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DYNAMIC ANALYSIS OF A
NON-AUTONOMOUS RATIO-DEPENDENT
PREDATOR-PREY MODEL WITH
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Abstract In this paper, a non-autonomous ratio-dependent three species
predator-prey system with additional food to top predator was proposed. The
permanence of the model is obtained. Based on the continuation theorem, the
sufficient conditions for the existence of a periodic solution are obtained. By
using the method of Lyapunov function, we prove that the system exists a
unique positive almost periodic solution under some certain conditions.
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1. Introduction

Traditional Lotka-Volterra type predator-prey model with Michaelis-Menten or Holling
type I functional response is described by the following system:

dr =ax(l—bx) — Yy ,
dt m-+x (1.1)
dy _ fery |

dt mtz Y

where z(t) and y(t) denote the densities of the prey and predator. We denote that a
is the prey intrinsic growth rate and b is the carrying capacity of prey = population.
Here, ¢ and f express the capture rate and the conversion rate of prey to predator,
respectively. m is the half saturation constant and ¢ is time, d is the death rate for
predator.
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Holling type IT functional responses [14] are often used to model predator prey
interactions. Most of predator-prey models have two or three species. Dynamics
of three species predator-prey models are much more complex and interesting than
two species models. Hastings and Powell [7] showed the existence of chaos in a three
species food chain model. Later, Freedman and Waltman [4] proved persistence in
three interacting predator-prey population models. Usually, top predator can eat
only the middle predator and middle predator can eat only prey. However, top
predator not only consume the middle predator but also prey in the real world. In
2014, Pal et al. [13] assumed that top predator consumes both prey and middle
predator by considering the following control system:

dx c1ry C3TZ2
— =ax(l—bx) — - )
dt m+x mz+x
d
ay _ fiazy _ CYz —dyy, (1.2)
dt mi+x  mo+y
dz  facsxz  facoyz
= dQZ,

E ms + mg—&—yi

where z(t) denotes the density of top predator. We define that ¢y, f; are the
capture rate and the conversion rate of prey to middle predator; cs, fo are the
capture rate and the conversion rate of middle predator to top predator; c3, f3 are
the capture rate and the conversion rate of prey to top predator. In this model,
my;, 1 = 1, 2, 3 are the half saturation constant of prey, middle predator and top
predator, respectively; d;, i = 1, 2 are death rate of middle predator and top
predator, respectively.

Arditi and Ginzburg [1] proposed ratio-dependent predator-prey model. For its
advantages, one can refer to Yang Kuang [11] and Lundberg and Fryxell [12]. Re-
placing the functional response —%— in system (1.2) by a ratio-dependent response

m—+tx

mig. Then, we consider the following model:
Y

dx c1ry Cc3T2

— =azx(l —bz) — — ;

dt miy+xr mszz+x

d c1x Ccoyz

dy _ fheawy  cyz dyy, (1.3)
dt my+x mez+y

dz  fscgwz focoyz

dt msz +x mgz-i-y_

In some real world ecological systems, top predator have additional food except
prey and middle predator. Sahoo and Poria [17-19] introduced the concept of
additional food to the top predator. Recently, Panja et al. [15] proposed a three
species predator-prey model where top predator eats both prey and middle predator
in which the additional food is supplied for top predator. A (0 <A < 1) is the
additional food. As you see, if A = 0, there will be no additional food in this system.
If A =1, all items associated with it will become 0. In fact, the environment is
affected by the perturbation. We should consider the time-varying parameters.
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Motivated by above mentioned words, we propose the following model:
d t 1— At t

i _ a(t)x(l _ b(t)ﬂ]‘) _ Cl( )ﬂl‘y o ( ( ))63( )'732"7

dt my(t)y +x ms(t)z +

dy fit)er(t)zy B (1 —A(t))ea(t)yz

dt  mi(t)y+z ma(t)z +y —di(t)y, (1.4)
dz _ (L= A®)fs(t)es(t)oz | (1= ADLOROY:
dt ms(t)z + x + a2 17 da(t)z.

In what follows, we focus on the mathematical analysis of the boundedness, exis-
tence of periodic (almost periodic) solutions of system (1.4).

2. General Type

Let Ri = {(amy,z) ER}|2>0,y>0, 2> 0}. For a continuous bounded
function f(¢) on R, denote

fi=sup f(t), f'i= inf f(2).

tER teR

For the biological view, we assume the initial conditions satisfying xz(tg) >
0, y(to) > 0, Z(to) > 0.

Definition 2.1. If a positive solution (z(t), y(t), z(t)) of system (1.4) satisfies
min { tlggo inf x(t), tlgg@ inf y(t), tlgglo inf z(t)} =0,

then system (1.4) is non-persistent.

