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ESTIMATE FOR EVOLUTIONARY SURFACES
OF PRESCRIBED MEAN CURVATURE AND

THE CONVERGENCE∗

Peihe Wang1,† and Xinyu Gao1

Abstract In the paper, we will discuss the gradient estimate for the evolu-
tionary surfaces of prescribed mean curvature with Neumann boundary value
under the condition fτ ≥ −κ, which is the same as the one in the interior
estimate by K. Ecker and generalizes the condition fτ ≥ 0 studied by Ger-
hardt etc. Also, based on the elliptic result obtained recently, we will show
the longtime behavior of surfaces moving by the velocity being equal to the
mean curvature.
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1. Introduction

Let Ω be a smooth bounded domain in Rn and u be a smooth function defined
on it. As it is known to us, the mean curvature of the graph of u is

H = div(
Du√

1 + |Du|2
). (1.1)

This is no doubt one of the most important geometrical quantities of submanifolds
and lots of references have appeared to study it and the quasilinear equations con-
cerned, for instance, one can refer to [1,3,6,14,15,17,22–24,28–35] and the references
therein.

Parallel with the elliptic case, the parabolic case which was historically named as
the “mean curvature flow” is also an important and interesting subject in geometric
analysis and partial differential equations. It usually includes two equations, one is

∂u

∂t
= div(

Du√
1 + |Du|2

) (1.2)

and the other is

∂u

∂t
=
√

1 + |Du|2div(
Du√

1 + |Du|2
). (1.3)
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For the first one, it describes that a set of graphs of u(·, t), denoted by Mt, move
at the speed of the mean curvature along the xn+1 direction. While for the second
case, a series of graphs move at the speed of its mean curvature vector. Both of
the flows attract the interest of many mathematicians and lots of interesting results
have been deduced, one can refer to the references of this paper.

In this paper, we focus on a class of equations concerned with the first flow (1.2)
which can be expressed as follows

∂u

∂t
= div(

Du√
1 + |Du|2

)− f(x, u), (1.4)

where f(x, τ) is defined on Ω× R. It is important both on the fundamental theory
of parabolic differential equations and on the geometrical applications.

For this known equation, Gerhardt ( [5]) proved the C0 estimates of u, |∂u∂t | and
an interior gradient bound under the condition

∂f

∂τ
≥ 0, (1.5)

which is an analogue to the one for capillary surfaces given by Concus and Finn
( [3]).

In 1982, Ecker ( [4]) derived the interior estimate of (1.4) under the weaker
condition

∂f

∂τ
≥ −κ, (1.6)

where κ is a nonnegative constant. What he has proved is the following generaliza-
tion of Gerhardt ( [5]).

Lemma 1.1 (Lemma 1, [5]). Assume Ω is a domain in Rn, n ≥ 2. Let u(x, t) be
the solution to the parabolic equation

∂u
∂t = div( Du√

1+|Du|2
)− f(x, u) in Ω× (0, T ),

u(x, 0) = u0(x) on Ω,
(1.7)

where f(x, τ) satisfies that ∂f
∂τ ≥ −κ with κ ≥ 0. Then for x0 ∈ Ω and t ∈ [0, T )

we have the estimate

|Du(x0, t)| ≤ C, (1.8)

where C = C(n, T, dist(x0, ∂Ω), κ, |f |C0(Ω×R, |Dxf |C0(Ω)).

Besides the interior gradient bound, Ecker in the same paper also derived the
global gradient estimate for solutions of the Dirichlet problem to (1.7) as follows
with ∂f

∂τ ≥ −κ

u = ϕ on ∂Ω× [0, T ], (1.9)

and also some Hölder continuity of the solutions under several kinds of boundary
conditions was derived.
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However, in many researches including Guan ( [8, 9]) and Xu ( [36]), concerned
with the second mean curvature flow (1.3) with the following form and Neumann
boundary data or prescribed contact angle boundary value,

∂u
∂t =

√
1 + |Du|2div( Du√

1+|Du|2
)− f(x, u) in Ω× (0, T ),

u(x, 0) = u0(x) on Ω,
(1.10)

the condition ∂f
∂τ ≥ 0 is crucial during the proof of the long time existence and the

convergence. Remark that in the capillary surfaces problems

div(
Du√

1 + |Du|2
) = f(x, u), (1.11)

the sign of ∂f
∂τ describes one of the characters of the gravitational field. It then

naturally arises the question whether we can get the long time existence, namely
the gradient estimate of (1.7) with some kind of boundary data under the same
condition as Ecker’s in the interior estimate.

