egg
bank has little impact on natural Aedes population after August. Since the high-
incidence season of dengue in Guangzhou are from August to October, egg bank
has limit influence on the control situation of dengue fever in Guangzhou.

2. Global stability of the complete suppression
state

To offer a simple and transparent view on the equilibria and classify its stability,
we first consider the following system without time delays

dx(t)

dt
=

by2(t)

y(t) +R
− x(t)(1 + x(t)),

dy(t)

dt
=

δ

m+ µ
(αx(t)− y(t)).

(2.1)

Define

R∗=α(
√
αb−1)2, x∗=

√
αb−1, x1=

α2b−α−R−
√
(α2b−α−R)2−4αR

2α

x2=
α2b−α−R+

√
(α2b−α−R)2−4αR

2α
, and y∗=αx∗, yi=αxi, i=1, 2.

(2.2)

We classify its local dynamics in R2
+ = {(x, y) : x ≥ 0, y ≥ 0} in the following

theorem.
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Theorem 2.1. Let R ≥ 0 and all other parameters be positive in (2.1). Then R2
+

is positively invariant, within which all solutions remain bounded. Furthermore, we
have:

(1) If αb ≤ 1 or R > R∗, then the origin E0(0, 0) is the only equilibrium point,
and is globally asymptotically stable in R2

+.
(2) If αb > 1 and R = R∗, then (2.1) has two equilibrium points: E0(0, 0)

and a positive equilibrium point E∗(x∗, y∗). E∗ is unstable, and E0 is globally
asymptotically stable in R2

+ \ E∗.
(3) If αb > 1 and R < R∗, then (2.1) has three equilibrium points E0(0, 0),

E1(x1, y1) and E2(x2, y2). E1 is a saddle point, and E0 and E2 are local asymptot-
ically stable.

Proof. Let (x(t), y(t)) be a solution of (2.1) with (x(0), y(0)) ∈ R2
+. Let x = 0 and

y > 0 in the first equation of (2.1). We find dx(t)/dt > 0. Similarly, dy(t)/dt > 0
when x > 0 and y = 0. As a result, we see that R2

+ is positively invariant. Along
the solution (x(t), y(t)), we have x(t), y(t) ≥ 0 for all t > 0, and

d

dt
(

δ

m+ µ
x+ by) =

δ

m+ µ
[
by2

y +R
− x(1 + x)] +

bδ

m+ µ
(αx− y)

≤ δ

m+ µ
[by − x(1 + x)] +

bδ

m+ µ
(αx− y)

= − δ

m+ µ
x(x+ 1− αb),

(2.3)

which is negative when x > αb−1. It shows clearly that x(t) must be bounded. By
using the second equation of (2.1), it is further seen that y(t) is also bounded.

We first enumerate the equilibrium points of system (2.1), which satisfy

by2

y +R
− x(1 + x) = 0, and y = αx. (2.4)

Apparently, the origin E0(0, 0) is an equilibrium point, and is the only one on the
two axes. If (x, y) is an equilibrium point of (2.1) with positive x and y, then

αx2 − (α2b− α−R)x+R = 0. (2.5)

The discriminant of this quadratic equation is

∆R = (α2b− α−R)2 − 4αR = (R− α(
√
αb+ 1)2)(R−R∗).

Obviously, if R∗ < R < α(
√
αb+ 1)2, then ∆R < 0 and (2.5) has no real root. We

note

α(
√
αb+ 1)2 − α(αb− 1) = 2α(1 +

√
αb) > 0,

and

R∗ − α(αb− 1) = 2α(1−
√
αb). (2.6)

If R ≥ α(
√
αb + 1)2, then R > α(αb − 1), and (2.5) has no positive solution.

Similarly, (2.5) has no positive solution when αb ≤ 1. Hence system (2.1) has
exactly one equilibrium E0 if and only if

αb ≤ 1 or R > R∗.
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Let αb > 1. (2.1) has three equilibria E0(0, 0), E1(x1, y1) and E2(x2, y2) if and
only of

∆R > 0 and α2b− α−R > 0. (2.7)

It follows from (2.6) that R∗ < α(αb− 1) when αb > 1. Thus (2.7) is equivalent
to

αb > 1 and 0 ≤ R < R∗. (2.8)

Particularly, (2.1) has two equilibria E0(0, 0) and E∗(x∗, y∗) with

x∗ =
α2b− α−R

2α
and y∗ = αx∗

if and only of

∆R = 0 and α2b− α−R > 0. (2.9)

By using α(
√
αb+1)2 > α(αb− 1), αb > 1 and (2.6), we see that (2.9) is equivalent

to R = R∗, and so

x∗ =
α2b− α−R

2α
=
α2b− α− α(

√
αb− 1)2

2α
=

√
αb− 1.

