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1. Introduction

As we know, the theory of fractional differential equations and their applications
have been investigated extensively in the past few years. For example, see the
literatures [6,14–17,23–28] and the references therein. In 1980s, Miller and Ross [21]
and Gray and Zhang [11] firstly introduced the definitions of non–integer order
differences and sums, which were the origination of the theory of discrete fractional
calculus. After then, several authors had a strong interest in studying the theory
of fractional difference equations. A lot of excellent results have been established.
For example, we refer the readers to [1–5, 7–10, 12, 13, 18–20, 22] and the references
therein.

The oscillation theory is a very important part of the qualitative theory of
fractional difference equations. However, to the best of authors’ knowledge, up to
now, very little is known regarding the oscillatory behavior of fractional difference
equations [7, 8, 18–20,22].

In this paper, we investigate the oscillation of fractional nabla difference equa-
tions of the form ∇(∇αax(t)) + q(t)f(x(t)) = g(t), t ∈ Na,

∇−(1−α)
a x(t)

∣∣
t=a

= c,
(1.1)

where ∇f(t) = f(t) − f(t − 1), c and α are constants, 0 < α < 1, ∇αax is the
Riemann–Liouville fractional nabla difference operator of order α of x, a ≥ 0 is a
real number, and Na = {a, a+ 1, a+ 2, · · · }.

Throughout this paper, we always assume that
(A) f : R→ R, and xf(x) > 0 for x 6= 0, g : Na → R, and q(t) ≥ 0, t ∈ Na.
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A solution x(t) of the Eq. (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is nonoscillatory.

The paper is organized as follows. In Section 2, we present some basic definitions
and lemmas in order to prove our main results. In Section 3, we establish some
results for the oscillation of the Eq. (1.1). In Section 4, we construct some examples
to show that the assumptions of our main results can not be dropped.

2. Preliminaries

In this section, we collect some basic definitions and lemmas that will be important
to us in what follows. These and other related results and their proofs can be found
in [1, 3, 13].

Definition 2.1. Let ν > 0. The ν-th fractional sum f is defined by

∇−νa f(t) =
1

Γ(ν)

t∑
s=a

(t− s+ 1)ν−1f(s), (2.1)

for t ∈ Na, where Γ is the gamma function, and

tν =
Γ(t+ ν)

Γ(t)
. (2.2)

Definition 2.2. Let µ > 0 and m−1 < µ < m, where m denotes a positive integer.
Set ν = m− µ. The µ-th fractional nabla difference is defined as

∇µaf(t) = ∇m−νa f(t) = ∇ma ∇−νa f(t). (2.3)

Lemma 2.1. Let f be a real–valued function defined on Na, and let µ, ν > 0. Then

∇−νa [∇−µa f(t)] = ∇−(µ+ν)
a f(t) = ∇−µa [∇−νa f(t)], (2.4)

and

∇−νa+1∇f(t) = ∇∇−νa f(t)− (t− a+ 1)ν−1

Γ(ν)
f(a). (2.5)

Lemma 2.2. For every t ∈ Na,

∇−νa (t− a+ 1)µ =
Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a+ 1)ν+µ. (2.6)

Lemma 2.3. Let

E(t) =

t∑
s=a

(t− s+ 1)−αx(s), t ∈ Na. (2.7)

Then
∇E(t) = Γ(1− α)∇αax(t). (2.8)

Proof. Using Definition 2.1, it follows from (2.7) that

E(t) =

t∑
s=a

(t− s+ 1)−αx(s) =

t∑
s=a

(t− s+ 1)(1−α)−1x(s)

= Γ(1− α)∇−(1−α)
a x(t).

(2.9)
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Using Definition 2.2, it follows from (2.9) that

∇E(t) = Γ(1− α)∇∇−(1−α)
a x(t) = Γ(1− α)∇αax(t).

The proof of Lemma 2.3 is complete.

3. Main results

In this section, we establish the oscillation results of Eq. (1.1). First, we give two
lemmas.

