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Abstract We propose a Schwarz-based domain decomposition method for
solving a dispersion equation consisting on the linearized KdV equation with-
out the advective term, using simple interface operators based on the exact
transparent boundary conditions for this equation. An optimization process
is performed for obtaining the approximation that provides the method with
the fastest convergence to the solution of the monodomain problem.
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1. Introduction

The Korteweg - de Vries (KdV) equation, derived by [9] in 1895, models the prop-
agation of waves with small amplitude and large wavelength, taking into account
nonlinear and dispersive effects. In terms of dimensionless but unscaled variables,
it can be written as [2]

ut + ux + uux + uxxx = 0.

As done in [12] (and in [3] as a special case of their work), we will focus in this
paper on the linearized KdV equation without the advective term :

ut + uxxx = 0 (1.1)

to which we will refer as dispersion equation.

The work developed here is inspired from [12] and [3]. Nevertheless, our objec-
tives are different from theirs. In this paper we propose an additive Schwarz method
(ASM) for solving the dispersion equation (1.1) in a bounded domain, i.e., we de-
compose the computational domain in subdomains and solve the time-dependent
problem in each one of them. Our work focuses on the formulation of appropriate
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and optimized conditions on the interface between the subdomains, in order to min-
imize the error due to the domain decomposition method (DDM) and to accelerate
the convergence of the method.

The interface boundary conditions (IBCs) proposed here are based on the exact
transparent boundary conditions (TBCs) for the equation (1.1), derived by [12] and
[3]. The TBCs make the approximate solution in the computational domain coincide
with the solution of the whole domain, but its exact computation is not doable in
general [1]. [12] and [3] proposed numerical approximations for these conditions,
seeking to reduce the error created by the introduction of artificial boundaries.

In the work presented here, we do not propose approximate TBCs for reducing
the error related to the finitude of the computational domain. In fact, we intend to
reduce the error created by the decomposition of the domain and the introduction
of an artificial interface boundary condition, in the context of a DDM. In other
words, we study the effectiveness of the boundary conditions as IBCs, not as TBCs.
As a consequence, our work shall not use the same reference solution as the one
used by [12] and [3]: for validating their approaches, they compare their approx-
imate solution with the exact solution in the whole domain. On the other hand,
our reference solution is the approximate solution computed on the computational
monodomain. Moreover, in order to isolate the error due to the DDM from that
originated by time discretization, we study our method locally in time, i.e., along
one time step.

This paper is organized as follows: In Section 2, we describe the DDM used
here and we recall the exact TBCs derived by [12] for equation (1.1). Then, we
propose approximations for them, leading to very simple mixed-type conditions
(avoiding, for example, integrations in time) to be used as IBCs in the DDM. Small
modifications are proposed for these IBCs such that the solution of the DDM prob-
lem converges exactly to the reference solution (the solution of the monodomain
problem). In Section 3, we perform a large set of numerical tests in order to opti-
mize the IBCs, in the sense that we search the coefficients that provide the fastest
convergence for the DDM iterative process.

2. Resolution of the dispersion equation using a do-
main decomposition method

We propose in this section a DDM for solving the problem

ut + uxxx = 0, x ∈ Ω, t ≥ t0

u(t0, x) = uexact(t0, x), x ∈ Ω

Υ1(u,−L) = 0, t ≥ t0

Υ2(u, L) = 0, t ≥ t0

Υ3(u, L) = 0, t ≥ t0

(2.1)

in the domain Ω = [a, b].

We firstly present a brief review of the DDM considered here, the parallel or
additive Schwarz method (ASM) and then we propose IBCs for applying it to the
problem solved in this paper.
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2.1. The Schwarz Method

Domain decomposition methods allow to decompose a domain Ω in multiple sub-
domains Ωi (that can possibly overlap) and solve the problem in each one of them.
Therefore, one must find functions that satisfy the PDE in each subdomain and
that match on the interfaces.

The first DDM developed was the alternating or multiplicative Schwarz method,
in which the IBCs for computing the solution in a subdomain are function of the
most updated solution in the neighbor subdomains. We consider here a modified
version of this algorithm, introduced more recently by [10] and known as parallel or
additive Schwarz method. In this algorithm, the IBCs for computing the solution
uk
i , in the subdomain Ωi and iteration k, are always constructed using the solution

uk−1
j , j ̸= i, of the previous iteration in the neighbor subdomains.