Hence system (2.1) has two equilibria E0 and E∗ if and only if

αb > 1 and R = R∗.

Next, we consider the stability of the equilibria. For the case when αb ≤ 1, E0

is the only equilibrium. Let V (t) = δx/(m+ µ) + by. (2.3) implies that dV/dt < 0,
when x > 0. In the case x = 0, we have

dV

dt
= − bδ

m+ µ
y < 0,

when y > 0. Hence V (t) → 0 as t→ ∞, and E0 is globally asymptotically stable.
Let R > R∗. The Jacobian matrix of system (2.1) is

J =


−1− 2x

2by

y +R
− by2

(y +R)2

αδ

m+ µ
− δ

m+ µ

 .

It follows from the Jacobian matrix JE0
at E0

JE0
=


−1 0

αδ

m+ µ
− δ

m+ µ

 ,
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that the two eigenvalues of JE0
are

λ1 = −1 and λ2 = − δ

m+ µ
.

Hence E0 is always local asymptotically stable for any releasing constant R ≥ 0.
Since there is no interior equilibrium point, there can be no closed orbits and E0 is
globally asymptotically stable in R2

+.
For the case when αb > 1 and R = R∗, we have (2.1) has a locally stable

equilibrium E0(0, 0) and a positive equilibrium E∗(x∗, y∗). The stability of E∗

is under-determined by the eigenvalue method. We consider the trajectory L =
{(x(t), y(t))|t ≥ 0} on the line y = αx,

dx

dt

∣∣∣
y=αx

= − x

x+ (
√
αb− 1)2

(x+ 1−
√
αb)2 < 0.

Along the line y = αx, the solution trajectory L always tends to E0, and so E∗ is
unstable. Denote f(x, y) and g(x, y) the two functions in the two equations of (2.1).
The divergence of the vector field (f, g) satisfies

∂f

∂x
+
∂g

∂y
= −1− 2x− δ

m+ µ
< 0.

The Bendixson-Dulac theorem implies that (2.1) does not admit any (nontrivial)
periodic solution. Since E0 is the only (locally) stable equilibrium point in R2

+ when
R > R∗, the classical Poincaré - Bendixson theorem implies that E0 is globally
asymptotically stable in R2

+.
For the case when αb > 1 and R < R∗, (2.1) has three equilibria E0, E1 and

E2. The Jacobian matrix JE1
at E1 takes the form

JE1
=


−1− 2x1

2by1
y1 +R

− by21
(y1 +R)2

αδ

m+ µ
− δ

m+ µ

 .

Hence the eigenvalues λ1 and λ2 satisfy

λ1 + λ2 = −1− 2x1 −
δ

m+ µ
< 0,

and

λ1 · λ2 =
δ

m+ µ

[
1 + 2x1 − α

( 2by1
y1 +R

− by21
(y1 +R)2

)]
. (2.10)

Since (x1, y1) is the solution of (2.4), we have
by1

y1 +R
=
x1(1 + x1)

y1
=
x1(1 + x1)

αx1
=

1 + x1
α

.

By substituting it into (2.10), we have

λ1 · λ2 =
δ

m+ µ
[1 + 2x1 − α(2

1 + x1
α

− b
(1 + x1)

2

(αb)2
)]

=
δ

αb(m+ µ)
(x1 + 1 +

√
αb)(x1 + 1−

√
αb).
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It follows from the condition R < R∗ in (2.8) and

(R∗ −R)2 − [(α2b− α−R)2 − 4αR]

= (R−R∗)2 − (R−R∗)(R− α(
√
αb+ 1)2)

= 4α
√
αb(R−R∗) < 0

that

R∗ −R <
√
(α2b− α−R)2 − 4αR.

Hence

x1 + 1−
√
αb =

1

2α
[R∗ −R−

√
(α2b− α−R)2 − 4αR] < 0,

and λ1 · λ2 < 0, and E1 is an unstable saddle point.
Now, we consider the local stability of E2. The Jacobian matrix of E2 is

JE2
=


−1− 2x2

2by2
y2 +R

− by22
(y2 +R)2

αδ

m+ µ
− δ

m+ µ

 .