Lemma 3.1. If x(t) > 0 is a solution of the Eq. (1.1), then x(t) satisfies the
difference inequality

∇(∇αax(t)) ≤ g(t), t ∈ Na. (3.1)

Proof. Noting the assumption (A), from the Eq. (1.1), we have

∇(∇αax(t)) = −q(t)f(x(t)) + g(t) ≤ g(t),

which shows x(t) > 0 is a solution of the inequality (3.1). The proof is complete.
Similarly we have the following lemma.

Lemma 3.2. If x(t) < 0 is a solution of the Eq. (1.1), then x(t) satisfies the
difference inequality

∇(∇αax(t)) ≥ g(t), t ∈ Na. (3.2)

Next, we introduce our main results. By Lemma 3.1 and Lemma 3.2, we imme-
diately obtain the following conclusion.

Theorem 3.1. If the inequality (3.1) has no eventually positive solutions and the
inequality (3.2) has no eventually negative solutions, then every solution x(t) of the
Eq. (1.1) is oscillatory.

Theorem 3.2. Assume that x(t) is a solution of Eq. (1.1) and there exists t0 ∈ Na
such that ∇αax(t)|t=t0 = C exists. If

lim inf
t→∞

{
(t− a)1−α

t∑
s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]}

= −∞, (3.3)

and

lim sup
t→∞

{
(t− a)1−α

t∑
s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]}

= +∞, (3.4)

then the solution x(t) of the Eq. (1.1) is oscillatory.

Proof. Suppose to the contrary that the solution x(t) is a non-oscillatory solution
of Eq. (1.1). Then x(t) is eventually positive or eventually negative.

If x(t) > 0, t ≥ t0, by Lemma 3.1, we obtain

∇(∇αax(t)) ≤ g(t), t ∈ Nt0 . (3.5)
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Summing both sides of (3.5) from t0 + 1 to t, we obtain

∇αax(t) ≤ ∇αax(t0) +

t∑
s=t0+1

g(s) = C +

t∑
s=t0+1

g(s). (3.6)

Applying the ∇−αa+1 operator to the above inequality (3.6), we have

∇−αa+1∇αax(t) ≤ ∇−αa+1

[
C +

t∑
s=t0+1

g(s)
]
. (3.7)

Using Definition 2.2, Lemma 2.1 in the left–hand side of (3.7) and noting the initial
condition of Eq. (1.1), we obtain

∇−αa+1∇αax(t) = ∇−αa+1∇∇
−(1−α)
a x(t)

= ∇∇−αa ∇
−(1−α)
a x(t)− (t− a+ 1)α−1

Γ(α)
∇−(1−α)
a x(a)

= x(t)− c

Γ(α)
(t− a+ 1)α−1.

(3.8)

Using Definition 2.1, it follows from the right–hand side of (3.7) that

∇−αa+1

[
C +

t∑
s=t0+1

g(s)
]

=
1

Γ(α)

t∑
s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]
.

(3.9)

Combining (3.7)–(3.9), we have

x(t) ≤ c

Γ(α)
(t− a+ 1)α−1

+
1

Γ(α)

t∑
s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]
.

(3.10)

It follows from (3.10) that

Γ(α)(t− a)1−αx(t)

≤ c(t− a+ 1)α−1(t− a)1−α

+(t− a)1−α
t∑

s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]
.

(3.11)

By using the Stirling’s formula [7]

lim
t→∞

Γ(t)tε

Γ(t+ ε)
= 1, ε > 0,
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we obtain

lim
t→∞

(t− a)1−α(t− a+ 1)α−1

= lim
t→∞

(t− a)1−αΓ(t− a+ 1 + α− 1)

Γ(t− a+ 1)

= lim
t→∞

(t− a)1−α Γ(t− a+ α)

(t− a)Γ(t− a)

= lim
t→∞

Γ(t− a+ α)

(t− a)αΓ(t− a)

= 1.

