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1. INTRODUCTION

In recent years optimization of inventory control strategies in order to reach higher
profit margins has received considerable attention in the literature. The pioneering
work by Arrow, Harris and Marschak [1] established the optimality of the Base-
Stock policy for both the deterministic and stochastic cases, and in addition proved
the optimality of the (s, S) policy when fixed cost is associated with replenishment
(see also [19] where the optimality of the (s, S) policy is shown using a K-convexity
type argument).

Numerous extensions have been added to the original works [1], [19], to in-
clude more complex models and different business applications (see, e.g.,the papers
by Veinott [24] and Caplin [10]). Also, new methods of proving optimality have
emerged (we refer the interested reader to the papers by Sawaki and Sato [18], Be-
noussan, Liu and Sethi [6], Presman and Sethi [17], and Benkherouf [2], and the
references therein).

Models with dynamic pricing were also considered. We see from [14] that com-
bining the two normally separate fields of pricing optimization and inventory control
can have a positive effect on the profit margins. In particular, the authors show
in [14] that the optimal strategy to the case of no fixed cost follows a Base Stock List
Price policy, originally coined by [16], for both the finite and infinite horizon cases.
In the case of fixed cost the work by Chen and Simchi-Levi [11], [12] proves that the
optimal strategy follows an (s, S, p) format for both the finite and the infinite hori-
zon cases. They also prove that this strategy is optimal when the continuous review
model is applied (i.e., when the inventory is monitored continuously, see [13]).

In this paper we address the problem of inventory control, with simultaneous
pricing optimization in continuous time. This paper can be compared with the
major contributions of Chen and Simchi-Levi [11], however, in this work we consider
a continuous time model, whereas [11] considers the discrete time case.

For convenience we briefly describe the results for both the fixed cost and no
fixed cost cases. With no fixed cost, the optimal policy is the Base Stock-List Price
(BSLP) policy, in which one orders when the inventory is below the threshold S
(Base Stock) up to S. It is complemented by a pricing policy, which is constant
(optimal price) when the inventory is below S, and depends on the inventory level
when the inventory is above S. In that case, the price is a decreasing function of
the inventory, hence a rebate is granted to reduce the stock to its optimal level S.
When fixed cost is inserted, the base stock is replaced by an (s, S) policy, where
replenishment occurs when the inventory is below s, to reach S. When price is
incorporated as a control variable, then [11] shows that the (s, S) policy still holds
and is complemented by a pricing policy depending on the inventory, which they
write as the triplet (s, S, p). In this paper we obtain a similar result in continuous
time for the infinite horizon case, however the methodology used to obtain these re-
sults differ from that of [11]. We apply quasi variational inequalities (QVIs), see [7]
as a general reference on QVI’s, and use similar methodology to obtain an optimal
policy as in [8], where the no fixed cost case was considered in continuous time.
By using the QVIs framework we construct a second order, nonlinear two point
boundary value problem on a semi-infinite interval with a moving (unknown) left
boundary, and in which a singularity at infinity occurs. We establish the existence
of a unique solution to the boundary value problem leading to the solution triplet
(s, S, p) constituting the optimal strategy for the inventory control problem. Ob-
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taining good numerical approximations for the solution triplet (s, S, p) is essential
for application purposes. To avoid numerical difficulties caused by the singularity
at infinity we consider regularizations (the so called associated epsilon problems)
of the boundary value problem and obtain approximations for (s, S, p) by solving
the associated regularized problems for decreasing epsilon values. As an important
byproduct we are able to inspect the properties of the pricing policy as a function of
the inventory. In particular, we show that the rebate property still holds when the
inventory is larger than S, whereas the price increases for inventory values below S.