Similarly to the analysis on the eigenvalues of E1, the eigenvalues λ1 and λ2 of the
Jacobian matrix of E2 satisfy

λ1 + λ2 = −1− 2x2 −
δ

m+ µ
< 0,

λ1 · λ2 =
δ

αb(m+ µ)
(x2 + 1 +

√
αb)(x2 + 1−

√
αb).

By using the condition R < R∗ in (2.8) and

x2 + 1−
√
αb =

1

2α
[R∗ −R+

√
(α2b− α−R)2 − 4αR],

we have λ1 · λ2 > 0 and both of λ1 and λ2 have negative real parts, and so E2 is
local asymptotically stable.

Now we come back to (1.4) supplemented with the initial functions given in
(1.5). We give the positivity and boundedness of the solutions of (1.4) and (1.5).
The proof is similar to that in the proof of Lemma 2.1 in [13], so we omit it.

Lemma 2.1. Let R ≥ 0 and all other parameters be positive in (2.1). The initial
value problem (1.4) and (1.5) has a unique solution (x(t), y(t)) defined for all t ≥ 0,
that is positive and satisfies

x̂ = lim sup
t→∞

x(t) ≤ x2 and ŷ = lim sup
t→∞

y(t) ≤ y2. (2.11)

Now, we analyze the stabilities of the equilibria for system (1.4).
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Theorem 2.2. Let R ≥ 0 and all other parameters be positive in (1.4). For the
initial value problem (1.4) and (1.5), we have

(1) If αb ≤ 1, then E0 is globally asymptotically stable.
(2) If αb > 1 and R < α(

√
αb − 1)2, then E0 and E2 are local asymptotically

stable, and E1 is unstable.

Proof. (1) Let αb ≤ 1, and (x(t), y(t)) be the solution of the initial value problem
(1.4) and (1.5). By Lemma 2.1, x(t) and y(t) are positive and bounded. Rewrite
system (1.4) as

d

dt

(
x(t) + b

∫ t

t−τ1

y2(s)

y(s) +R
ds

)
=

by2(t)

y(t) +R
− x(t)(1 + x(t)),

d

dt

(
y(t) +

αδ

m+ µ

∫ t

t−τ2

x(s)ds

)
=

δ

m+ µ
(αx(t)− y(t)).

Define a Liapunov-type function V (t) as

V (t)=
δ

m+µ

(
x(t)+b

∫ t

t−τ1

y2(s)

y(s)+R
ds

)
+b

(
y(t)+

αµ

m+µ

∫ t

t−τ2
x(s)ds

)
. (2.12)

Then V is positive for all t ≥ 0. Along the solution (x(t), y(t)), we have

dV

dt
= − δ

m+ µ

[
bRy(t)

y(t) +R
+ x(t)(x(t) + 1− αb)

]
.

It follows from αb ≤ 1 that
dV

dt
< 0,

and V (t) decays to zero as t→ ∞. Hence (x(t), y(t)) → E0 as t→ ∞, and so E0 is
globally asymptotically stable.

(2) Let αb > 1 and R < α(
√
αb − 1)2. (1.4) has three equilibria E0(0, 0),

E1(x1, y1) and E2(x2, y2). The characteristic equation of the linearization system
of (1.4) is

(λ+
δ

m+µ
)(λ+1+2x)|E − αδ

m+ µ
(

2by

y +R
− b(

y

y +R
)2)|Ee−λ(τ1+τ2) = 0, (2.13)

where E = E0, E1 and E2. It is easy to check that the characteristic equation
(2.13) at E0 has two negative eigenvalues −1 and −δ/(m+ µ). Hence E0 is locally
asymptotically stable.

We use the absolute stability criterion to prove the local stability of E2 [21].
Substitute E2(x2, y2) into the characteristic equation (2.13), and let

p(λ) = (λ+
δ

m+ µ
)(λ+ 1 + 2x2), q = − αδ

m+ µ
(

2by2
y2 +R

− b(
y2

y2 +R
)2),

where x2 is defined in (2.2), and y2 = αx2. Obviously, p(λ) has two negative real
roots −1− 2x2 and − δ

m+µ . On the other hand, by the analysis of local stability of
E2 for the ODE system (2.1) in Theorem 2.1, we have

p(0)− |q| = δ

m+ µ
(1 + 2x2)−

αδ

m+ µ

(
2by2
y2 +R

− b(
y2

y2 +R
)2
)
> 0.
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It follows from the absolute stability criterion that E2 is locally asymptotically
stable irrelevant of the delays τ1 and τ2.