In this paper, we come to estimate the gradient of the solution of (1.4) under
the conditions as Ecker’s with Neumann boundary value conditions. Finally, we
will reach the following results.

Theorem 1.1. Let Ω be a bounded domain in Rn and ∂Ω ∈ C3, n ≥ 2. ν is the
inner unit normal. Suppose f, ϕ are functions defined on Ω×R and Ω respectively.
Let u(x, t) be the solution to the parabolic equation

∂u
∂t = div( Du√

1+|Du|2
)− f(x, u) in Ω× [0, T ],

u(x, 0) = u0(x) on Ω,

∂u
∂ν = ϕ(x) on ∂Ω× [0, T ],

(1.12)

where f(x, τ) satisfies that ∂f
∂τ ≥ −κ with κ ≥ 0 and |ϕ|C3(Ω) ≤ L. Then for

t ∈ [0, T ] we have the estimate

|Dxu( , t)| ≤ C (1.13)

in Ω, where C = C(n, T, L, κ, |f |C0(Ω×R), |Dxf |C0(Ω)).

Joint with the bounds of u and ∂u
∂t we will derive in Section 3, one can easily

get the long time existence of the equation with Neumann boundary value.

Corollary 1.1. Under the same conditions as described in Theorem 1.1, the parabol-
ic equation 

∂u
∂t = div( Du√

1+|Du|2
)− f(x, u) in Ω× [0, +∞),

u(x, 0) = u0(x) on Ω,

∂u
∂ν = ϕ(x) on ∂Ω× [0, +∞)

(1.14)

has a smooth solution u = u(x, t).
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In [23], for the second mean curvature flow (1.3), they got the long time existence
and the convergence which showed that the solution will converge to a translating
solution with constant speed. In the same paper, they also derived a compatible
result for the mean curvature equation as follows.

Lemma 1.2 (Lemma 2, [23]). Let Ω be a strictly convex bounded domain in Rn
with smooth boundary. For any ϕ ∈ C∞(Ω), there exists a unique λ0 ∈ R and a
function ω ∈ C∞(Ω) solving div

(
Du√

1 + |Du|2

)
= λ0 in Ω ,

uν = ϕ (x) on ∂Ω,

(1.15)

where ν is an inward unit normal vector to ∂Ω. Moreover, the solution ω is unique
up to a constant.

Based on this lemma and Theorem 1.1, we can describe the convergence result
of the mean curvature flow (1.2) with Neumann boundary data.

Theorem 1.2. Assume Ω is strictly convex bounded domain in Rn, n ≥ 2. Let
u(x, t) be the solution to the mean curvature flow

∂u
∂t = div( Du√

1+|Du|2
) in Ω× [0, +∞),

u(x, 0) = u0(x) on Ω,

∂u
∂ν = ϕ(x) on ∂Ω× [0, +∞),

(1.16)

where (u0)ν = ϕ(x) and |ϕ|C3(Ω) is bounded. Then u(x, t) will converge to a trans-

lating solution as λ0t+ ω, where ω is a suitable solution to equation (1.15).

For the arrangement we proceed as below. In section 2, we list the notations
and the preliminaries used during the process of the proof. In section 3, we will
give the bound of ut and it then follows the C0 estimate of the solution. In section
4, the gradient estimate near boundary of the solution will be deduced and then we
can conclude the longtime existence of the parabolic equation by combining with
the interior estimate already derived by Ecker. In the last section, we will draw
out the convergence result of the evolutionary surfaces moving with velocity being
equals to its mean curvature.

2. Notations and preliminaries

As an important preparation, we list here some properties of the distance func-
tion to the boundary of the domain.

Let d(x) be the distance from the point x to ∂Ω and ν be the inner unit normal
along ∂Ω. Denoted by

Ωµ = {x ∈ Ω| d(x) < µ}.