2. GENERAL PRESENTATION OF THEMODEL

2.1. MODEL AND ASSUMPTIONS

The model is the same as in our previous paper, except, of course the structure of
costs and the type of policy. We consider a probability space (Ω,A, P ) on which
there exists a standard Wiener process w(t) and we call F t= σ(w(s), s ≤ t). The
demand rate is described by

dD(t) = ν(ϖ(t))dt+ σdw(t) (2.1)

in which σ is the standard deviation of the random part. The average rate per unit
of time depends on the decision ϖ(t), which is the price. It is a control variable,
depending on the information. We assume full information on the past and present
time. Therefore ϖ(t) is a stochastic process adapted to the filtration F t, which is
positive. The function ϖ → ν(ϖ) is defined from R+to R+ and satisfies natural
assumptions for a demand function. More specifically, we assume

ϖ → ν(ϖ) is decreasing, ν(0) = +∞, ν(+∞) = 0, (2.2)

ϖ → ϖν(ϖ) is decreasing, ϖν(ϖ)|ϖ=0 = +∞, ϖν(ϖ)|ϖ=+∞ = 0. (2.3)

The second condition expresses the fact, that not only the demand decreases
with price, but also the sales. We next assume that

ϖ → ν(ϖ) is continuously differentiable, (2.4)

ϖ +
ν(ϖ)

ν′(ϖ)
is monotone increasing, takes the value 0 at 0 and the value +∞ at +∞.

As a template of function ν(ϖ) we shall use

ν(ϖ) =
1

ϖγ+1
, γ > 0, (2.5)

for which

ϖ +
ν(ϖ)

ν′(ϖ)
=

γ

γ + 1
ϖ.

Besides the price ϖ(t) there is a second control called V . It is an impulse con-
trol, consisting on an increasing sequence of stopping times θi, with respect to the
filtration F t, and positive random variables ξi which are Fθi measurable. We write

V = (· · · , θi, ξi, · · · ). (2.6)
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The stopping time θi represents the i
th ordering time and ξi the corresponding order

amount. The state of the dynamic system x(t) is the inventory level at time t . Its
evolution is driven by the following equation

dx = −ν(ϖ(t))dt+
∑
i

ξiδ(t− θi)− σdw(t), (2.7)

x(0) = x,

where δ(t) represents the Dirac measure at 0. The inventory jumps at time θi from
the value x(θi − 0) to x(θi) = x(θi − 0) + ξi. So we can also write the piecewise
evolution

dx = −ν(ϖ(t))dt− σdw(t), θi < t < θi+1, (2.8)

x(θi) = x(θi − 0) + ξi.

2.2. THE VALUE FUNCTION

The initial value of the state is a parameter, denoted by x. We define the profit of
the policy ϖ(t), V by

Jx(ϖ(.), V ) =E

[ˆ +∞

0

exp(−αt)
(
(ϖ(t)ν(ϖ(t))− hx+(t)− px−(t))dt

)]
(2.9)

− E

[
+∞∑
i=1

(k + cξi) exp(−αθi)

]
.

This expression is easy to figure out: per unit of time at time t, ϖ(t)ν(ϖ(t)) rep-
resents the sales, hx+(t) the holding cost,px−(t) the shortage cost . The ordering
costs occur at the ordering times θi and is composed of a fixed cost k and a variable
cost c per unit amount ordered . The parameter α is the discount factor. A control
is admissible if

E

[ˆ +∞

0

exp(−αt)ϖ(t)ν(ϖ(t)dt

]
< +∞. (2.10)

This limitation is necessary to define the profit (2.9) without ambiguity. We accept
the value −∞, which of course cannot be optimal. Admissible controls exist of
course. For example take ϖ(t) = ϖ0. We next define the value function by

u(x) = sup
ϖ(.),V

Jx(ϖ(.), V ). (2.11)

The sup is taken over the set of admissible controls. This will be implicit from now
on.

2.3. PROPERTIES OF THE VALUE FUNCTION

We state the

Proposition 2.1. Assume (2.4), then u(x) is increasing.

Proof. To simplify the proof, we assume that there exists for any x an optimal
policy ϖ̂x(.), V̂x such that

u(x) = Jx(ϖ̂x(.), V̂x).
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We call x̂x(t) the corresponding optimal trajectory, with initial state x. We shall
write ϖ̂(.), V̂ to simplify notation. We define for any t , ϖ(t) > 0 by the condition

ν(ϖ(t))− ν(ϖ̂(t)) = 1.