This modification originates an inherently parallel algorithm, which one natu-
rally implements with parallel computing. The advantages obtained with the par-
allelism become more evident when the number of subdomains increases [10].

In the ASM, the boundary condition for the problem in Ωi, on each interface
between the subdomains Ωi and Ωj , can be written as

Bi(u
k+1
i ) = Bi(u

k
j ) (2.2)

where Bi denotes the operator of the IBC. This operator allows the construction of
more general Schwarz methods: in the original one, the IBCs are Dirichlet conditions
(i.e., Bi(u) = u ) [8, 11].

Without loss of generality, in the following we consider a domain Ω decomposed
in two non-overlapping subdomains, Ω1 and Ω2, with Γ = Ω1

∩
Ω2.

When implementing a Schwarz method, one must define appropriate operators
Bi such that:

• There is a unique solution ui in each subdomain Ωi;

• The solution ui in each subdomain Ωi converges to u|Ωi , i.e., the solution u,
restricted to Ωi, of the problem in the monodomain Ω;

Moreover, one wants the method to show a fast convergence.

In fact, accordingly to [8], the optimal additive Schwarz method for solving the
problem {

A(u) = f in Ω

u = 0 on ∂Ω

where A is a partial differential operator, is the one which uses as IBCs the exact
TBCs for the problem, which are given by

Bi(u) =
∂

∂ni
u+D2N(u)

where ∂ni is the outward normal to Ωi on Γ , and the D2N (Dirichlet to Neumann)
operator is defined by

D2N : α(x) 7→ ∂

∂nc
i

v

∣∣∣∣
Γ
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with α defined on Γ. v is solution of the following problem, solved in the comple-
mentary set of Ωi, denoted by Ωc

i :
A(v) = f in Ωc

i

v = 0 on ∂Ωi\Γ
v = α on Γ

The ASM using such exact TBCs is optimal in the sense that it converges in two
iterations, and no other ASM can converge faster [8]. Nevertheless, these TBCs,
in general, are not simple to compute both analytically and numerically. More
specifically, they are nonlocal in time, so they must be approximated for an efficient
numerical implementation [1]. These facts motivate us to look for simpler operators
to use as IBCs in the ASM. We propose them based on the exact TBCs operators
for the equation (1.1), as derived by [3].

2.2. Interface boundary condition operators based on the ex-
act TBCs for the dispersion equation

In [3], TBCs are derived for the one-dimensional continuous linearized KdV equation
(or Airy equation):

ut + U1ux + U2uxxx = h(t, x), t ∈ R+, x ∈ R (2.3)

where U1 ∈ R, U2 ∈ R+
∗ and h is a source term, assumed to be compactly supported

in a finite computational domain [a, b], a < b.
For the homogeneous initial boundary value problem

ut + U1ux + U2uxxx = 0, t ∈ R+, x ∈ [a, b]

u(0, x) = u0(x), x ∈ [a, b]

+boundary conditions

the TBCs are given by [3, equations (2.17)–(2.18)]

u(t, a)− U2L−1

(
λ1(s)

2

s

)
∗ ux(t, a)− U2L−1

(
λ1(s)

s

)
∗ uxx(t, a) = 0 (2.4)

u(t, b)− L−1

(
1

λ1(s)2

)
∗ uxx(t, b) = 0 (2.5)

ux(t, b)− L−1

(
1

λ1(s)

)
∗ uxx(t, b) = 0 (2.6)

where L−1 denotes the inverse Laplace transform, ∗ the convolution operator, s ∈
C, Re(s) > 0, is the Laplace frequency and λ1 is, among the three roots of the cubic
characteristic equation obtained when solving (2.3) in the Laplace domain and in
the complementary set of [a, b], the only one with negative real part.

In this paper, we focus on the special case U1 = 0, U2 = 1, which results on
the dispersion equation (1.1). In this case, accordingly to [12], the only root with
negative real part is

λ(s) = λ1(s) = − 3
√
s. (2.7)
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The computation of the TBCs (2.4) is not simple due to the inverse Laplace
transform, which makes these conditions nonlocal in time. Therefore, we propose
approximations of the root (2.7) that avoid integrations in time, making the oper-
ators considerably simpler.