We can know from [24] that there exists a µ1 > 0 such that d(x) ∈ C3(Ωµ1
)

and in this annular domain we can take Dd as the extension of ν, denoted by ν as
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before. It follows that in Ωµ1

|Dν|+ |D2ν| ≤ C(n,Ω);

|ν| = 1, Dν⊥ν, Dνν = 0.
(2.1)

We also note the following facts. When Ω is a strictly convex smooth domain,
there exists a smooth defining function h for Ω such that h < 0 in Ω and h = 0
on ∂Ω, {hij} ≥ k0{δij} for a constant k0 > 0 and supΩ |Dh| ≤ 1, hν = −1 and
|Dh| = 1 on ∂Ω. Because of the strict convexity of the domain, we may assume
that the curvature matrix of ∂Ω satisfies {κij}1≤i,j≤n−1 ≥ k1{δij}1≤i,j≤n−1, where
k1 > 0 is the minimum principal curvature of the boundary.

Remark that we will use the notation O(z) to indicate that |O(z)| ≤ C|z| as z
is large enough, C is a universal constant dependent upon some prescribed factors.
This type of notations will be adopted frequently during the whole paper.

3. Estimate of ut and the C0 estimate of u

For convenience we change the parabolic equation (1.12) into the following form

∂u

∂t
=

n∑
i,j=1

Aij(Du)uij − f(x, u), (3.1)

here we denote Aij to be 1
v (δij − uiuj

1+|Du|2 ) and v =
√

1 + |Du|2 for convenience.

Derivative with parameter t on both sides we then get

∂ut
∂t

=

n∑
i,j=1

Aij(Du)(ut)ij +

n∑
i,j,k=1

Aij,k(Du)uij(ut)k − fτ (x, u)ut. (3.2)

Therefore,

∂(e−κtut)

∂t
=

n∑
i,j=1

Aij(Du)(e−κtut)ij +

n∑
i,j,k=1

Aij,k(Du)uij(e
−κtut)k

− (fτ (x, u) + κ)e−κtut.

(3.3)

So, according to maximum principle, if the nonnegative maximal value achieves
at the point (x0, t0), then only one of the following three cases would possibly occur:

(1) t0 = 0;
(2) t0 > 0 and e−κtut is a constant(thus must be ut(x, 0)) on Ω× [0, t0];
(3) t0 > 0 and x0 ∈ ∂Ω.
For the third case, thanks to Hopf lemma we have utν < 0. But on the other

hand, by the boundary value, utν = ϕt = 0, this is a contradiction.
For the two cases remained, we can deduce that

ut(x, t) ≤ max{sup
x∈Ω

eκtut(x, 0), 0}. (3.4)

Similarly, we can get the lower bound

ut(x, t) ≥ min{ inf
x∈Ω

eκtut(x, 0), 0}. (3.5)
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Based on the discussion about ut, we then immediately get the C0 estimate of
u. In fact, by the mean value theorem, we have

|u(x, t)− u0(x)| ≤ Cteκt, (3.6)

where C = supx∈Ω |ut(x, 0)| is determined by u0, f .

Remark 3.1. For the mean curvature flow (1.2), it is obvious that κ = 0 and we
can get the estimate of ut as follows which is independent upon t.

inf
x∈Ω

ut(x, 0) ≤ ut(x, t) ≤ sup
x∈Ω

ut(x, 0). (3.7)

4. C1 estimate of u

In this section, we set out to prove Theorem 1.1. The technique and the idea
are mainly from [22, 23], but at the same time the main difference is the choice of
the auxiliary function.
Proof. Based on Lemma 1.1, we only need to bound the gradient of u near the
boundary ∂Ω. Let w = u− ϕ(x)d and set

Φ = log(e−λt|Dw|2) + αd, x ∈ Ωµ0 , (4.1)

where µ0 is a small positive constant less than µ1 and only depends on n, Ω, f, ϕ.
Both of α, λ are positive constants determined later.

Set A = |Dw|2 for convenience. We assume that Φ reaches its maximum at a
point (x0, t0) where x0 ∈ Ωµ0

. In the following, we split the whole proof into three
cases.

Case 1: x0 ∈ ∂Ωµ0
∩ Ω.

If this case occurs, we then immediately get the gradient estimate by Lemma
1.1.

Case 2: x0 ∈ ∂Ω. By an observation we easily get that ∂w
∂ν = 0 which equiva-

lently states that Dw|∂Ω is a tangent vector field along ∂Ω. Let D′ be the connection
of ∂Ω induced by D.