Now we verify the instability of E1. By Theorem 2.1, E1 is an unstable saddle
point when τ1 = τ2 = 0. As τ = τ1 + τ2 increases from zero to infinity, if E1

changes stability at some τ , then there would exist at least one pair of conjugate
pure imaginary roots of the characteristic equation(

λ+
δ

m+µ

)
(λ+1+2x1)−

αδ

m+µ

(
2by1
y1+R

−b( y1
y1+R

)2
)
e−λ(τ1+τ2)=0. (2.14)

Let λ± = ±iw(τ∗) a pair of pure imaginary roots of (2.14) at τ = τ∗ > 0. By
Theorem 2.2 in [2], the eigenvalue λ of (2.14) crosses the imaginary axis from left
to right when θ(τ∗) > 0, or from right to left when θ(τ∗) < 0, where

θ(τ∗) = sign
{
Re

(
dλ

dτ

)−1

|λ=iw(τ∗)

}
.

It is well known that [2]

θ±(τ) = sign{±
√
∆} signD±(τ), (2.15)

where

∆ =

[
(1 + 2x1)

2 − δ2

(m+ µ)2

]2
+

(
δ(1 + x1)

αb(m+ µ)

)2

(x1 + 1− 2αb)2,

D+ =
d2

2

[
−(1 + 2x1)

2 − δ2

(m+ µ)2
+

√
∆

]
,

D− =
d2

2

[
−(1 + 2x1)

2 − δ2

(m+ µ)2
−
√
∆

]
,

d = − αδ

m+ µ

[
2by1
y1 +R

− b(
y1

y1 +R
)2
]
.

It is obvious that w2
− < 0, and w2

+ > 0 is equivalent to ∆ > [(1+ 2x1)
2 +( δ

m+µ )
2]2,

which holds if and only of (1 + x1)
2 > 2αb(2 + 3x1), or

(1 + x1 − 3αb)2 > 9α2b2 − 2αb.

By the conditions αb > 1 and 0 ≤ R < R∗, we have 9α2b2− 2αb = αb(9αb− 2) > 0,
and w2

+ > 0 if and only if 1 + x1 − 3αb < −
√
9α2b2 − 2αb or 1 + x1 − 3αb >√

9α2b2 − 2αb.
By substituting x1 into the inequation 1 + x1 − 3αb >

√
9α2b2 − 2αb, we have

α− 5α2b−R >
√

(α2b− α−R)2 − 4αR+ 2α
√
9α2b2 − 2αb > 0,

which implies 5α2b+R < α, and so

0 < α(5αb− 1) +R < 0.

This contradiction implies that 1+ x1 − 3αb <
√
9α2b2 − 2αb. Similarly, by substi-

tuting x1 into the inequation 1 + x1 − 3αb < −
√
9α2b2 − 2αb, we have

2α
√
9α2b2 − 2αb−

√
(α2b− α−R)2 − 4αR < 5α2b+R− α. (2.16)
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It is easy to verify that

2α
√
9α2b2 − 2αb >

√
(α2b− α−R)2 − 4αR.

Hence (2.16) implies

3α3b2 − 3αbR <
√
(9α2b2 − 2αb)((α2b− α−R)2 − 4αR). (2.17)

It follows from the conditions αb > 1 and R < R∗ that

3α3b2 − 3αbR > 3αb[α2b− α(
√
αb− 1)2] = 3α2b(2

√
αb− 1) > 0.

By (2.17), we have

2((α2b− α−R)2 − 4αR) < −9α2b(2α2b− α+ 2R).

Since (α2b− α−R)2 − 4αR > 0 and αb > 1, we get

0 > 2α2b− α+ 2R = α2b+ 2R+ α(αb− 1) > 0.

This contradiction shows that w2
+ < 0, and so D+ > 0 and D− < 0. Therefore,

θ+ = sign{
√
∆}signD+ = 1× (−1) = −1 < 0,

θ− = sign{−
√
∆}signD− = −1× (−1) = 1 > 0.

By using Theorem 2.2 in [2], one of the eigenvalue λ of (2.14) at E1 crosses the
imaginary axis from left to right, and another from right to left at any possible
pure imaginary roots λ± = ±iw(τ∗). Since E1 is a saddle point when τ1 and τ2
disappear by Theorem 2.1, the above analysis implies that at least one eigenvalue
of E1 has positive real part, and so E1 is unstable for (1.4) with positive delays.