Obviously, we do not expect these operators to be as accurate as the approx-
imate TBCs proposed by [3] (who derives TBCs for the discrete linearized KdV
equation). Nevertheless, the objectives of our work and the work of [3] are very dif-
ferent: while they seek to minimize the error of the computed solution (compared
to the analytical one) due to the boundary conditions, we want here to apply our
operators as IBCs in a DDM. Therefore, our objective lays on the convergence of
the DDM to the solution of the same problem in the monodomain, independently
of the errors on the external boundaries.

We use the constant polynomial P0(s) = c for approximating λ2/s (which can
be seen as a (0,0) order Pad approximation). Moreover, as a consequence of (2.7),
we can approximate the other operands of the inverse Laplace transforms in (2.4)
only in function of c:

λ2

s
= c,

λ

s
= −c2,

1

λ(s)2
= c2,

1

λ(s)
= −c. (2.8)

Replacing (2.8) in (2.4), using some well-know properties of the Laplace Trans-
form (linearity and convolution) , we get the approximate transparent boundary
conditions

Θc
1(u, x) = u(t, x)− cux(t, x) + c2uxx(t, x) = 0, (2.9)

Θc
2(u, x) = u(t, x)− c2uxx(t, x) = 0, (2.10)

Θc
3(u, x) = ux(t, x) + cuxx(t, x) = 0. (2.11)

We notice that the approximation (2.9) has the same form as the exact TBCs for
the equation (1.1) presented in [12] and [3], being the constant c an approximation
for fractional integral operators.

We also remark that (2.9) are mixed-type boundary conditions (up to the second
derivative of the solution), which, in the next section, we apply as IBCs in a DDM
and we seek to optimize in order to accelerate the convergence of this method. The
idea of using optimized boundary conditions in DDMs was already explored in [7]
and [4], in the context of the Schrdinger equation.

Considering a discrete domain with mesh size ∆x and points x0, ..., xN and using
some finite difference approximations, the operators (2.9) are discretized as

u0 − c
u1 − u0

∆x
+ c2

u0 − 2u1 + u2

∆x2
= 0, (2.12)

uN − c2
uN − 2uN−1 + uN−2

∆x2
= 0, (2.13)

uN − uN−1

∆x
+ c

uN − 2uN−1 + uN−2

∆x2
= 0. (2.14)

2.3. ASM with the proposed IBCs

With the operators Θc
i defined, we now apply them in a DDM, with two non-

overlapping subdomains Ω1 = [a, 0] and Ω2 = [0, b], a < 0 < b and interface
Γ = Ω1 ∩ Ω2.
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Considering that we want to analyze and minimize the error due to the appli-
cation of a DDM (isolating it from the error acumulated along the time steps, due
to the temporal discretization), the reference solution uref in our study is the solu-
tion of the monodomain problem (2.1) solved along onte time step (equation 2.15).
Therefore, we implement a DDM to an evolution problem discretized in time (thus
consisting in an ODE in space), an idea already explored by [5].

u(t0+∆t)−u(t0)
∆t + uxxx = 0, x ∈ Ω

u(t0, x) = uexact(t0, x), x ∈ Ω

Υ1(u(t0 +∆t), a) = 0

Υ2(u(t0 +∆t), b) = 0

Υ3(u(t0 +∆t), b) = 0

(2.15)

The external BCs Υi, i = 1, 2, 3 (i.e., defined on ∂Ωi\Γ) are independent of
the interface BCs. Here, we consider Υ1 = Θc=1.0

1 , Υ2 = Θc=0.0
2 and Υ3 = Θc=0.0

3 ,
which gives

Υ1(u, x) = u− ux + uxx = 0,

Υ2(u, x) = u = 0,

Υ3(u, x) = ux = 0.

This choice was based on the simple form and implementation of these boundary
conditions. Nevertheless, it does not have much importance in the study done here,
as we want to analyze exclusively the behavior of the DDM. The only restriction for
an appropriate study is that the external BCs for computing uref must be the same
Υi, i = 1, 2, 3, used for each subdomain in the DDM, as we do in (2.16)-(2.17) and
(2.15).