In this case, we can deduce that

0 ≥ ∂Φ(x0)

∂ν
=

n∑
i=1

Di(|Dw|2)νi

A
+ α

=

2
n∑

i,k=1

wkwikν
i

A
+ α

=
2

A

< D(
∂w

∂ν
), Dw > −

n∑
i,k=1

wiDk(νi)wk

+ α

=
2

A

< D′(
∂w

∂ν
), Dw > −

n∑
i,k=1

wiDk(νi)wk

+ α

=α−
2

n∑
i,k=1

wiDk(νi)wk

A
,

(4.2)
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which will cause a contradiction if we choose α to be a large constant determined
by the geometry of ∂Ω, for instance, α = 2k̄ + 1, where k̄ is the maximum of the
principal curvature. It indicates that this case will not occur at all.

Case 3: x0 ∈ Ωµ0 .
Under this assumption, if t0 = 0, the proof is done. So in the following, we

assume without loss of generality that t0 > 0. Remark that all the calculations
will be done at the fixed point (x0, t0), and at this point a special coordinate is
chosen such that u1 = |Du|, ui = 0(i = 2, · · · , n) and uij(2 ≤ i, j ≤ n) is diagonal.
Obviously, if we change the equation into the following form

n∑
i,j=1

aijuij − v3 ∂u

∂t
= f(x, u)v3, v =

√
1 + |Du|2,

where aij = (1 + |Du|2)δij − uiuj . At this point we have

a11 = 1, aii = 1 + u2
1, i = 2, · · · , n .

In the following, we come to control |Du| at this point and thus obtain the whole
gradient bound near the boundary. Also, we remark that if |Du| is large enough,
then |Du|, v, w1, |Dw| are equivalent with each other.

We obviously have

0 = Φi =
|Dw|2i
A

+ αdi. (4.3)

Therefore,
n∑
l=1

wl (uli −Gli) = −αAdi
2

, (4.4)

where we denoted by G(x) = ϕ(x)d(x) for simplicity.
Thus, for i = 1,

u11 = −αAd1

2w1
−

n∑
l=2

wl
w1
u1l +O(1), (4.5)

and for i > 1,

u1i = −αAdi
2w1

− wi
w1
uii +O(1). (4.6)

Now, plugging (4.6) into (4.5) we then have

u11 =− αAd1

2w1
−

n∑
l=2

wl
w1

(
−αAdl

2w1
− wl
w1
ull +O(1)

)
+O(1)

=− αAd1

2w1
+

n∑
l=2

αAwldl
2w1

2
+

n∑
l=2

(
wl
w1

)2

ull +O(1).

(4.7)

On the other hand, according to the classical differential geometry we have

n∑
i,j=1

aijuij = Hv3, (4.8)

therefore,

∆u = Hv +
u1

2

v2
u11, Hv =

u11

v2
+

n∑
l=2

ull. (4.9)
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It is a direct calculation that

v3Φt =
v3|Dw|2t

A
− λv3

=

2v3
n∑
i=1

wiuit

A
− λv3

=

2v3
n∑
i=1

wi(H − f(x, u))i

A
− λv3

=
1

A

(
2v3<Dw,DH>−2v3<Dw,Dxf >−2v3fτ <Dw,Du>−λv3|Dw|2

)
.

(4.10)

According to (4.3), we can deduce that

Φij =
|Dw|2ij
A

− α2didj + αdij . (4.11)

Setting λ = 2(κ+ 1), then we have at the point concerned

0 ≥
n∑

i,j=1

aijΦij − v3 ∂Φ

∂t

=

n∑
i,j=1

aij |Dw|2ij

A
− α2

n∑
i,j=1

aijdidj+α

n∑
i,j=1

aijdij

− 1

A

(
2v3 < Dw,DH > −2v3 < Dw,Dxf > −2v3fτ < Dw,Du > −λv3|Dw|2

)
≥ 1

A

 n∑
i,j=1

aij |Dw|2ij − 2v3 < Dw,DH >

+ v3

+

2v3 < Dw,Dxf >

A
− α2

n∑
i,j=1

aijdidj+α

n∑
i,j=1

aijdij


=I + II + III.

(4.12)

It is an observation that

III = O(v2). (4.13)

In the following, we come to settle the remaining term I.