Definition 2.2. If there exist two positive constants ¢ and ¢ (0 < ¢ < ) with
min { tlg(r)lo inf (1), tll>ngo inf y(t), tli)rglo infz(t)} > ¢,

. . o N

max { lim supx(t), lim supy(t), lim supz(t)} <,

then system (1.4) is permanent.

Theorem 2.1. Assume the pammeters are all continuous and bounded by positive
constants. If A% < 1, fic¥ > di, almllmé > ctmh + (1 — AYeyml, fldml >

(1 — AYelY + dvmb, (1 — AW)(fich + fich) > d¥, the set T defined by

F={(z,y, 2) eR| g1 <2 <Gy, g2 <y <Gy g3s<2<Gs}

(2.1)
is a positively invariant and bounded region with respect to system (1.4), where

G 1 _almiml — [etmb + (1 — Al)cyml]
1= b g1 = lb“m ml )
1m3
Gy = (fi'el — )Gl go = [ffcllmlz (1 Al)cg d'fmé]gl
dimh (1 — Ab)ey + dymb]my

G (1 — AD)(my fic§Gr + mb f3 5 Go) (1= AY)(fch + fich) — dg)F
3 93

[ ) m )
dymsymy dy E

E = max{my, my}, F =max{g1, ga2}-

(2.2)
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Proof. Let (z(t),y(t), 2(t)) be any solution of system (1.4) satisfying (z(to),y(to),
z(tg)) € I'. It follows from the first equation of system (1.4) that

ﬂﬂgdﬂﬂﬂéfxwkthamhfmm,tzm

which implies
0< Jf(to) <G> x(t) < Gl, t > tp.

Similarly, we have

S _C’f_(l—Al)Cfof}
m! mk
1 3
. u ctmb +mt (1 — Al)cy
[a—ab 1M3 mllml 3
1M3
)

= {a mimb — a'b mimba(t) — [c1m3 +(1- Al)c3mll] }

- Lol l

B x( Ja'btmim} [ a'mimi — [cfmf + (1 — A')cymi] — z(t)
mbm} albrmimy

= a(t)a'b"[g1 — x(1)],

which leads to
x(to) > g1 = x(t) > g1, t>to.

From the second equation

i0) < 9(0)| S | = — IOy — dhomtyte) + G
- y(t )d1m1 (fiel — dl1)G1 _ (t)d1m .
— miy(t) + G [ dimj - y(t)} — omhy(t) + ETY1 (G2 =y (0]

which implies
0< y(to) <Gy => y(t) < GQ, t > 1.

In the same way, we get

1l _ Al u
00 st - g
_ (){ ficig (1—Al)c2 —|—d1m2]
Y miy(t) + g1 mb

=y(t

){ flekgumb — (miy(t) + g)[(1 — Ak + dimi)] }
mb[miy(t) + g1]
= W{fﬁlglmz [(1- Alyey erlmQ]gl [(1- Aesy +d1m2]m1y(t)}
oy = AYey +dymy]my [ [fieimh — (1 — A')ey — dimb]g: B
B mh(miy(t) + g1) { [(1 = Ab)el 4 diymb]my y(t)}
— AYe mb|m¥
- w0l A LTIy,
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and hence,
y(to) = g2 = y(t) = g1, t > to.

Moreover, it follows from the top predator equation that

z@><4wF1—A@@%G1+<1—A@ﬁﬁez_dq

mhz mbz
= 2(t) (1 — AD)(m fic§ Gy + mb fi c§Go) d2m3m2,z(t)
mbmb 2 (t) mbmb 2 (t)
313 373

= mlglm [(1— A" (mb f3 i Gy + mb f3 ey Ga) — dymbymz(t)]

_dymbmb [ (1 — AN (mb f3 4Gy + mb f3 e Go)
= T 7 —2()

momg dlzmzms
= dlZ[G3 - Z(t)]a
which leads to
0< Z(fo) <Gz = Z(t) < G3, t > 1.

Furthermore, we have

1—A")f.

Z(t) > 36391 (1 — AU)J%CZQQQ du:|

( )f
0| e+ e
AW ( FL i
_ z(t){(l A ])E(Z? )Sf;;fz 5 F) —dg}

- Ez(t()tsz [(1— A")(fich + foch)F — dyF — dyEx(t))]
z(t)dy — AW (flcl Ll Y _ gu
(t)dsE {[(1 A )(fg,;ngz 5) dQ}F_Z(t)}

 Ez(t)+ F
_ z(t)dyE
 Ez(t)+ F

[93 - Z(t)]a

which implies
z(to) > g3 = 2(t) = gs, t > to.

This completes the proof of Theorem 2.1.