The resolution of the problem (2.15) by the Additive Schwarz method and using
the IBCs (2.12) is written as

uk+1
1 (t0+∆t)−uk+1

1 (t0)
∆t + (uk+1

1 )xxx(t0 +∆t) = 0, x ∈ Ω1

u0
1(t0) = uexact(t0, x), x ∈ Ω1

Υc
1(u

k+1
1 (t0 +∆t), a) = 0,

Θc
2(u

k+1
1 (t0 +∆t), 0) = Θc

2(u
k
2(t0 +∆t), 0),

Θc
3(u

k+1
1 (t0 +∆t), 0) = Θc

3(u
k
2(t0 +∆t), 0)

(2.16)



uk+1
2 (t0+∆t)−uk+1

2 (t0)
∆t + (uk+1

2 )xxx(t0 +∆t) = 0, x ∈ Ω2

u0
2(t0) = uexact(t0, x), x ∈ Ω2

Θc
1(u

k+1
2 (t0 +∆t), 0) = Θc

1(u
k
1(t0 +∆t), 0)

Υc
2(u

k+1
2 (t0 +∆t), b) = 0

Υc
3(u

k+1
2 (t0 +∆t), b) = 0

(2.17)

A simple analysis (for example in the Laplace domain) shows that the mon-
odomain and DDM problems (2.15) and (2.16)-(2.17) have an unique solution.

We also remark that our proposed DDM can be used for solving the problem
(2.1), i.e., in a time window containing multiple time steps, by solving (2.16)-(2.17)
in each time step, with the converged solution of the previous time step as initial
data.
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Remark 2.1. In the following study of our proposed DDM, where we perform a
spatial discretization, we introduce an extra subindex, so the solution is denoted as
uk
i,j , where i indicates the subdomain Ωi (or, in the case of the reference solution,

i = ref , and in the convergence of the method, i = ∗), j indicates the spatial
discrete position and k indicates the iteration.

2.4. Spatial discretization of the problem

Concerning the spatial discretization, the monodomain Ω is divided in 2N + 1
homogeneously distributed points, numbered from 0 to 2N . In all the analytical
description, we consider that the two subdomains Ω1 and Ω2 have the same number
of points, respectively x0, ..., xN and xN , ..., x2N . The interface point xN is common
to the two domains, having different computed solutions uk

1,N and uk
2,N in each one

of them. Evidently, we expect, at the convergence of the method, that u∞
1,N =

u∞
2,N = u∗

N .
An implicit Finite Difference scheme is used here. For the interior points of each

one of the domains, we consider a second order discretization for the third spatial
derivative in equation (1.1):

uk+1
i,j − αi,j

∆t
+

−1
2u

k+1
i,j−2 + uk+1

i,j−1 − uk+1
i,j+1 +

1
2u

k+1
i,j+2

∆x3
= 0 (2.18)

which is valid for j = 2, ..., N − 2 in the case i = 1; for j = N + 2, ..., 2N − 2 in the
case i = 2; and for j = 2, ..., 2N − 2 in the case i = ref . In the above expression,
αi,j is a given data (for example, the exact or the converged solution in the previous
time step).

For the points near the boundaries, we use second order uncentered discretiza-
tions or the appropriate boundary condition. Considering that one boundary con-
dition is written for the left boundary and two for the right one, we have to impose
an uncentered discretization only for the second leftmost point of the domain. For
example, for the point x1 :

uk+1
1,1 − α1,1

∆t
+

− 5
2u

k+1
1,1 + 9uk+1

1,2 − 12uk+1
1,3 + 7uk+1

1,4 − 3
2u

k+1
1,5

∆x3
= 0

and similarly to the other points near the boundaries.
In the resolution of the problem in Ω1, two IBCs are imposed (corresponding to

Θ2 and Θ3) to the discrete equations for the points xN−1 and xN . On the other
hand, in the resolution of the problem in Ω2, only one interface boundary condition
is used (corresponding to Θ1), being imposed to the point xN .