We note that Theorem 2.2 does not reveal the stability of E0 when R ≥ R∗. As
shown in [13], for the parallel releasing policy, the delays do not change the stability
of the equilibria of (1.6). For the fixed releasing policy, by comparing Theorems
2.1 and 2.2, we conjecture that the delays also do not change the stability of the
equilibria of (1.4), and E0 is globally asymptotically stable when R ≥ R∗ for (1.4).
Our numerical simulation in Section 3.2 shows this conjecture is true.

3. Implication on Aedes population suppression
In order to design and optimize the population suppression strategy, we need to
compare the advantages and disadvantages of the parallel releasing policy and fixed
releasing policy. In this section, we assess quantitatively the effects of different
suppression strategies on natural Aedes population suppression by using our model
integrated with experimental data.

3.1. A life table for Aedes albopictus
We list important parameters for Aedes albopictus population in Table 1. Most
of the values listed are taken from measurements of Aedes albopictus population in
Guangzhou [15,18,19,36,37]. By the development periods of mosquitoes in different
stages, we estimate τ1 by τe+ τa/2, and τ2 by τl + τp. To compare with the parallel
releasing policy (1.6), we use (1.2) to assess the effect of fixed releasing policy, and
rewrite the parameters as in (1.3).
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Para. Definition Lab. Field Reference
δe Egg mortality rate (day−1) (0.03, 0.14) (0.03, 0.14) [15,24]
N Number of eggs laid by a female (230, 409) (29, 225) [18,19]
τa Mean longevity of female (25.5, 40.9) (4.8, 36.7) [15,19,36]
b Hatching rate (day−1) (2.42, 7.78) (0.28, 4.23) b = N(1−δe)

2τa
m Minimum larva mortality rate (day−1) (0.03, 0.1) (0.03, 0.1) [3, 22,24]
µ Pupation rate (day−1) (0.32, 0.68) (0.05, 0.15) [15,22,24]
α Pupa survival rate (day−1) (0.92,0.97) (0.90,0.97) [3, 7, 22,24]
δ Adult female mortality rate (day−1) (0.03, 0.1) (0.05, 0.15) [3, 15,22,24]
τe Development period of egg (3.7, 5.1) (8.3, 18.3) [15,19,36]
τl Development period of larva (5.2, 7.6) (12.0, 27.7) [15,19,36]
τp Development period of pupa (2.2, 3.4) (2.3, 8.6) [15,19,36]

Table 1. The life table of Aedes albopictus. Most of the laboratory data and field data are collected
in Guangzhou, and the average temperature ranges from 20◦C to 35◦C [13].

3.2. Assessing the stability of E0 when R̄ ≥ ᾱ(
√
ᾱb− 1)2

We assess quantitatively the stability of E0 when the releasing number R̄ ≥ ᾱ(
√
ᾱb−

1)2 in this section. By using the variable substitution (1.3), the condition

R̄ ≥ ᾱ(
√
ᾱb− 1)2 ⇔ R ≥ αµ(m+ µ)

2kmδ
(

√
αbµ

δ(m+ µ)
− 1)2. (3.1)

Take the following life table parameters of Aedes albopictus

b = 2.5, m = 0.07, µ = 0.12, KL = 500, α = 0.95,

δ = 0.09, τ1 = 25, τ2 = 30.
(3.2)

By substituting these data in (3.2) into (3.1), we get

R =
αµ(m+ µ)KL

2mδ

(√
αbµ

δ(m+ µ)
− 1

)2

≈ 8167.

As shown in Fig. 1, we find that solution (x(t), y(t)) converges to E0 for (1.2) when
the releasing number R = 8200.

3.3. Comparing the efficiency of different releasing strategies
In conformity to the daily average temperature and precipitation data in Guangzhou
(China meteorological data sharing service system: http://data.cma.cn/), we divide
one year into five periods: March to May, June to July, August to September,
October to November, and December to February. The average temperature and
precipitation display similar pattern in each stages. As shown in [13], and supported
by the experimental data in [3,15,17–19,36,37], we set the initial data as ϕ(t) = 5000
and ψ(t) = 100 in [−max{τ1, τ2}, 0], KL = 500, and specify all other parameters
within the five time periods in Table 2.