I =
1

A

 n∑
i,j=1

aij |Dw|2ij − 2v3 < Dw,DH >


=

1

A

2

n∑
i,j,k=1

wkaij(uijk −Gijk) + 2

n∑
i,j,k=1

aijwikwjk − 2v3 < Dw,DH >


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=
1

A

2

 n∑
i,j,k=1

wkaijuijk − v3 < Dw,DH >

+ 2

n∑
i,j,k=1

aijwikwjk

+O(v)

=
I1 + I2
A

+O(v). (4.14)

For the first term I1, joining with (4.8) and (4.9), we have

I1 =2

 n∑
i,j,k=1

wkaijuijk − v3 < Dw,DH >


=2

 n∑
k=1

wk(

n∑
i,j=1

aijuij)k −
n∑

i,j,k=1

wkaij,kuij − v3 < Dw,DH >


=2 < Dw,D(Hv3) > −2

n∑
i,j,k,l=1

wk(2uluklδij − 2uikuj)uij − 2v3 < Dw,DH >

=u1(6Hv − 4∆u)

n∑
k=1

wku1k + 4u1

n∑
i,k=1

wkuiku1i

=u1(2Hv − 4u1
2

v2
u11)

n∑
k=1

wku1k + 4u1

n∑
i,k=1

wkuiku1i

=I11 + I12.

(4.15)

For I11, by (4.4) and (4.7),

I11 =u1

(
2

(
u11

v2
+

n∑
l=2

ull

)
− 4u1

2

v2
u11

)
n∑
k=1

wku1k

=u1

(
2

n∑
l=2

ull +
2− 4u1

2

v2
u11

)
n∑
k=1

wku1k

=u1

(
2

n∑
l=2

ull +
2− 4u1

2

v2

(
−αAd1

2w1
+

n∑
l=2

αAwldl
2w1

2
+

n∑
l=2

(
wl
w1

)2

ull +O(1)

))

×
(
−αAd1

2
+O(v)

)
=O(v4) +

n∑
l=2

O(v3)ull. (4.16)

For I12, by (4.4), (4.6) and (4.7),

I12 =4u1

n∑
i,k=1

wkuiku1i

=4u1

(
−αAd1

2
+O(v)

)(
−αAd1

2w1
+

n∑
l=2

αAwldl
2w1

2
+

n∑
l=2

(
wl
w1

)2

ull +O(1)

)
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+ 4u1

n∑
l=2

(
−αAdl

2
+O(v)

)(
−αAdl

2w1
− wl
w1
ull +O(1)

)

=O(v4) +

n∑
l=2

O(v2)ull. (4.17)

Therefore, combining (4.15), (4.16) and (4.17) we then have

I1 = O(v4) +

n∑
l=2

O(v3)ull. (4.18)

For the term I2,

I2 =2aijwikwjk = 2aijuikujk − 4aijuikGjk + 2aijGikGjk

=I21 + I22 + I23,
(4.19)

and we deal with these terms one by one.
Direct calculation shows that

I21 =2aijuikujk = 2

n∑
k=1

u1k
2 + 2v2

n∑
l=2

u1l
2 + 2v2

n∑
l=2

ull
2

=2u11
2 + 2(1 + v2)

n∑
l=2

u1l
2 + 2v2

n∑
l=2

ull
2.

(4.20)

For the second term,

I22 =− 4aijuikGjk = −4uk1Gk1 − 4v2
n∑
l=2

ul1Gl1 − 4v2
n∑
l=2

ullGll

=− 4u11G11 − 4(1 + v2)

n∑
l=2

ul1Gl1 − 4v2
n∑
l=2

ullGll.

(4.21)

So,

I21 + I22 =v2
n∑
l=2

ull
2 + 2(u11 −G11)2 + 2(1 + v2)

n∑
l=2

(u1l −G1l)
2 − 2G11

2

+ v2
n∑
l=2

(ull − 2Gll)
2 − 2(1 + v2)

n∑
l=2

G1l
2 − 4v2

n∑
l=2

Gll
2

≥v2
n∑
l=2

ull
2 +O(v2).

(4.22)

For the term I23,
I23 = 2aijGikGjk = O(v2). (4.23)

Combining (4.19), (4.22) and (4.23) we conclude that

I2 ≥ v2
n∑
l=2

ull
2 +O(v2). (4.24)
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Now we can derive by (4.14), (4.18) and (4.24) that

I ≥ 1

A

(
v2

n∑
l=2

ull
2 +

n∑
l=2

O(v3)ull+O(v4)

)
≥ O(v4)

A
= O(v2), (4.25)

where we have used the fact that at2 + bt ≥ − b2

4a for a > 0.