Remark 2.2. Even if the DDM with the proposed IBCs is compatible with the
monodomain problem (which we will see that is not the case), the solution of the
DDM does not converge exactly to uref , for a reason that does not depend on the
expression of the IBCs, but on the fact that for each domain we write two boundary
conditions in the right boundary and only one on the left boundary. We are using
a second order centered discretization for the third spatial derivative (which uses
a stencil of two points in each side of the central point), implying that we must
write an uncentered discretization for the point xN+1 when solving the problem
in Ω2. Therefore, this point does not satisfy the same discrete equation as in the
reference problem. In order to avoid this incompatibility and allow us to study the
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behavior of the DDM, we will modify the discretization for the point uN+1 in the
monodomain problem, using the same second-order uncentered expression:

uk+1
2,N+1 − α2,N+1

∆t
+

− 5
2u

k+1
2,N+1 + 9uk+1

2,N+2 − 12uk+1
2,N+3 + 7uk+1

2,N+4 −
3
2u

k+1
2,N+5

∆x3
= 0.

Figure 1 resumes the discretizations imposed to each point in the monodomain
and the DDM problems, as described above:

Ω
j = 0 1 2 N − 2 N − 1 N N + 1 N + 2 2N − 2

2N − 1

2N
⋆ ◦ ⋆ ⋆• • • • ◦ • •

Ω1 ⋆ ◦ • • ⊕ ⊕

Ω2 ⊕ ◦ • • ⋆ ⋆

•Centered 2nd order FD ◦Uncentered 2nd order FD

⋆External BC ⊕IBC

Figure 1. Scheme indicating the discretization imposed to each point in the monodomain and the DDM
problems

2.5. Corrections for the approximate IBCs

When using approximate IBCs in a Schwarz method, one should guarantee that
the converged solutions u∗ satisfy the same equation as the solution uref of the
monodomain problem. Nevertheless, one can easily see that, in the convergence,
the solution u∗ does not satisfy the discrete equation (2.18) on the points where the
IBCs are imposed (the poins xN−1, xN ∈ Ω1 and xN ∈ Ω2).

As pointed out by [6], a finite difference discretization of the IBCs requires a
special treatment to be consistent with the monodomain discretization. Therefore,
we will formulate modified IBCs in order to avoid this problem:

Θc
1(u

k+1
2 ) + θ1 = Θc

1(u
k
1) + θ′1 (2.19)

Θc
2(u

k+1
1 ) + θ2 = Θc

2(u
k
2) + θ′2 (2.20)

Θc
3(u

k+1
1 ) + θ3 = Θc

3(u
k
2) + θ′3 (2.21)

with θi, θ
′
i given by

θ1 = ∆xc
uk+1
2,N+1 − 2uk+1

2,N + uk
1,N−1

∆x2
+ c2

∆x

∆t

(
uk+1
2,N − α2,N

)
,

θ′1 = − c2
∆x

∆t

(
uk
1,N − α1,N

)
,

θ2 =
∆x

∆t
c2

(
uk+1
1,N − α1,N

)
,

θ′2 = − ∆x

∆t
c2

(
uk
2,N − α2,N

)
,

θ3 = 2
∆x

∆t

[
−∆x

(
uk+1
1,N−1 − α1,N−1

)
− c

(
uk+1
1,N − α1,N

)]
,

+∆x
uk+1
1,N−3 − 2uk+1

1,N−2 + uk+1
1,N−1

∆x2
,
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θ′3 = 0.

It is straightforward to verify that the DDM problem with these modifications
in the IBCs insure that the converged solution u∗ satisfies, in every point, the same
discrete equations as the solution uref of the monodomain problem (2.15).

In addition, we notice that all the modification terms θi, θ
′
i, i = 1, 2, 3, are of

order O(∆x) (they are composed of discrete versions of time derivatives and second
spatial derivatives multiplied by ∆x). It is essential to insure that these terms are
small, for the consistency with the approximate IBCs Θi to be fulfilled.

3. Numerical tests for optimizing the IBCs (speed
of convergence)

Our objective now is to optimize the IBCs in the sense of minimizing the number
of iterations of our method until the convergence. We perform a very large set of
tests in order to find the coefficient c that provide the fastest convergence. To start
with, we make this study with fixed time step and space step, in order to analyze
exclusively the influence of the coefficient.