O

Theorem 2.2. Assume that conditions in Theorem 2.1 are satisfied, then the set

[ defined by system (2.1) is the ultimately bounded region of system (1.4).

3. Periodic Solution

For the autonomous system, stability and bifurcation theory plays a great role in
qualitative analysis of differential equations (see e.g. [2,3,8-10, 16, 20, 21, 24, 26]).
Correspondingly, when we consider the non-autonomous periodic system, we focus
on obtaining the existence of positive periodic solutions. To do this, we assume that

the parameters of system (1.4) are periodic in ¢ of period w > 0.

- We adopt the notations and definitions, lemmas from [5,6,22,23,27]. We denote
=1 fo t)dt where f(t) is a periodic and continuous function with period w.
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Theorem 3.1. If (]. 7_14) > 0_, amlm_g > mscC1 + (1 — A)ngnl, flélmg > (Zlmg +
(1 —A)é and (1 — A)(f3C3+ faCa) > da, then system (1.4) has at least one positive
w periodic solution, namely, (z*(t), y*(t), z*(t)).

Proof. Change the variables as follows,

x(t) = exp{Z(1)}, y(t) = exp{(t)}, 2(t) = exp {Z(1)},
then, system (1.4) becomes
e e a0 D (30}
(L= A(#))es(t) exp {Z(1)}
ms(t) exp {Z(t)} + exp {(t)}’
fit)er(t) exp {z(t)} (1—A®)ea(t) exp{Z(t)} (1),

) = e 0] +oxp GO] Mo oxp (200} T oxp (50
iy = L= ADAOGW e G0} | (1= ADLOaO e (0}, o
ma(t)exp{Z(t)} +exp{z(t)} = ma(t)exp{Z(t)} +exp {7(t)} (5.1)
Let

X=Y={@ g 2" cOR, R* R®) | &(t+w) =7, §(t+w) =7, 2(t+w) =z},
1@ 5 2) = mex (120 +FOI+ 12, @ 7 2) € X (or V).

Clearly, X and ) are Banach spaces. Let

~ ~ cq1(t) exp {g(t 1-A(t))es(t) exp {Z(t)
|| a®(1-b(0) exp (1)) = ey s o e T @T ~ () o (eI e (07T
Nlal= AW ep(E®) __(-AW)e@ep Z0} 4 o)
Yy m () exp (§(0)] Foxp {a(8)]  ma(D) exp {2(0) ) exp (§(0)] 1
5 A=AV s (s exp (F(0} | A=A (e exp (O} _ 4 )
ms(t) exp {Z(t) }+exp {Z(t)} ma(t) exp {2() }+exp {H(t) } 2
i 7
Llgl=17]1,
z 3
7 i Lea(t)d i
Plg|=Q|g|= |1/ gt)dt| and |j| € X =Y.
z z L[y Z(t)at z

Similar arguments to [5,8,22], we easily prove that Kp : ImL — DomL N ker P
exists and is given by

T Jo #(s)ds — L [ [5 #(s)dsdt
Kplg|=1J 9(s)ds— %f(;d Jo 4(s)dsdt
z Jo Z(s)ds — L [ [ Z(s)dsdt
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It is easy to see that

&

QN

IS TN

L e 1 (1) exp (3(1)} (1= AW@)es (1) exp (2(1)}
5 Jo o) (1=b() exp {20 1)~y exp T30} fexp TRT ~ 5 (9 exp (208 Fep [(00F ) O

_ 1 Fi(t)er () exp {2(6)} (- A@®)es () exp ()}

sl [ ) exp (500 Foxp (50T — malh exp 1500 Fexp (o7 — G (®)]di

2 Dol o (B0 1 (AN a e ovo (i}

5 Jo [ es 01 tem 0T + mh e G0 e mo) — eO]d

and

IS

fOle 1f0 fOledsdt—(
= fONgs s— 2 fONgsdsdt—(
fONgs lfo fONgsdsdtf(

O%
=
m
Q.

Kp(I - Q)N

<<

O%
5
cn
Q.