We finally get

0 ≥
n∑

i,j=1

aijΦij − v3 ∂Φ

∂t
≥ v3+O(v2), (4.26)

which forces v to be bounded at this point.

After the discussion of the three cases we get the gradient estimate of u near
the boundary and thus finish the whole proof of Theorem 1.1.

5. Convergence of evolutionary surfaces moving by
mean curvature

In this section, we come to prove Theorem 1.2.

Based on the long time existence result in Corollary 1.1, we need to prove a
prior uniform gradient estimate being independent of the ||u||C0 , for the solution
to (1.16). This is the crucial step in establishing the infinite time convergence of
solutions. In this step we will make strong use of the strict convexity of the domain.

Theorem 5.1. Let Ω be a smooth strictly convex bounded domain in Rn and n ≥ 2.
Suppose that u(x, t) ∈ C3,2(Ω× [0, T )) is a solution to (1.16). Then there exists a
constant C0 = C0(n,Ω, u0, ϕ(x)) > 0 such that

sup
Ω×[0, T )

|Du| ≤ C0.

Proof. Also, the idea of the proof of this lemma mainly follows [23]. To reach
the conclusion of the lemma, we only need to prove that |Du| can be bounded on
Ω× [0, T ′] uniformly in T ′ ∈ [0, T ].

Let

Φ(x, t) = log |Dw|2 + f(h),

where

w = u+ ϕ(x)h, f = αh,

and α can be determined later. For convenience we denote by G = −ϕ(x)h.

We firstly show the maximum of Φ(x, t) on Ω × [0, T ′] can not be achieved at
the boundary ∂Ω× [0, T ′].

Let n denote the unit inner normal vector and 1 ≤ i ≤ n−1 denote the tangential
derivative. D denotes the derivative in Rn. By the boundary condition, wn = 0 on
∂Ω, which means that Dw|∂Ω is a tangent vector along ∂Ω. If Φ(x, t) attains its
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maximum at (x0, t0) ∈ ∂Ω× [0, T ′], then at (x0, t0), we have

0 ≥ Φn =
|Dw|2n
|Dw|2

− α

=

2
n−1∑
k=1

wkDknw

|Dw|2
− α

=
2

|Dw|2

n−1∑
k=1

wkwnk +

n−1∑
i,k=1

wkwiκik

− α

=

2
n−1∑
i,k=1

wkwiκik

|Dw|2
− α

≥2k1 − α.

(5.1)

By taking 0 < α < 2k1, the maximum of Φ can only be achieved in Ω× [0, T ′].
Now, only the following two cases are left to be discussed.
Case 1: Φ attains its maximum (x0, 0) ∈ Ω× {0}, then there exists a constant

C = C(u0) > 0 such that
max

Ω×[0, T ′]
v ≤ C. (5.2)

Case 2: Φ attains its maximum at (x0, t0) ∈ Ω× (0, T ′].
As in section 4, at this point a special coordinate is chosen such that u1 =

|Du|, ui = 0(i = 2, · · · , n) and uij(2 ≤ i, j ≤ n) is diagonal. It is obvious that

a11 = 1, aii = 1 + u2
1, i = 2, · · · , n .

Denoted A to be |Dw|2, we have at (x0, t0)

Φt =
|Dw|2t
A

, (5.3)

and

0 = Φi =
(|Dw|2)i

A
+ αhi. (5.4)

Therefore,

Φij(x0, t0) =
|Dw|2ij
|Dw|2

−
|Dw|2i |Dw|2j
|Dw|4

+ αhij

=
|Dw|2ij
|Dw|2

+ αhij − α2hihj .

(5.5)

Thus at (x0, t0) we have

0 ≥
n∑

i,j=1

aijΦij − v3Φt =

n∑
i,j=1

aij(|Dw|2)ij − v3|Dw|2t

A

− α2
n∑

i,j=1

aijhihj + α

n∑
i,j=1

aijhij

,I + II + III.

(5.6)
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From (5.4), we deduce that for i = 1, 2, · · · , n,

n∑
l=1

wluli =

n∑
l=1

wlwli +

n∑
l=1

wlGli = −αA
2
hi +O(v). (5.7)

Also it is remarkable that as v is large enough, u1, v, w1 and |Dw| are equivalent
with each other.