As we are interested in the speed with which the solution of the DDM method
converges to the reference solution, the criteria of convergence used is

eΩ,k ≤ ε

with ε = 10−9 and

eΩ,k = ||uref,N − uk
N ||2=

√√√√√∆x

 N∑
j=0

(
uref,j − uk

1,j

)2
+

2N∑
j=N

(
uref,j − uk

2,j

)2.
The range of tested coefficients is [−10.0, 20.0] (chosen after initial tests to iden-

tify a proper interval), with a step equal to 0.1 between them (or even smaller, up
to 0.005, in the regions near the optimal coefficients), and the maximal number of
iterations is set to 100.

3.1. Test varying the initial time step and the interface posi-
tion

As said above, in the first set of tests we consider a fixed time step ∆t = 20/2560 =
0.0078125 and a fixed mesh size ∆x = 12/500 = 0.024. Moreover, we consider two
subsets of tests, in order to study the speed of convergence with different initial
conditions and different sizes of the subdomains:

1. Tests varying the initial time step t0, with the interface in the center of the
monodomain Ω = [−6, 6];

2. Tests varying the position of the interface (xinterface = −a+ α(b− a), where
b = −a = 6 and 0 < α < 1), for a fixed initial time t0 = 0.78125.

In all the cases, the reference solution uref is the solution of the monodomain
problem (2.15).
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The results are summarized in Figure 2, with the number of iterations plotted as
function of the coefficient c (for the positive coefficients). We can see a very similar
behavior of all the curves, with two minima whose position do not depend on t0
and α (approximately, c = 0.20 and c = 4.5). For c < 0, the curves are very similar,
with two minima located at c = −0.10 and c = −1.35, approximately. Moreover,
the minima closest to zero (c = −0.10 and c = 0.20) are both associated with
very discontinuous peaks, while the other two minima are associated with smoother
curves. A detail of the curves around each positive minima are shown in Figures
2(c) - 2(d) and 2(e) - 2(f). Finally, we remark that, for some curves, the minimal
number of iterations is associated with the coefficients closest to zero, and, for other
ones, to the other minimum, but the minimal number of iterations are very similar
(between 5 and 7).

(a) General view (for a fixed interface and differ-
ent values of t0)

(b) General view (for a fixed t0 and different po-
sitions of the interface)

(c) Detail around one of the optimal coefficients
(for a fixed interface and different values of t0)

(d) Detail around the other optimal positive co-
efficient (for a fixed interface and different values
of t0)

(e) Detail around one of the optimal coefficients
(for a fixed t0 and different positions of the in-
terface)

(f) Detail around the other optimal positive co-
efficient (for a fixed t0 and different positions of
the interface)

Figure 2. Number of iterations until the convergence as function of the coefficient of the TBC, in the
case of positive coefficients
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Figure 3 shows the evolution of the error, as function of the iterations, for the
five positive coefficients c that gave the fastest convergences, for a fixed initial
instant and a fixed position of the interface. For other values of t0 and α this graph
is similar, concerning the number of iterations and the fact that the convergence
is more regular for the coefficients closest to zero, compared to the other optimal
coefficients.

Figure 3. Error evolution with the iterations for the fastest results

3.2. Tests varying ∆t and ∆x

After verifying that the method behaves similarly for several initial conditions (i.e.,
for several values of t0) and various positions of the interface, now we keep these
parameters fixed (t0 = 0 and α = 0.5) and make new tests with different values of
∆t (with fixed ∆x = 12/250) and different values of ∆x (with fixed ∆t = 0.02).

The number of iterations as functions of the coefficient, for some of the tests,
are shown in Figure 4, in the case of positive coefficients. The results for negative
coefficients are similar.

Figure 5 presents the optimal positive coefficient for each ∆t or ∆x (for one
fixed value for the other coefficient). Considering the observation we did before
about the similar results (i.e. the number of iterations until the convergence) for
the four optimal coefficients, we only take into account, for the construction of this
curve, the positive minimum farther from zero, because, as shown in Figure 4, these
minima have a strong dependency on ∆t or ∆x, and we seek to study this relation.