[S3
[\J\»—t l\')\»—l [\')\H

t
w
t _
w
t
w

o%
Z
c/n

It is not difficult to prove that N is L-compact on € with any open bounded set
QcCX.
Now we are in a position to find an appropriate open bounded subset €2 for the

application of the continuation theorem of [5,6,22]. According to the equation Lz =
ANz, A€ (0,1), we get

7 =AM = b exo (20D - T X;?y(;p }{fﬁi EO);

(- A())es(t) exp {Z(D)} ]
ms(t) exp {Z(t)} + exp {Z(t)}

o AMa®eplE®)  (Q-A@)e@epE0)

VO =A@ exp (50} +exp (20] ~ ma@exp 2O} rewp 5] 2O

() - A Ot exp (30} | A=A LOea(O s 50},
Do (0} e 50 | maen G sep o) 0

Suppose that (Z(t), §(t), Z(¢)) is an arbitrary solution of system (3.1) with a certain
A € (0, 1) on both side of system (3.2) over the interval [0, w], such that

T 1 (8) exp {3(1)}
“”‘/o (PO exp {30} + TS 150} + exp GO

(1~ AW)es(t) exp {(2(1)}
T al®) exp (50} + exp 2O

O Re ) esp (1) (1 — A))es(t) exp {5(6)}

dl“"/o[ Bexs 50} + oxp GO~ e omp G0} T o GOT

. /“[(1—A(t))fs(t)C3(t)exp{a:(t)}+( A lt)eat) 2 (50}
o Lo (0} + o (20} T malew GO+ 0}
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According to equation (3.2) and (3.3), we have

/| \dt<)\/ ()dt+/wa(t)b(t)exp{i:(t)}dt

(1) exp {i(1))
/m1 exp{y ) +exp GO
(1) exp {2(1))
/ e exp{z T+ exp 0]
< 2aw,

“ (t) exp {z(t)}
/0 |y (t)‘dt<)‘ /0 di(t dt+/ m (t exp{y )} +exp{Z(t )}dt (3.4)

[ L Aewep GOl
o ma(®)exp (20} + exp {3(1)}

< 2&1&1
R
N A(t)) faco exp {7(t )}
+/0 Mo exp{z( )} + exp {g(t )}dt]

< 2CZ2W.

There exist & and n; € [0,w], ¢ =1, 2, 3 such that

Z(&1) = min Z(t), Z(m)= max Z(t),

te[0,w] te0,w]
. A am) —
9(62) = tg[lglgd]y( ), () = tggg]y(t), (3.5)

#(&) = i Z(t), Z(ns) = nax, ().

According to the first equation of system (3.3), we find that
w> [ alpes el i6) <,
From system (3.4) and (3.5), we obtain
z(t) < z(&) + /Uw |z’ (t)|dt < In % + 2aw := H;. (3.6)

Now, we consider the first equation of system (3.4)

_ “ . a) , (1—A))es(t)
aw < /0 [a(t)b(t) exp {Z(m)} + () + =0 3 Jdt

= [ fatpoyesp fauy + 2O Lo AO a0y,
0 mq (t)m;;(t)

which implies
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amims — Ci1ms — (]. — A)03m1

abexp {&(m)} >

)

m1m3
#(m) = In { amyms — [eims + (1 = A)egm] } |
abmims

and henCe7

w armiy s — [1msci + (1 — A)cm
e / |j/(t)|dt - { e [n?:ia_ +_( )C31m1 } — 2aw = Hs.

’ abmims

(3.7)

According to system (3.5) and the second equation of system (3.3), we have

Y filt)er(t) exp {H1}

diw < — dt,
=)o ma(t)exp {§(&)}
7 J1c1 exp{H}
d < ——m—,
L mrexp {§(&)}
which implies -
- c1 exp{ H
exp (&)} < LRI — P}
1m
- fré1 exp{ H
i) < { D2t
d1m1
thus,
w r = H _
G(t) < §(&) + / 7 (t)|dt < In {flclﬁ’(p{l}} +2dyw = H. (3.8)
0 1M
From the second equation of system (3.3), we obtain
o [ [ hlatontt) (- A0e),
o Lma(t)exp{y(n2)} + exp {H:} m(t)
This leads to B
J > flél exp{HQ} (]. — A)Eg
1 = ~ - — )
m{ exp{y(12)} + exp{H2} my
and therefore,
s 2 ol _ et}
(d1m2 + (1 — A)Cg)m% mq

g(n2) > In

{ [fieima — (dima + (1 — A)s)] eXP{H2}}
((ng + (1 — A)Eg)ma‘ ’

furthermore,

§(6) > §lnm) — / "7 @)t

o In { [frermy —_(5_17712 + (1= /_1)52)} exp{Ha}
(d1m2 + (1 — A)Cg)mif

} - 2&1&1 = H4.
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From system (3.5) and the third equation of system (3.3), we get

T A et exp (LY (L — AW fa(t)ea(t) exp {Hs)
d”"g/o [ e (ZE)) T ma(t)exp (3(6) }dt’

d < (1 — A)[fscamgexp {Hy} + fotams exp {Hs}]
2 —— .
mamg exp {Z(&3)}

(1 — A)[fscamgexp {H1} + focams exp {Hs}] }

Mamads

Y

H&) < 1n{

then, it follows that

) < 5(&) /l Hldt

<1n { (1 — A)[fsésmag exp {H1} + faéyms exp {Hs}]
mgmggg

(3.10)

} —|— 26?2&) = H5.

