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Abstract In the present paper, we introduce a linear operator associated
with the Mittag-Leffler function. Some convolution properties of meromorphic
functions involving this operator are given.
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1. Introduction

The familiar Mittag-Leffler function Eα(z) introduced by Mittag-Leffler [5] and its
generalization Eα,β(z) introduced by Wiman [12] are defined by the following series:

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
(z, α ∈ C; <(α) > 0) (1.1)

and

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
(z, α, β ∈ C; <(α) > 0), (1.2)

respectively. These functions are natural extensions of the exponential, hyperbolic
and trigonometric functions, since

E1(z) = E1,1(z) = ez, E2(z2) = E2,1(z2) = cosh z and

E2(−z2) = E2,1(−z2) = cos z.

The above-defined functions Eα(z) and Eα,β(z), as well as their various further
generalizations, arise naturally in the solution of fractional differential equations and
fractional integro-differential equations which are associated with (for example) the
kinetic equation, random walks, Lévy flights, super-diffusive transport problems
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and in the study of complex systems. In particular, the Mittag-Leffler function is
an explicit formula for the resolvent of Riemann-Liouville fractional integrals by
Hille and Tamarkin. Several properties of the Mittag-Leffler functions Eα(z) and
Eα,β(z), together with their generalizations, can be found in a number of recent
works (see [1–3] and [7–11]).

Let Σ(p) denote the class of functions of the form

f(z) = z−p +

∞∑
n=1

an−pz
n−p (p ∈ N = {1, 2, 3, · · · }), (1.3)

which are analytic in the punctured open unit disk

U0 = {z : z ∈ C and 0 < |z| < 1}.

The class Σ(p) is closed under the Hadamard product (or convolution):

(f1 ∗ f2)(z) = z−p +

∞∑
n=1

an−p,1an−p,2z
n−p = (f2 ∗ f1)(z),

where

fj(z) = z−p +

∞∑
n=1

an−p,jz
n−p ∈ Σ(p) (j = 1, 2).

For f ∈ Σ(p), we consider the following operator Tα,β : Σ(p)→ Σ(p) associated
with the Mittag-Leffler function:

Tα,βf(z) =
(
Γ(β)z−pEα,β(z)

)
∗ f(z)

= z−p +

∞∑
n=1

Γ(β)

Γ(αn+ β)
an−pz

n−p, (1.4)

where z, α, β ∈ C and <(α) > 0.
Let P be the class of functions h with h(0) = 1, which are analytic and convex

univalent in the open unit disk U = U0 ∪ {0}.
For functions f and g analytic in U, we say that f is subordinate to g, written

f ≺ g, if g is univalent in U, f(0) = g(0) and f(U) ⊂ g(U).
Now we introduce the following new subclass of Σ(p).

Definition 1.1. A function f ∈ Σ(p) is said to be in the class Mα,β(λ;h) if it
satisfies the second order differential subordination:

λ− 1

p
zp+1 (Tα,βf(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,βf(z))

′′ ≺ h(z), (1.5)

where λ, α, β ∈ C, Re(α) > 0 and h ∈ P.

Let A be the class of functions of the form:

f(z) = z +

∞∑
n=2

anz
n, (1.6)

which are analytic in U. A function f ∈ A is said to be in the class S∗(γ) if

<
(
zf ′(z)

f(z)

)
> γ (z ∈ U) (1.7)
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for some γ (γ < 1). When 0 5 γ < 1, S∗(γ) is the class of starlike functions of
order γ in U. A function f ∈ A is said to be prestarlike of order γ in U if

z

(1− z)2(1−γ)
∗ f(z) ∈ S∗(γ) (γ < 1). (1.8)

We denote this class by R(γ) (see [6]). It is obvious that a function f ∈ A is in the
class R(0) if and only if f is convex univalent in U and R

(
1
2

)
= S∗

(
1
2

)
.

The study of the Mittag-Leffler functions Eα(z) and Eα,β(z) is a recent in-
teresting topic in geometric function theory. In the present paper we shall make
a further contribution to the subject by showing some convolution properties for
meromorphic functions involving the Mittag-Leffler functions.

The following lemmas will be used in our investigation.

Lemma 1.1 ( [6]). Let γ < 1, f ∈ S∗(γ) and g ∈ R(γ). Then, for analytic function
F in U,

g ∗ (fF )

g ∗ f
(U) ⊂ co(F (U)),

where co(F (U)) denotes the closed convex hull of F (U).