(3.12)

Noting (3.12) and taking t→∞ in (3.11), we have

lim inf
t→∞

{
(t− a)1−αx(t)

}
≤ −∞,

which contradicts with x(t) > 0.
If x(t) < 0, t ≥ t0, by Lemma 3.2, using the above mentioned method, we easily

obtain a contradiction. This completes the proof of Theorem 3.2.

Theorem 3.3. Assume that x(t) is a solution of Eq. (1.1) and there exists t0 ∈ Na
such that ∇αax(t)|t=t0 = C exists. If

lim inf
t→∞

{ t∑
s=t0+1

(
1− s− 1

t

)
g(s)

}
= −∞, (3.13)

and

lim sup
t→∞

{ t∑
s=t0+1

(
1− s− 1

t

)
g(s)

}
= +∞, (3.14)

then the solution x(t) of the Eq. (1.1) is oscillatory.

Proof. Suppose to the contrary that there is a non-oscillatory solution x(t). Then
x(t) is eventually positive or eventually negative.

If x(t) > 0, t ≥ t0. As in the proof of Theorem 3.2, we obtain (3.6). Using
Lemma 2.3, it follows from (3.6) that

∇E(t) ≤ Γ(1− α)
[
C +

t∑
s=t0+1

g(s)
]
. (3.15)

Summing both sides of (3.15) from t0 + 1 to t, we have

E(t) ≤ E(t0) + Γ(1− α)

t∑
s=t0+1

[
C +

s∑
ξ=t0+1

g(ξ)
]

= E(t0) + CΓ(1− α)(t− t0) + Γ(1− α)

t∑
s=t0+1

(t− s+ 1)g(s).

(3.16)

Therefore,

E(t)

t
≤ E(t0)

t
+ CΓ(1− α)

(
1− t0

t

)
+ Γ(1− α)

t∑
s=t0+1

(
1− s− 1

t

)
g(s). (3.17)
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Letting t→∞ in (3.17) and noting the assumption (3.13), we obtain

lim inf
t→∞

E(t)

t
= −∞,

which contradicts with E(t) > 0.
If x(t) < 0, t ≥ t0, Noting the condition (3.14) and using the above mentioned

method, we easily obtain a contradiction. The proof of Theorem 3.3 is complete.

4. Examples

In this section, we introduce some examples to illustrate our main results.

Example 4.1. Consider the following fractional nabla difference equation
∇(∇

1
2
1 x(t)) +

Γ( 1
3 )Γ(t)

Γ(t+ 1
2 )
x(t) = Γ(

1

3
), t ∈ N1,

∇−
1
2

1 x(t)
∣∣∣
t=1

=

√
π

2
.

(4.1)

Here α = 1
2 , q(t) =

Γ( 1
3 )Γ(t)

Γ(t+ 1
2 )
, f(x(t)) = x(t), g(t) = Γ(1

3 ). By careful calculation,

we find that x(t) = t
1
2 > 0 is a non-oscillatory solution of Eq. (4.1).

In fact, using Lemma 2.2, we have

∇−
1
2

1 x(t) = ∇−
1
2

1 t
1
2 =

Γ( 1
2 + 1)

Γ( 1
2 + 1

2 + 1)
t
1
2 + 1

2

=
1
2Γ( 1

2 )

Γ(2)
t1 =

√
π

2
t.

(4.2)

By Definition 2.2, we obtain

∇
1
2
1 x(t) = ∇

1
2
1 t

1
2 = ∇1∇

− 1
2

1 t
1
2

= ∇1

(
1

2

√
πt

)
=

√
π

2
.

(4.3)

Therefore,

∇(∇
1
2
1 x(t)) = ∇(∇

1
2
1 t

1
2 ) = 0. (4.4)

Using the relation (2.2) of Definition 2.1, we obtain

x(t) = t
1
2 =

Γ(t+ 1
2 )

Γ(t)
. (4.5)

Combining (4.2)–(4.5), we conclude that x(t) = t
1
2 is a solution of Eq. (4.1).