It follows that for i > 1,

w1u1i + wiuii = O(v)− αA

2
hi,

therefore,

u1i = O(1)− αA

2w1
hi −

wi
w1
uii, (5.8)

and for i = 1,

w1u11 +

n∑
l=2

wlul1 = O(v)− αA

2
h1. (5.9)

Combining (5.8) with (5.9), we then have

u11 =O(1)− αA

2w1
h1 −

n∑
l=2

wl
w1

(
O(1)− αA

2w1
hl −

wl
w1
ull

)

=O(1)− αA

2w1
h1 +

n∑
l=2

(
wl
w1

)2

ull.

(5.10)

Similar discussions as in section 4 and by (5.10), we derive

∆u = Hv +
u1

2

v2
u11 = Hv +O(1)− u1

2αAh1

2v2w1
+

n∑
l=2

(
u1wl
vw1

)2

ull, (5.11)

and

Hv =
u11

v2
+

n∑
l=2

ull = O(v−2)− αAh1

2v2w1
+

n∑
l=2

[
1 +

(
wl
vw1

)2
]
ull. (5.12)

In the following, we come to settle (5.6).
It’s easy to get

II = −α2

(
h1

2 + (1 + u1
2)

n∑
i=2

hi
2

)
, (5.13)

and

III =
∑

1≤i,j≤n

αaijhij ≥ αk0

(
n+ (n− 1)u2

1

)
. (5.14)

We settle the term I in the rest.
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Direct calculation shows that

n∑
i,j=1

aij(|Dw|2)ij − v
3|Dw|2t

=2

 n∑
i,j,l=1

aijuijlwl − v3
n∑
l=1

wlult

− 2

n∑
i,j,l=1

aijGijlwl

+ 2

n∑
i,j,l=1

aijuilujl − 4

n∑
i,j,l=1

aijuilGjl + 2

n∑
i,j,l=1

aijGilGjl

=I1 + I2 + I3 + I4 + I5.

(5.15)

In the following, we compute these terms one by one.

For the term I1, by differentiating the equation, we have

I1 =2

n∑
l=1

wl

(Hv3
)
l
−

n∑
i,j=1

aij,luij − v3ult


=6Hv

n∑
k,l=1

ukuklwl − 4∆u

n∑
k,l=1

ukuklwl + 4

n∑
i,j,l=1

uiuijujlwl

= (6Hv − 4∆u)u1

n∑
l=1

u1lwl + 4u1

n∑
j,l=1

u1jujlwl

=I11 + I12.

(5.16)

For the term I11, jointing with (5.7), (5.11) and (5.12), we derive

I11 =u1

[
6Hv − 4

(
Hv +O(1)− u1

2αAh1

2v2w1
+

n∑
l=2

(
u1wl
vw1

)2

ull

)](
−αA

2
h1 +O(v)

)

=u1

(
2Hv +O(1) +

2αAu1
2

v2w1
h1 − 4

n∑
l=2

(
u1wl
vw1

)2

ull

)(
−αA

2
h1 +O(v)

)

=−Hvu1αAh1 +O(v3)− α2A2u1
3

v2w1
h1

2 +

n∑
l=2

Ol(v)ull

=

(
O(v−2) +

αA

2v2w1
h1 −

n∑
l=2

[
1 +

(
wl
vw1

)2
]
ull

)
u1αAh1

+O(v3)− α2A2u1
3

v2w1
h1

2 +

n∑
l=2

Ol(v)ull

=O(v3)− u1
3α2A2h1

2

v2w1
+

n∑
l=2

(Ol(v)− u1αAh1)ull,

(5.17)
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and for the term I12, also by (5.7), (5.8) and (5.10), we obtain

I12 =4u1

n∑
j=1

u1j

(
−αA

2
hj +O(v)

)

=4u1

(
O(1)− αA

2w1
h1 +

n∑
l=2

(
wl
w1

)2

ull

)(
−αA

2
h1 +O(v)

)

+ 4u1

n∑
l=2

(
O(1)− αA

2w1
hl −

wl
w1
ull

)(
−αA

2
hl +O(v)

)

=O(v3) +
u1α

2A2h1
2

w1
+

n∑
l=2

u1α
2A2hl

2

w1
+

n∑
l=2

Ol(v
2)ull.