The third equation of system (3.3) gives

- YT - AQR))fs(t)es(t) exp{Ha} | (1 — A(t))f2(t)ca(t) exp {Hy}
b2 /o [ mg exp{Z(n3)} + exp {H2} * my exp {Z(n3)} + exp {Hy} ]dt7

7 (1 - A)fscz exp {Ha} (1= A)focoexp {Ha}
~ mYexp{Z(ns)} +exp{Ha} mYexp{Z(n3)} +exp{H4}
Denote that W = max{m}¥, m4} and V = max{exp {Hz}, exp{H4}}, we have

- (L= A)V(fses + fota)
dz = Wexp{Z(n3)} +V

(1 — AV (f3¢3 + fal2) < doW exp {Z(n3)} + d2V,

then, -
: (1= A)(fse3 + foia) — do]V
> —
exp{Z(n3)} > 7 ’
Z(n3) > In { [(A - A)(f3C3_+ fal2) — do]V }7
do W
consequently,
(1— A)(f383 + fols) — d_g]V} ~
Z'(t)|dt > In ] g He
Z(n3) / | t)] { e : :
(3.11)
It follows from (3.6)-(3.11) that
max |Z(t)| < max{|H|, |Hz|} = Cy,
te[0,w)]
tg%gx] |9(t)| < max{|Hs|, |Ha|} := Cs, (312

max |Z(t)| < max{|Hs|, |He|} := Cs.
te[0,w]
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We choose C' > 0 such that C > C1 + Cy + C3. Let Q = {(z, 7, ) € X |
| (Z, 4, 2) || < C}, then it is easy to verify that the requirement (1) in the contin-
uation theorem of [5,6,22] is satisfied. Also,

T a=bexp{a}) = [y Tk o (it Fows G0y — s v (20 ek (oo 1!
ON|7|=|  —di+ 3 IS e G ron mmT — e (7o o7
z ~d + 5 I o oy s {2y s b Lot Sy 1
0
# 10
0

In addition, we have

deg{JQN, QN KerL,0} # 0.
Thus, we have proved that {2 meets all the conditions in the continuation theorem of
[5,6,22]. Hence, system (3.1) has at least one w periodic solution (Z*(t), §*(¢), 2*(t)).

Set x*(t) = exp{Z*(t)}, y*(t) = exp {7*(¢)}, 2" (t) = exp {2*(¢)}, then (x*(t), y*(¢),
z*(t)) is an w periodic solution of system (1.4). The proof of Theorem 3.1 is com-
pleted. O]

4. Almost Periodic Case

Let
z(t) = exp{Z(1)}, y(t) = exp{7(t)}, 2(t) = exp {2(1)},

then system (1.4) becomes

(1) = a1 = b(t) exp{2()}) = s pf?m;p}{i(ti @0}

0 AW e 20}
m3(t) exp {Z(t)} + exp {Z(t)}’
o RWe e [#0) (1 AW)eal) exp 20}
PO = 0 exp G0) + oxp B0]  ma(®)exp (20)) +exp ()
sy~ (L= A e () | (1= A RO e (0}, o
e (0} + e (&0} m@ew GO} Fentit} )

Theorem 4.1. Assume that the conditions in Theorem 2.1 are satisfied, system
(4.1) has a positively invariant and ultimately bounded region T'*. Here T'* denotes
{(z, y, 2) € R* | In{g1} < & < In{G1}, In{ga} < § < In{Gs}, In{gz} < Z <
ln{Gg}} and g;, Gi, i =1, 2, 3 are defined in Theorem 2.1.

We need Theorem 19.1 of [25] to prove the existence of the almost periodic
solutions. Consider ordinary differential equation

' = f(t,x), f(t,z) € C(R x D, R"), (4.2)

where D is an open set in R™, f(¢, ) is almost periodic in ¢ uniformly with respect
tox e D.
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Theorem 4.2. Assume that the conditions in Theorem 2.1 are satisfied. If further
assume that

- CA@Oma#) =1 ()G [fs(#)ms(t) —1es(t)Gs(1-A(t
tlguf@{a(t)b(t) (m1(t)g2+91)? (m3(t)gs+g1)? } =0

e 1O)ma(t) = e (t)gr | [1 = fa(t)ma(t)]ea(t)gs(1 — A(t))

tuelﬂf{{ (m1(t)G2 + G1)2 * ( ( )GB + G, ) } >0

g f3@)ma(t) — Ues(t)gi (1 — A(t) | [fa(B)ma(t) — ea(t)g2(l — A(?))

nf (ma()Gs + Gr)? + (ma )G + G )? } ZLZ)

then, system (1.4) has a unique uniformly asymptotically stable almost periodic
solution in I

Proof. To prove that system (1.4) has a unique uniformly asymptotically stable
position almost periodic solution in I'. It suffices to show that system (4.1) has a
unique uniformly asymptotically stable almost periodic solution in I'*.