Figure 5 suggests a dependence of the optimal coefficient on (∆t)ν and (∆x)η,
with 0 ≤ ν ≤ 1 and η < 0. In fact, performing some regressions with ∆t or ∆x
fixed, we conclude that ν = 2

3 and η = −1 provide really well-fitted regression
curves (with the coefficients of determination R2 bigger than 0.99), both for the
negative and the positive coefficients (although each one of these cases correspond
to different curves). Therefore, we seek to model a function

copt(∆t,∆x) = κ+ α(∆t)
2
3 + β

1

∆x
+ γ

(∆t)
2
3

∆x
.

A regression using the corners of the rectangle [0.001, 0.1] × [12/100, 12/1000]
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(a) Fixed ∆x = 12
250 (b) Fixed ∆t = 0.02

Figure 4. Number of iterations until the convergence as function of the coefficient of the TBC (for
positive coefficients)

(a) Fixed ∆x = 12
250 (b) Fixed ∆t = 0.02

Figure 5. Optimal coefficients as function of the time step and the space step

and fifteen inner points gives the surfaces

c+opt(∆t,∆x) = 0.0775− 0.3353(∆t)
2
3 − 0.0012

1

∆x
+ 2.7407

(∆t)
2
3

∆x
(3.1)

c−opt(∆t,∆x) = −0.0583− 1.5024(∆t)
2
3 − 0.0006

1

∆x
− 0.7287

(∆t)
2
3

∆x
(3.2)

respectively for the positive and the negative optimal coefficients. The coefficients
of determination of each regression are R2,+ = 0.9999894 are R2,− = 0.9998993,
showing an excellent representation.

In order to validate the expressions (3.1) and (3.2), we use them to compute
the optimal coefficients for several points (∆t,∆x), with ∆t ∈ [0.0005, 0.3] and
∆x ∈ [12/5000, 12/50]. For almost all the points in the considered domain, the
computed optimal coefficient provides a fast convergence to the monodomain solu-
tion, with less than 20 iterations, what is also observed in the case of the negative
coefficients. The numbers of iterations observed are not always the smallest ones
that we could find (cf. Figures 2 to 4), because the expressions (3.1) and (3.2) are
regressions constructed from optimal coefficients obtained among a discrete set of
possible values. Nevertheless, they give a very good approximation for the optimal c
for each (∆t,∆x), and one could search around a small region around the computed
copt to obtain an even faster convergence.

The results presented in this section show that the DDM proposed here is able
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to provide a fast convergence toward the solution of the monodomain problem.
Furthermore, using the corrected IBCs (2.19), this convergence is exact. Therefore,
we reached our goals of solving the dispersion equation in a finite domain divided
in two subdomains.

Moreover, the results of the optimization tests are very satisfying regarding a
more general application of our method. Firstly, for fixed spatial and temporal
discretizations, we obtained optimal coefficients for the method independently of
the initial solution and the size of the subdomains (i.e., independently of the initial
instant and the position of the interface). Secondly, we obtained good regression
expressions for the optimal coefficient as function of ∆t and ∆x, which could al-
low the application of the model, with fast convergence, in other computational
frameworks.

4. Conclusion and outlook

We presented and implemented in this paper an additive Schwarz method for the
resolution of an one dimensional dispersive evolution equation, using as interface
conditions between the subdomains some operators constructed based on the exact
transparent boundary conditions for this equation. Although not as accurate (in the
role of TBCs) as the ones proposed in the works we are based on (providing better
TBCs was not our objective here), these approximate conditions stand out for its
simple form and implementation and the fast convergence that they provide for
the Schwarz method. Moreover, we also proposed small corrections to them, which
insure that the solution of the DDM problem converges exactly to the solution
of the monodomain problem. Finally, we verified that the speed of convergence
depends on the time step, the mesh size and the (only) coefficient for constructing
the approximate interface conditions; thus, via an optimization process, we obtained
and validated regression expressions that provide the optimal coefficient (i.e., the
one that provides the fastest convergence) in function of ∆t and ∆x.

Natural continuations of the work presented here would be the study of the
method using more complex operators as IBCs, using for example higher-orders
Pad approximations for λ2/s and considering different approximations for left and
right boundary conditions. Moreover, we can extend this study for other problems,
for instance the linearized KdV equation, which adds an advective term on the
equation solved here, as well as other models of wave propagation. Finally, we can
seek the development of global in time Schwarz methods, using optimized Scwharz
waveform relaxation methods.
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