(5.18)

Thus by (5.17) and (5.18), we have

I1 ≥ O(v3) +
u1α

2A2h1
2

v2w1
+

n∑
j=2

u1α
2A2hj

2

w1
+

n∑
l=2

(
O(v2)− u1αAh1

)
ull. (5.19)

It is easy to observe that

I2 = O(v3), I5 = O(v2). (5.20)

For the term I4 we get

I4 =− 4u11G11 − 4(1 + v2)

n∑
l=2

u1lG1l − 4v2
n∑
l=2

ullGll

≥−

(
2u11

2 + 2G11
2 +

1 + v2

2

n∑
l=2

u1l
2 + 8(1 + v2)

n∑
l=2

G1l
2

)

−

(
v2

2

n∑
l=2

ull
2 + 8v2

n∑
l=2

Gll
2

)
.

(5.21)

Therefore we have by (5.8)

5∑
i=2

Ii ≥
3

2
(1 + v2)

n∑
l=2

u1l
2 +

3v2

2

n∑
l=2

ull
2 +O(v3)

=
3

2
(1 + v2)

n∑
l=2

(
O(1)− αA

2w1
hl −

wl
w1
ull

)2

+
3v2

2

n∑
l=2

ull
2 +O(v3)

=O(v3) +
3(1 + v2)

8

n∑
l=2

α2A2

w1
2
hl

2 +

n∑
l=2

(
3v2

2
+O(1)

)
ull

2 +

n∑
l=2

O(v2)ull.

(5.22)
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Combining (5.19) and (5.22), we then have

5∑
i=1

Ii ≥O(v3) +
u1α

2A2h1
2

v2w1
+

n∑
j=2

u1α
2A2hj

2

w1
+

3(1 + v2)

8

n∑
l=2

α2A2

w1
2
hl

2

+

n∑
l=2

(
3v2

2
+O(1)

)
ull

2 +

n∑
l=2

(
O(v2)− u1αAh1

)
ull

≥O(v3) +
u1α

2A2h1
2

v2w1
+

n∑
j=2

u1α
2A2hj

2

w1
+

3(1 + v2)

8

n∑
l=2

α2A2

w1
2
hl

2

−
n∑
l=2

[
O(v2)− u1αAh1

]2
6v2 +O(1)

,

(5.23)

where in the last formula, for each term 2 ≤ l ≤ n, we once again use the fact that

at2 + bt ≥ − b2

4a for a > 0.
Since v has been assumed to be large enough, we have

u1α
2Ah1

2

v2w1
+

n∑
j=2

u1α
2Ahj

2

w1
+

3(1 + v2)

8

n∑
l=2

α2A

w1
2
hl

2 ≥ α2v2
n∑
l=2

hl
2, (5.24)

and

−
n∑
l=2

[
O(v2)− u1αAh1

]2
6v2A+AO(1)

≥ −n− 1

5
α2v2h2

1 +O(1). (5.25)

By (5.23)−(5.25), it follows that

I ≥ O(v) + α2v2
n∑
l=2

hl
2 − n− 1

5
α2v2h2

1. (5.26)

Then by (5.6), (5.13), (5.14) and (5.26), we obtain

0 ≥
n∑

i,j=1

aijΦij − v3Φt ≥O(v) + α2v2
n∑
i=2

hi
2 − n− 1

5
α2v2h2

1 + αk0

[
n+ (n− 1)u1

2
]

− α2

(
h1

2 + (1 + u1
2)

n∑
i=2

hi
2

)

≥O(v) + α(n− 1)k0v
2 − n− 1

5
α2v2h2

1.

(5.27)

Taking 0 < α < min{2k0, 2k1}, we know |Du| must be bounded at this point. And
by an easy argument we then reach

sup
Ω×[0, T )

|Du| ≤ C0

for a universal constant C0 depending upon the quantities described in the lemma.
Combining all the cases above, we finish the proof of the theorem.
The longtime existence of the solution to equation (1.16) is obvious to us accord-

ing to Corollary 1.1 and now we study its asymptotic behavior on the strictly convex
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bounded domain in Rn. Remark that we have already obtained uniform estimates
on ∂u

∂t , |Du| as long as a smooth solution exists in Remark 3.1 and Theorem 5.1.
Thus, the proof of the convergence results is almost the same as the corresponding
part in [23], we would like to omit it and one can refer to the procedure in [23] for
details. This complete the proof of Theorem 1.2.
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