To compare the suppression effect of different releasing policies, we first let
R = 0 and approximate the population dynamics of natural Aedes albopictus in
Guangzhou. In fact, systems (1.2) and (1.6) are the same system when R = r =
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Figure 1. E0 is globally asymptotically stable for (1.4) when R̄ ≥ ᾱ(
√
ᾱb− 1)2. Take R = 8200,

ϕ(t) = 5000 and ψ(t) = 100 for t ∈ [−30, 0], and all other parameters as in (3.2).

Para. Mar. to May Jun. to Jul. Aug. to Sep. Oct. to Nov. Dec. to Mar.
b 2.5 1 3 0.5 0
m 0.07 0.08 0.07 0.09 0.1
µ 0.12 0.13 0.14 0.11 0.05
α 0.95 0.93 0.97 0.92 0.9
δ 0.09 0.12 0.11 0.14 0.15
τ1 25 13 11 20 30
τ2 30 18 15 25 35

Table 2. The parameters of the natural Aedes albopictus population in Guangzhou.

0. As shown in Fig. 2, (1.2) with these specified parameter values in Table 2
captures several critical features of the seasonal abundance of natural population
of Aedes albopictus in Guangzhou [15, 18, 19]. In close agreement with the field
data [15, 18, 19], the numbers of larvae and adults show similar patterns and both
develop two apparent peaks, the lower peak occurring between the last part of
May and the first half of June, and the larger occurring between the last part of
September and the first half of October. Due to the outbreak of diapausing egg
hatching in the early of March and overlapping generations, the larvae and adults
behave differently in the first stage.

To suppress wild Aedes albopictus population successfully, the released number
depending on the life table parameters which vary in the five periods during one
year, we define the released number vector ℜ := (R1, R2, R3, R4, R5), where Ri

denotes the released number in the i-th period for i = 1, 2, 3, 4, 5. Since the dengue
high-incidence season in Guangzhou is coincide with the second peak of wild Aedes
albopictus population, it is necessary to suppress the mosquitoes effectively in the
second peak. We use an index introduced in [13], the suppression rate γ ∈ [0, 1]
associating with a given released number vector ℜ, to measure the suppression
efficiency. We define γ as the ratio of the mosquito number in the suppressed
population over the wild mosquito number without suppression, recorded at the
day when the second peak of the natural population is observed. We say that the
population suppression is successful if γ ≤ 5%.

By substituting the life table parameter values in Table 2 into (3.1), we obtain
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Figure 2. Monthly changes of natural Aedes albopictus larvae and adults in Guangzhou. The
two curves are simulated numerically by Equations (1.2) with R = 0, KL = 500, the initial data
ϕ(t) = 5000 and ψ(t) = 100 for t ∈ [−35, 0], and all the other parameters as in Table 2.

the threshold released number vector ℜ∗ = (8167, 1024, 9479, 48, 113). As shown
in Fig. 3, when a released number ℜ = (8200, 1200, 9500, 100, 150) close to ℜ∗ is
applied, the suppression rate γ = 10.49% indicates that we need enlarge the released
amount to suppress successfully in short periods. For example, the released number
ℜ = (12000, 1600, 14000, 100, 0) gives γ = 4.83%. To obtain a similar suppression
effect, the most economical method is to increase the released number in second
period. As shown in Fig. 3, we can still manage to make γ < 5% if the released
number ℜ = (9800, 2500, 10000, 100, 0). Specifically, the simulation shown in Fig. 3
indicates that the suppression is still successful with the suppression rate γ = 4.9%
when the same released number R = 5800 in the first 3 periods.
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Figure 3. Wolbachia can suppress wild Aedes albopictus population successfully with differ-
ent released number vectors. With the same initial data and parameter values as in Fig. 2,
the suppression rate γ = 10.49% for ℜ = (8200, 1200, 9500, 100, 150), γ = 4.83% for ℜ =
(12000, 1600, 14000, 100, 0), γ = 4.92% for ℜ = (9800, 2500, 10000, 100, 0), and γ = 4.90% for
ℜ = (5800, 5800, 5800, 0, 0).