For the solution x(t) = t
1
2 of Eq. (4.1), it is easy to see that there exists t0 ∈ N1

such that ∇
1
2
1 x(t)|t=t0 = C =

√
π

2 exists, and

(t− 1)
1
2

t∑
s=2

(t− s+ 1)−
1
2

[
C +

s∑
ξ=t0+1

g(ξ)

]
= (t− 1)

1
2

t∑
s=2

(t− s+ 1)−
1
2

[√
π

2
+

s∑
ξ=t0+1

Γ(
1

3
)

]
> 0, t ∈ N1, t ≥ 2,

(4.6)
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which shows that the condition (3.3) of Theorem 3.2 does not hold.

Example 4.2. Consider the following fractional nabla difference equation
∇(∇

1
3
1 x(t)) +

2Γ( 1
4 )Γ(t)

Γ(t+ 1
3 )

x(t) = 2Γ(
1

4
), t ∈ N1,

∇−
2
3

1 x(t)
∣∣∣
t=1

=
1

3
Γ(

1

3
).

(4.7)

Here α = 1
3 , q(t) =

2Γ( 1
4 )Γ(t)

Γ(t+ 1
3 )

, f(x(t)) = x(t), g(t) = 2Γ( 1
4 ). Obviously, there

exists t0 ∈ N1 such that

t∑
s=t0+1

(
1− s− 1

t

)
g(s) = 2Γ(

1

4
)

t∑
s=t0+1

(
1− s− 1

t

)
> 0. (4.8)

Thus, the condition (3.13) of Theorem 3.3 does not hold. In fact, using a similar

way in Example 4.1, we can verify that x(t) = t
1
3 > 0 is a non-oscillatory solution

of Eq. (4.7).

Example 4.3. Consider the following fractional nabla difference equation
∇(∇

1
2
1 x(t)) +

2t

Γ(t+ 1
2 )
x(t) = (−1)tet − (−1)t−1et−1, t ∈ N1,

∇−
1
2

1 x(t)
∣∣∣
t=1

= c1, (c1 is a constant).
(4.9)

Assume that x(t) is a solution of Eq. (4.9) and there exists t0 ∈ N1 such that

∇
1
2
1 x(t)|t=t0 = C exists.

Here α = 1
2 , q(t) = 2t

Γ(t+ 1
2 )

f(x(t)) = x(t), g(t) = (−1)tet − (−1)t−1et−1.

Obviously,
s∑

ξ=t0+1

g(ξ) = (−1)ses − (−1)t0et0 . (4.10)

It is easy to see that (t− s+ 1)α−1 = (t− s+ 1)−
1
2 is increased for s, and

(t− s+ 1)−
1
2 ≤
√
π for s = 2, 3, · · · , t. (4.11)

Let

M(t) =

t∑
s=2

(t− s+ 1)−
1
2

[
C +

s∑
ξ=t0+1

g(ξ)
]
.

It follows from (4.10) and (4.11) that M(t) is oscillatory and |M(t)| is a strictly
monotone increasing function. Therefore, we obtain

lim inf
t→∞

{
(t− a)1−α

t∑
s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]}

= lim inf
t→∞

{
(t− 1)

1
2

t∑
s=2

(t− s+ 1)−
1
2

[
C + (−1)ses − (−1)t0et0

]}
= −∞,

(4.12)
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and

lim sup
t→∞

{
(t− a)1−α

t∑
s=a+1

(t− s+ 1)α−1
[
C +

s∑
ξ=t0+1

g(ξ)
]}

= lim sup
t→∞

{
(t− 1)

1
2

t∑
s=2

(t− s+ 1)−
1
2

[
C + (−1)ses − (−1)t0et0

]}
= +∞,

(4.13)

which show that the conditions in Theorem 3.2 are satisfied. By Theorem 3.2, the
solution x(t) of the Eq. (4.9) is oscillatory.

Remark 4.1. Example 4.1 and Example 4.2 show that the assumptions of Theorem
3.2 and Theorem 3.3 can not be dropped, respectively.
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