Lemma 1.2 ( [4]). Let g(z) = 1 +
∑∞
n=m bnz

n (m ∈ N) be analytic in U. If
<(g(z)) > 0 (z ∈ U), then

< (g(z)) =
1− |z|m

1 + |z|m
(z ∈ U).

2. Hadamard product properties

In this section we shall derive several Hadamard product properties for functions in
the class Mα,β(λ;h).

Theorem 2.1. Let f ∈ Mα,β(λ;h), g ∈ Σ(p) and < (zpg(z)) > 1
2 (z ∈ U). Then

f ∗ g ∈Mα,β(λ;h).

Proof. For f ∈Mα,β(λ;h) and g ∈ Σ(p), we have

λ− 1

p
zp+1 (Tα,β(f ∗ g)(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,β(f ∗ g)(z))

′′

=
λ− 1

p
(zpg(z)) ∗

(
zp+1(Tα,βf(z))′

)
+

λ

p(p+ 1)
(zpg(z)) ∗

(
zp+2(Tα,βf(z))′′

)
= (zpg(z)) ∗ ψ(z), (2.1)

where

ψ(z) =
λ− 1

p
zp+1 (Tα,βf(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,βf(z))

′′ ≺ h(z). (2.2)

In view of the conditions of Theorem 2.1, the function zpg(z) has the Herglotz
representation:

zpg(z) =

∫
|x|=1

dµ(x)

1− xz
(z ∈ U), (2.3)
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where µ(x) is a probability measure defined on the unit circle |x| = 1 and∫
|x|=1

dµ(x) = 1. Since the function h is convex univalent in U, it follows from (2.1)

to (2.3) that

λ− 1

p
zp+1 (Tα,β(f ∗ g)(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,β(f ∗ g)(z))

′′

=

∫
|x|=1

ψ(xz)dµ(x) ≺ h(z).

This shows that f ∗ g ∈Mα,β(λ;h). The proof of Theorem 2.1 is completed.

Theorem 2.2. Let f ∈ Mα,β(λ;h), g ∈ Σ(p) and zp+1g(z) ∈ R(γ) (γ < 1). Then
f ∗ g ∈Mα,β(λ;h).

Proof. From (2.1) we can write

λ− 1

p
zp+1 (Tα,β(f ∗ g)(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,β(f ∗ g)(z))

′′

=

(
zp+1g(z)

)
∗ (zψ(z))

(zp+1g(z)) ∗ z
, (2.4)

where the function ψ is defined as in (2.2).
Since the function h is convex univalent in U,

ψ(z) ≺ h(z), zp+1g(z) ∈ R(γ) and z ∈ S∗(γ) (γ < 1),

from (2.4) and Lemma 1.1, we obtain the desired result. The proof of Theorem 2.2
is completed.

Taking γ = 0 and γ = 1
2 in Theorem 2.2, we have the following consequence.

Corollary 2.1. Let f ∈Mα,β(λ;h). Also let g ∈ Σ(p) satisfy either of the following
conditions:

(i) zp+1g(z) is convex univalent in U
or

(ii) zp+1g(z) ∈ S∗
(
1
2

)
.

Then f ∗ g ∈Mα,β(λ;h).

Theorem 2.3. Let λ 5 0 and

fj(z) = z−p +

∞∑
n=1

an−p,jz
n−p ∈Mα,β(λ;hj) (j = 1, 2), (2.5)

where

hj(z) =
1 +Ajz

1 +Bjz
and − 1 5 Bj < Aj 5 1. (2.6)

If f ∈ Σ(p) is defined by

(Tα,βf(z))
′

= −1

p

(
(Tα,βf1(z))

′ ∗ (Tα,βf2(z))
′)
, (2.7)

then f ∈Mα,β(λ;h), where

h(z) = γ + (1− γ)
1 + z

1− z
(2.8)
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and γ is given by

γ =

1− 4(A1−B1)(A2−B2)
(1−B1)(1−B2)

(
1 + p+1

λ

∫ 1

0
u− p+1

λ
−1

1+u du

)
(λ < 0)

1− 2(A1−B1)(A2−B2)
(1−B1)(1−B2)

(λ = 0).

(2.9)

The bound γ is sharp when B1 = B2 = −1.