Consider the product system (4.1)

o . c1(t) exp {7 ()}
T1(t) = a(t)(1 —b(t) exp {Z1(1)}) @ exp L ()] + exp {71 (0]
(= A())es(t) exp{z(t)}
ma(t)exp{z1(t)} +exp{Z1(t)}’
7.(t) = fit)er(t) exp {#1(2)}  (1-AQ®))e2(t) exp {21 (D)} —dy (1),
! ma(t) exp {71 (t)} +exp{Z1(t)} ma(t)exp {Z1(t) }+exp {71(t)}
2 = (1-A®))f3(t)es ()eXp{xl(t)}+(1 A(t)) f2(t)ea(t) exp {71 (1)} (1)
! ms(t) exp {Z1(t) }+exp{Z1(t)}  ma(t) exp {Z1 ()} +exp {7:1(¢)} ’
N, c1(t) exp {ga2(t)}
T5(t) = a(t)(1 — b(t) exp {Z2(t)}) @ exp {5a(0)] + exp (72 (0)]
(L= A(t))es(t) exp {2()}
m3(t) exp {Za(t)} + exp {To(t)}’
() = fit)er(t) exp {Z2(t)} ~ (1-A@))ea(t) exp {22(1)} —dy(#)
ma(t) exp {g2(t)} +exp {Za2(t)} ma(t)exp {Z2(t) }+exp {F2()} 7
() = (1-A(#)) f3(t)es(t) exp {sz(t)}+(1ﬂ4(t))f2( Jea(t )eXP{yz(t)}_dz(t)
? ms(t) exp {Z2(t) }+exp {Z2(t)}  ma(t) exp {Z2(t) }+exp {F2(t)} @ 4’)

and the Lyapunov function

VI(t,&1,91, 21,2, §2, Z2) = [21(t) — T2()] + [91(8) — G2(8)| + |21 (F) — Z2(2)],

then, condition (¢) in Theorem 19.1 of [25] is satisfied when a(y) = S(vy) =
v > 0. In addition

|V (t,Z1,31, 21, T2, Yo, Z2) — V(t, T3, T3, Z3, Ta, Ya, Z4)|
=(|21(t) = 22| + |91.(8) = G2(B)] + [21(2) — 22(2)])
— (|Z5(t) = 24(8)] + 3() — ga(O)] + |23(t) — Za(t)])

<[21(t) = Z3(8)| + [91() — G3(O)] + |20(1) — Z3()] + |Z2(2) — Za(?)]
+192(t) — §a()] + |Z2(t) — Z4(2)]
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< @), 91(8), 21(8),) — (Z3(2), 93(1), 23(2)) ||
+ 11 (#2(2), 92(1), 22(8)) — (Z4(?), 9a(t), Za(8)) ],

which indicates that condition (#¢) in Theorem 19.1 of [25] is also satisfied.
Let (%;, ¥i, 2;)T, i =1, 2 be any two solutions of system (4.1). Calculating the
upper right derivative of V(t) along the solution of system (4.1), we get

DYV (t)

- [ —a(®b(t) (exp {10} — exp {22(0}) = (- e)ff)({?;f Z?}{i(g {0}
e1(t) exp {72(t))

) . ( (1 —A(t))es(t) exp{z1(t)}
0o (@)} + oxp (720 a0 exp (21(6)) + oxp {71(0]
(1= A@®))ealt) exp {5(1))
e {20} 1 exp (&0 | 00 ~22(0)
[ ) At e (a:0)
T exp {3 () + oxp (7100] i (E) exp (5alB)] + oxp (72(0)
A0 G) - Ao (0) )

ma(t)exp{Z1(t)} +exp {71 ()}  ma(t) exp{Z2(t)} + exp {72(1)}
x sgn(f(t) — 2(t))
n {((1 —A(t))fs()es(t) exp{a1(t)} (1 — A())fs(t)cs(t) exp {332(75)})
ma(t) exp{Z1(t)} +exp {F1()}  ma(t) exp {Z:(1)} + exp {F2(t)}
((1 —A@) f2(t)ea(t) exp {gn(t)} (1 — A(t)) fa(t)ea(t) exp {7a(1)} )}
ma(t)exp {Z1(t)} + exp {9:1(¢)} mg(t) exp {Z2(t)} + exp {72(t)}
x sgn(z1(t) — Z2(1))