The price ϖ(t) is uniquely defined from the assumptions on the function ν(.) and
by the fact that ϖ(t) < ϖ̂(t). We next consider a policy ϖ̃(.), Ṽ defined by

Ṽ = V̂ ; ϖ̃(t) =

ϖ(t), 0 < t < ϵ,

ϖ̂(t), t > ϵ.

We consider the state x̃(t) corresponding to the policy ϖ̃(.), Ṽ and the initial state
x̃(0) = x+ ϵ. We see easily that

x̃(t) = x̂(t) + ϵ− t, 0 < t < ϵ,

x̃(t) = x̂(t), t ≥ ϵ.

Therefore

Jx+ϵ(ϖ̃(.), Ṽ )− Jx(ϖ̂(.), V̂ )

=E

[ˆ ϵ

0

exp(−αt)[ϖ(t)ν(ϖ(t))−ϖ̂(t)ν(ϖ̂(t))−h(x̃+(t)−x̂+(t))−p(x̃−(t)−x̂−(t))]dt

]
=E

[ˆ ϵ

0

exp(−αt)[ϖ(t)ν(ϖ(t))−ϖ̂(t)ν(ϖ̂(t))−h(x̃(t)−x̂(t))−(p+h)(x̃−(t)−x̂−(t))]dt

]
.

Since x̃(t) > x̂(t) we have x̃−(t) − x̂−(t) < 0. Also ϖ(t)ν(ϖ(t)) > ϖ̂(t)ν(ϖ̂(t)).
Therefore

Jx+ϵ(ϖ̃(.), Ṽ )− Jx(ϖ̂(.), V̂ ) ≥− hE

[ˆ ϵ

0

exp−αt(x̃(t)− x̂(t))dt

]
=− h

ˆ ϵ

0

exp−αt(ϵ− t)dt ≥ −h
ϵ2

2

which implies

u(x+ ϵ)− u(x) ≥ −h
ϵ2

2
.

It follows that u(x) is monotone increasing.

3. DYNAMIC PROGRAMMING

3.1. OPTIMALITY PRINCIPLE

Following the standard methodology of Dynamic Programming and optimality prin-
ciple, we consider the consequence of not ordering on a small interval of time (0, ϵ)
and fixing during this period the price at the level ϖ. After ϵ, we apply the optimal
ordering and pricing policy corresponding to the state attained at time ϵ, which
is x − ν(ϖ)ϵ − σw(ϵ). Noting that the profit during the interval of time (0, ϵ) is
approximately ϵ(ϖν(ϖ)− hx+ − px−), we can write the inequality

u(x) ≥ ϵ(ϖν(ϖ)− hx+ − px−)

+ (1− αϵ)Eu(x− ν(ϖ)ϵ− σw(ϵ)).
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Assuming that u(x) is smooth, and expanding on ϵ, we obtain the differential in-
equality

−1

2
σ2u′′ + αu+ (u′ −ϖ)ν(ϖ) + hx+ + px− ≥ 0,

and since ϖ is an arbitrary positive number we can summarize all these inequalities
for any ϖ ≥ 0, by a single one

−1

2
σ2u′′ + αu+ min

ϖ≥0
[(u′ −ϖ)ν(ϖ)] + hx+ + px− ≥ 0.

If we consider now the consequences of ordering at time 0, an amount ξ > 0, we
can write

u(x) ≥ u(x+ ξ)− cξ − k, ∀ξ > 0,

and since ξ is arbitrary

u(x) ≥ sup
ξ>0

(u(x+ ξ)− cξ)− k.

3.2. FUNCTION Φ(λ)

We next introduce the function

Φ(λ) = min
ϖ≥0

[(λ−ϖ)ν(ϖ)]. (3.1)

We have proved in our previous paper, the following properties of the function
Φ(λ).The function Φ(λ) is monotone increasing, concave, continuously differen-
tiable, and satisfies

Φ(λ) = −∞, if λ ≤ 0, (3.2)

−∞ < Φ(λ) < 0, if λ > 0,

Φ(+∞) = 0.