Proof. We consider the case when λ < 0. By setting

Hj(z) =
λ− 1

p
zp+1 (Tα,βfj(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,βfj(z))

′′
(j = 1, 2)

for fj (j = 1, 2) given by (2.5), we find that

Hj(z) = 1 +

∞∑
n=1

bn,jz
n ≺ 1 +Ajz

1 +Bjz
(j = 1, 2) (2.10)

and

(Tα,βfj(z))
′

=
p(p+ 1)

λ
z

(1−λ)(p+1)
λ

∫ z

0

t−
p+1
λ −1Hj(t)dt (j = 1, 2). (2.11)

Now, if f ∈ Σ(p) is defined by (2.7), we find from (2.11) that

(Tα,βf(z))
′

= −1

p

(
(Tα,βf1(z))

′ ∗ (Tα,βf2(z))
′)

= −1

p

(
p(p+ 1)

λ
z−p−1

∫ 1

0

u−
p+1
λ −1H1(uz)du

)
∗
(
p(p+ 1)

λ
z−p−1

∫ 1

0

u−
p+1
λ −1H2(uz)du

)
=
p(p+ 1)

λ
z−p−1

∫ 1

0

u−
p+1
λ −1H(uz)du, (2.12)

where

H(z) = −p+ 1

λ

∫ 1

0

u−
p+1
λ −1(H1 ∗H2)(uz)du. (2.13)

Also, by using (2.10) and the Herglotz theorem, we see that

<
{(

H1(z)− γ1
1− γ1

)
∗
(

1

2
+
H2(z)− γ2
2(1− γ2)

)}
> 0 (z ∈ U),

which leads to

<{(H1 ∗H2)(z)} > γ0 = 1− 2(1− γ1)(1− γ2) (z ∈ U),

where

0 5 γj =
1−Aj
1−Bj

< 1 (j = 1, 2).

According to Lemma 1.2, we have

<{(H1 ∗H2)(z)} = γ0 + (1− γ0)
1− |z|
1 + |z|

(z ∈ U). (2.14)
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Now it follows from (2.12) to (2.14) that

<
{
λ− 1

p
zp+1 (Tα,βf(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,βf(z))

′′
}

= <{H(z)}

= −p+ 1

λ

∫ 1

0

u−
p+1
λ −1<{(H1 ∗H2)(uz)}du

= −p+ 1

λ

∫ 1

0

u−
p+1
λ −1

(
γ0 + (1− γ0)

1− u|z|
1 + u|z|

)
du

> γ0 −
(p+ 1)(1− γ0)

λ

∫ 1

0

u−
p+1
λ −1

1− u
1 + u

du

= 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

(
1 +

p+ 1

λ

∫ 1

0

u−
p+1
λ −1

1 + u
du

)
= γ,

which proves that f ∈Mα,β(λ;h) for the function h given by (2.8).

When B1 = B2 = −1, we consider the functions fj (j = 1, 2) defined by

(Tα,βfj(z))
′

=
p(p+ 1)

λ
z

(1−λ)(p+1)
λ

∫ z

0

t−
p+1
λ −1

1 +Ajt

1− t
dt (j = 1, 2), (2.15)

for which we have

Hj(z) =
λ− 1

p
zp+1 (Tα,βfj(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,βfj(z))

′′

=
1 +Ajz

1− z
(j = 1, 2)

and

(H1 ∗H2)(z) =
1 +A1z

1− z
∗ 1 +A2z

1− z

= 1− (1 +A1)(1 +A2) +
(1 +A1)(1 +A2)

1− z
.

Hence, for the function f given by (2.7), we have

λ− 1

p
zp+1 (Tα,βf(z))

′
+

λ

p(p+ 1)
zp+2 (Tα,βf(z))

′′

=− p+ 1

λ

∫ 1

0

u−
p+1
λ −1

(
1− (1 +A1)(1 +A2) +

(1 +A1)(1 +A2)

1− uz

)
du

→1− (1 +A1)(1 +A2)

(
1 +

p+ 1

λ

∫ 1

0

u−
p+1
λ −1

1 + u
du

)

as z → −1.

Finally, for the case when λ = 0, the proof of Theorem 2.3 is simple, and we
choose to omit the details involved. Now the proof of Theorem 2.3 is completed.
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[11] H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator
containing a generalized Mittag-Leffler function in the kernal, Appl. Math.
Comput., 2009, 211, 198–210.
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