= { —a(t)b(t) ( exp {Z1(t)} — exp {Z2 (t)})

ci1(t) (exp {§1(t) + T2(t)} — exp {G2(t) + 1 (1)})
 (ma(t)exp {51 ()} + exp {1(1)}) (ma (1) exp {52(1)} + exp {Z2(1)})
(1= A(t))es(t) (exp {Z1(t) + F2(t)} — exp {Z2(t) + &1 (1)}) }
(a0 exp (21(0)) + exp {1 (1)) (ms (1) exp {Z2(0)} + exp (Z2(0)))
x sgn(Zy (t) - :Eg(t))

(t) (exp {1 (t) + ga(t )} —exp {i2(t) + 41(1)})
t) exp {y1 } +exp {Z1(8)}) (ma () exp {ga(t) } + exp {Z2(1)})
(1 — A(t))ea(t) (exp {Z1(t) + (1)} — exp {Z(t) + §1(1)}) }
(mz(t) exp {Z1(t)} + exp {71 (£)}) (ma(t) exp {Z2(t) } + exp {72(1)})
x sgn(g1(t) — g2(t))

N [(1 — A(t)) f3(t)es (t)ms (t) (exp {1 (1) + Z2(t)} — exp {Za(t) + Z1(1)})
(m (

+

3(t) exp {Z1 (1)} + exp {Z1(8)}) (ma(t) exp {Z2(t)} + exp {Z2(t)})
(1= A1) fo(t)ea(t)m ()(exp{y1(t) Z(t)} — exp {f2(t) + 21 })}
(ma(t) exp {Z1(t)} + exp {F1(1)}) (ma(t) exp {22(t)} + exp {72(1)})
x sgn(z1(t) — 22(t))

< —a(t)b(t)| exp {F1(t)} — exp {d2(t)}]
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n c1(t) exp {Za(t)}

(ma(t) exp {g1(t)} + exp {Z1(¢)}) (ma(t) exp {F2(t)} + exp {Z2(1)})
x |exp {g1(t)} — exp {g2(t)}
B c1(t) exp {2(¢)}

(ma(t) exp {g1(t)} + exp {Z1(¢)}) (ma(t) exp {g2(t)} + exp {Z2(1)})
x |exp {Z1(t)} — exp {Z2(?)}
n (1 —A(t))es(t) exp {Z2(t)}

(ms(t) exp {Z1(1)} + exp {@1()})(ms(t) exp {Z2() } + exp {Z2(1)})
x |exp {Z1(t)} — exp {Z2(t)}
B (1 —A(t))es(t) exp {za2(t)}

(ms(t) exp {Z1(1)} + exp{Z1()})(ms(t) exp {Z2(¢) } + exp {Z2(t)})
x |exp {Z1(t)} — exp {Z2(1)}|
N fi(t)er (t)ma (t) exp {g2(t)}

(ma(t) exp {G1(t)} + exp {Z1(¢)}) (ma(t) exp {g2(t)} + exp {Z2(?)})
x |exp {Z1(t)} — exp {Z2(?)}|
B fit)er(t)ma(t) exp {Z2(t)}

(ma(t) exp{71(t)} + exp {Z1(¢)})(ma (t) exp {F2(t)} + exp {Z2(t)})
x [exp{g1(t)} — exp {F2(y) }|
n (1 — A(#))ca(t) exp {g2(t)}

(ma(t) exp {Z1 (1)} + exp {§1(t) }) (ma(t) exp {Z2(t) } + exp {F2(¢)})
x |exp {Z1(t)} — exp {Z2(t)}|
B (1 — A(t))ea(t) exp {Z2(1)}

(ma(t) exp {Z1 (1)} + exp {§1(£) }) (ma(t) exp {Z2(t) } + exp {F2(¢)})
x |exp{71(t)} — exp {72(1)}
n (1 = A1) f3(t)es(t)ms(t) exp {Za2(t)}

(m3(t) exp {Z1(t)} + exp {Z1()})(ms(t) exp {Z2(¢)} + exp {Z2()})
x |exp {Z1(t)} — exp {Z2(?)}|
B (1 — A1) f3(t)es(t)ms(t) exp {Z2(t)}

(ms3(t) exp {Z1(t)} + exp {Z1()})(ms(t) exp {Z2(¢)} + exp {Z2()})
x |exp {Z1(t)} — exp {Z2(t)}|
n (1 — A1) f2(t)ea(t)ma(t) exp {Za2(¢)}

(ma(t) exp {Z1 (1)} + exp {71(¢)}) (ma(t) exp {Z2(t)} + exp {72(1)})
x |exp {g1(t)} — exp {g2(t)}
B (1 —A(@)) f2(t)ea(t)ma(t) exp {§2(t)}