It is instructive to compare the releasing threshold levels of different suppression
strategies. The ratio of releasing threshold of fixed releasing policy over that of
parallel releasing policy is connected with the life table parameters, and is very
complex to analyze. Since the suppression rate γ is connected with the released
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Figure 4. Comparison of different suppression strategies with similar suppression efficiency. With
the same initial data and parameter values as in Fig. 2, the suppression rate γ = 4.90% for
ℜ = (5800, 5800, 5800, 0, 0), and γ = 4.95% for ℜ = (4000, 6500, 6800, 100, 0) for fixed releasing
policy, and γ = 4.97% for Υ = (3.85, 3.85, 3.85, 0, 0), and γ = 4.96% for Υ = (2, 3.55, 4.8, 0.3, 0)
for parallel releasing policy.

numbers in different periods and life table parameter values which are sensitive to
temperature and precipitation, there are infinite releasing ways to obtain a similar
or even the same suppression effect. In summary, for similar suppression rate, the
needed released number of parallel releasing policy is much larger than that of
fixed releasing policy when the number of natural Aedes albopictus is large. To the
contrary, the released number of fixed releasing policy is larger than that of parallel
releasing policy when the number of natural Aedes albopictus is small.

Similar to ℜ, we use Υ := (r1, r2, r3, r4, r5) denote the released rate vector for
the parallel releasing policy, where ri denotes the releasing rate in the i-th period
for i = 1, 2, 3, 4, 5. Take the same releasing rate for parallel releasing policy and the
same released number for fixed releasing policy in the first three stages for example.
As shown in Fig. 4, the released rate vector Υ = (3.85, 3.85, 3.85, 0, 0) for parallel
releasing policy gives the suppression rate γ = 4.97%, and the released number
vector ℜ = (5800, 5800, 5800, 0, 0) for fixed releasing policy gives γ = 4.90%. The
released number of males for parallel releasing policy is larger than that for fixed
releasing policy in the most of time before the middle of June. As shown in Fig.
4, the released number for parallel releasing policy is almost 4 times that for fixed
releasing policy in the end of April, and is more than 2 times in the beginning of
June. By previous suppression, the population size of Aedes albopictus becomes
much smaller after the middle of June. The released number of infected males
for fixed releasing policy is almost more than two folds that for parallel releasing
policy. To suppress the Aedes albopictus efficiently and economically in Guangzhou,
by integrating the two releasing policies, the best strategy is initiate the suppression
in the beginning of March, and utilize the fixed releasing policy from March to June,
and utilize the parallel releasing policy from July to November.

3.4. Assessing the impact of egg bank
The recurring arrival of cold and dry winter is a harsh challenge to the survival
and reproduction of mosquitoes [5]. Aedes albopictus surmount this challenge by
laying diapause eggs, which offers a mechanism for bridging unfavorable seasons
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and serves to synchronize development within populations, thus directly affecting
disease transmission cycles [5]. Diapause eggs serve as a reservoir which accumulate
into egg bank, which hatch in a suitable environmental conditions in next favorable
season, and generate abundant larvae in a few days. Liu et al [18] reported that
Aedes albopictus in Guangzhou begin to oviposit diapause eggs in the late of October
and sustain to January, and most of the diapause eggs hatch in the early of March.

It inspires us to characterise the influence of egg bank on wild Aedes albopictus
population by different initial larval numbers in the early of March. As shown in
Fig. 5, the number of adult mosquitoes show up three peaks. The highest peak
raise in the early of April, the second highest peak raise in the early of May, and the
third peak appear in the early of October as the case without egg bank. The highest
peak in the early of April induced by the synthetic actions of egg bank and delays,
and it cannot be suppressed by releasing Wolbachia infected males. As shown in
Fig. 5, egg bank has little impact on the number of adults after August, and the
number of adults in the third peak nearly the same as that of without considering
egg bank.
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Figure 5. The influence of egg bank on the dynamics of natural Aedes albopictus population
in Guangzhou. With the same initial number of adults and parameter values as in Fig. 2, the
influence on the dynamics of wild Aedes albopictus population of the initial number of larvae
mainly focus on the first two periods.

Coinciding with the huge number of Aedes albopictus in September and October,
the underlying mechanisms of dengue high-incidence season in Guangzhou need to
be identified. Since egg bank has limit influence on the dynamics of Aedes albopictus
population in August and afterward, it will be relatively easy to suppress the Aedes
albopictus population in the September and October. However, the number of adult
mosquitoes on the second highest peak induced by the synthetic actions of egg bank
and overlapping generations, and it is very difficult to suppress. To quantify the
suppression efficiency of the second and third peaks, similar to the definition of
suppression rate γ, we define γ1 and γ2 as the suppression rates on the second and
third peaks, recorded at the day when the second and third peaks of the natural
population is observed, respectively. Take the initial data ϕ(t) = 50000 and ψ(t) =
100 for t ∈ [−35, 0] for example, as shown in Fig. 6, the suppression rates γ1 =
74.55% and γ2 = 4.95% for ℜ = (20000, 20000, 20000, 200, 0) which only suppresses
successfully in the third peak. To suppress Aedes albopictus population in the early
of June successfully, we need to release a mountain of Wolbachia infected males in
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Figure 6. The influence of egg bank on the suppression dynamics of Aedes albopictus population
in Guangzhou. With the initial data ϕ(t) = 50000 and ψ(t) = 100 for t ∈ [−35, 0], and all
other parameter values as in Fig. 2, the suppression rates γ1 = 74.55% and γ2 = 4.95% for ℜ =
(20000, 20000, 20000, 200, 0), and γ1 = 4.97% and γ2 = 3.78% for ℜ = (7500000, 2000, 2000, 200, 0).