(ma(t) exp {Z1(1)} + exp {F1(¢)}) (ma(t) exp {Z2(t) } + exp {72(1)})
x |exp {Z1(t)} — exp {Z2(t)}|

[f1()er(t)yma(t) — er(t)] exp {72(1)}

= {00+ GG ] o o) e ] o T

[(1— A(t) f3(t)es(t)yms (t) — (1 — A(t))es(t)] exp {Za(t)} }
(ma(t) exp {Z1(8)} + exp {1(8)}) (ms(t) exp {Za(1)} + exp {Z2(1)})
x [exp {Z1(t)} — exp {Z2(1)}|

t
(
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+{ [e1(t) = fr(#)er (t)ma (t)] exp {Fa (1)}
(ma(t) exp {71 (1)} + exp {21 (t)})(ma(t) exp {ga2(t)} + exp {Z2(t)})
(1= AQ@)) fa(t)ea(t)ma(t) — (1 — A(t))ea(t)] exp {Z2(t)} }
(ma(t) exp {Z1(t)} + exp {71(t)}) (ma(t) exp {Z2(t)} + exp {72(1)})
x |exp {71 ()} — exp {g2(t)}|
N { [(1— A(t))es(t) — (1 —
(m3(t) exp {Z1 (1)} + exp {Z1 (1
(1= A(t))ea(t) — (1 — At
(ma(t) exp {Z1(1)} + exp {g:1 (1)}
x [exp{z1(t)} — exp {Z2(!)}|
[iO)ma(t) — e (G2 [fs(t)ms(t) — 1]es(t)Gs(1 — A(t))
< { B A v P (ms(D)gs + 91)° }
x |exp {Z1(t)} — exp {Z2(?)}|
B { [f1(t)ma(t) — 1]ei(t)gr n [1— f2(t)ma(t)]c2(t)gs(1 — A(t)) }
(m1(t)G2 + G1)? (m2(t)G3 + G2)?
x |exp{g1(t)} — exp {72(1)}
B { [f3(t)ma(t) — 1] ea(t)g1 (1 — A(t)) 4 [fo(H)ma(t) = 1ea(t)g2(1 — A(t))}

t
}

£)) f3(t)es(t)ms(t)] exp {Z(t)}

P (ma(t) exp {Z2(8)} + exp {Z2(1)})
)f2(t)ea(t)ma(t)] exp {ga ()} }
(ma(t) exp {Z2(t)} + exp {52(t)})

A(
)
)
)

(m3(t)Gs + G1)? (ma2(t)G3 + G2)?
x |exp {Z1 (1)} — exp{Z2(1)}.
Not that
exp {Z1(¢)} — exp {Z2(t)} = exp{C(t)}(@1(t) — 22(1)),
{ exp {71(t)} — exp {2(¢)} = exp{n(t) }(F1(t) — F2(¢)), (4.5)
exp{Z1(t)} — exp {Z2(t)} = exp{0(¢) }(Z:(t) — 22(2)),

where ((t) lies between &1(t) and Z2(t); n(t) lies between g (¢) and §o(t); 6(t) lies
between Z; (t) and Z3(¢). Then, we have

DTV (t)

/. C[AMma) —1a)Ge [fs(t)ma(t) — Les(H)G(1 = A(t))
< - {atont - e o et )

(

[fi)ma(t)—1]ei(t)gr  [1—fa(t)yma(t)]ca(t)gs(1—A(t)) _ _
P R = i () (o)
B { [f3(t)ms(t) — 1]es(t)gr(1 — A(t)) n [f2(t)yma(t) — 1]ea(t)g2(1 — A(t)) }

(m3 t)Gg + G1)2 (TTLQ(t)Gg + G2)2

—indint Lo B [fl(t)ml(t)*l]cl(t)Gz_ [f3(t)ms3(t)—1]es(t)Gs(1—A(1))
"= {t@%{ ) = gt )2 (ms(t)ga+91)? o
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i LAOm0) = ag | [1- AOmO]etll - A®),

teR' (my(t)Gy + G1)? (m2(1)Gs + G2)? ”

o fs®ms(t) — 1 es(t)gi (1 — A(t)  [f2(t)ma(t)—1]c2(t)g2(1—A(t))

nf{ (ms(t)Gs + G1)? " (ma(t)G3+G2)? J 93} =0

The condition (4i7) in Theorem 19.1 of [25] is verified. We conclude that system
(4.1) has a unique almost periodic solution in I'*. Hence, system (1.4) has a unique
positive almost periodic solution in I". The proof of Theorem 4.2 is complete. [
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