the first time period, which generates the subsequent population suppressing easily.
For example, the releasing number vector ℜ = (7500000, 2000, 2000, 200, 0) gives
γ1 = 4.97% and γ2 = 3.78%.

3.5. Discussions
Although lacking sustainability, vector control strategies, including community-
based source reduction and insecticide spraying, remain the mainstay of dengue
control in the past few decades. A promising avenue to control dengue involves an
endosymbiotic bacterium Wolbachia. By releasing Wolbachia-infected male Aedes
mosquitoes, we can suppress wild mosquito population, the vector of dengue virus,
and thus control dengue. Larval density-dependent competition in immature stage
is the main regulatory mechanism of natural Aedes mosquito population, which
elevated mortality rate, delayed development time, and influenced the female size
(wing length) and fecundity [19,20,25,26]. Furthermore, Wolbachia infection status
has relatively little impact on immature Aedes albopictus performance [6]. Fixed
releasing policy and parallel releasing policy are the main strategies used in the
field trials of population suppression. The complexity of natural Aedes mosquito
population dynamics motivated us to assess and compare the efficiency of different
suppression strategies. For this purpose, we integrated larval density-dependent
competition and different releasing policies into delay differential equation models.
Our analysis indicates that the suppression dynamics of fixed releasing policy is
more complicated than that of parallel releasing policy.

In accordance with the daily meteorological data in Guangzhou, mainly the
average daily temperature and precipitation data, we divided each year into five
periods, and estimated the life table parameters of Aedes albopictus, the main vector
of dengue in Guangzhou, in each period from field data. The model captures several
critical features of the seasonal abundance of natural Aedes albopictus population in
Guangzhou [15, 18, 19]. Our analysis shows that if the number of released infected
males is no less than the releasing threshold under the specific circumstances, then
the mosquito density in the highest peak season can be reduced by more than 95%.

To suppress wild Aedes albopictus effectively, we compare the number of released
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males for the two releasing policies. To gain similar suppression rate, the more
economical suppression strategy, which need less released mosquitoes, is determined
by the number of natural Aedes albopictus. The fixed releasing policy is much
more economical than parallel releasing policy when the natural Aedes albopictus
population is large, while the parallel releasing policy is much more economical
than fixed releasing policy when the natural Aedes albopictus population is small.
According to the seasonal abundance of natural Aedes albopictus population in
Guangzhou, the best time to initiate the suppression is the early of March, which
will reduce the mosquito population size greatly after June, and reduce the vectors of
dengue fever from August to October effectively. The best efficient and economical
strategy to suppress Aedes albopictus in Guangzhou is integrating the two releasing
policies: Utilize the fixed releasing policy from March to June, and utilize the
parallel releasing policy from July to November.

Offering a mechanism to bridge unfavorable natural conditions, diapause eggs
serve as a reservoir which accumulates into egg bank. Since most of diapause eggs
hatch in the early of March in Guangzhou [18], we characterise the influence of
egg bank on the suppression dynamics by different initial larval numbers. With a
large amount of initial larvae, by the synthetic actions of egg bank and overlapping
generations, the number of natural adult mosquitoes show up three peaks: The
highest peak raise in the early of April, and the other two peaks raise in the same
time as the case without considering egg bank. Our analysis shows that egg bank
has little impact on natural population after August, and the number of adults in
the third peak nearly the same as that of without considering egg bank. Thus it
is relatively easy to suppress the Aedes albopictus population in the September and
October, but is very difficult to suppress the population in the second peak in the
beginning of June. Since dengue high-risk season in Guangzhou is from August to
October, egg bank has limit influence on the control situation of dengue fever in
Guangzhou.
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