Moreover, if λ > 0, the minimum ϖ̂=ϖ̂(λ) is uniquely defined. It is a monotone
increasing function of λ and ϖ̂(0) = 0, ϖ̂(+∞) = +∞. We also assume

ν(ϖ) ≥ 0, 2− νν

(ν′)2
(ϖ) ≥ c0 > 0, ∀ϖ ≥ 0. (3.3)

Noting that since ϖ̂(λ) is solution of

λ− ϖ̂ − ν(ϖ̂)

ν′(ϖ̂)
= 0,

we have by differentiation

1 = ϖ̂′(λ)[2− νν′′

(ν′)2
(ϖ̂(λ))], λ > 0.

We get imediately 1
2≤ ϖ̂′(λ) ≤ 1

c0
. So ϖ̂(λ) is C1 on [0,+∞) with bounded

derivative. In our template (2.5) we have additionally that ϖ̂(λ) =
γ + 1

γ
λ,Φ(λ) =

− γγ

(γ + 1)γ+1

1

λγ
, and c0 =

γ

γ + 1
.
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3.3. QUASI VARIATIONAL INEQUALITY

As we have done in the case without fixed cost, we associate to Dynamic Program-
ming an analytic problem, which is a Q.V.I. The solution is a function u(x), which
is C1, has bounded derivatives, and is a.e. twice differentiable. Eventually, it will
be the value function, given by (2.11) , but at this stage it is introduced by itself,
with no interpretation. This is why we use the same notation u(x). The problem
is the following

−1

2
σ2u′′ + αu+Φ(u′) + hx+ + px− ≥ 0, a.e. x,

u(x) ≥ M̄(u)(x), ∀x ≥ 0, (3.4)

(u(x)− M̄(u)(x))

(
−1

2
σ2u′′ + αu+Φ(u′) + hx+ + px−

)
= 0, a.e. x,

in which we have introduced the operator

M̄(u)(x) = sup
ξ≥0

(u(x+ ξ)− cξ)− k, (3.5)

which we call the Bellman Q.V.I. of problem (2.11). We also look for a solution
such that

u′(x) > 0, (3.6)

which corresponds to the property of the value function, see Proposition 2.1, but
also to the fact that the function Φ(λ) is finite only when λ > 0.

3.4. TRANSFORMATIONS

We first begin with a simple transformation, setting G(x) = u(x) − cx. We obtain
immediately

−1

2
σ2G′′ + αG+Φ(G′ + c) + (h+ αc)x+ + (p− αc)x− ≥ 0, a.e. x,

G(x) ≥ M(G)(x), (3.7)

(G(x)−M(G)(x))

(
−1

2
σ2G+ αG+Φ(G′ + c) + (h+ αc)x+ + (p− αc)x−

)
= 0,

a.e. x,

in which we have set

M(G)(x) = −k + sup
y≥x

G(y). (3.8)

We also have from (3.6)
G′(x) + c > 0. (3.9)

We look for a solution of (3.7) as follows: Find s, and Gs(x) such that

− 1

2
σ2Gs(x)+αGs(x)+Φ(G′

s(x)+ c)+(h+αc)x++(p−αc)x− = 0, x > s, (3.10)

G′
s(s) = 0, G′

s(x) is bounded.
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For fixed s,this is a second order differential equation on (s,+∞), with two-
point boundary conditions, of Neumann type ( the derivative is given at s, and the
boundedness acts as a condition at ∞). We then define s,by adding a condition,
namely,

Gs(s) = M(Gs)(s), (3.11)

and setting Gs(x) = Gs(s), for x < s, we get a C1 function on R. It is C2 except at
s, in which Gs(x) has left and right limits. We need to find a function Gs(x), such
that

G′
s(x) + c > 0. (3.12)

How does this problem (3.10), (3.11), (3.12) solves the original problem (3.7). Of
course we define G(x) = Gs(x). We note that the complentarity slackness condition
is satisfied. The first inequality is satisfied when x > s ( it is an equality) , and
the second inequality is satisfied when x < s ( it is also an equality). Therefore we
need to check that the solution of (3.10) satisfies Gs(x) ≥ M(Gs)(x), ∀x > s. In
that case the second condition in (3.7) is satisfied. There remains to satisfy the first
inequality, when x < s. Since for x < s, we have G(x) = Gs(x) = Gs(s), we get

− 1

2
σ2G(x) + αG(x) + Φ(G′(x) + c) + (h+ αc)x+ + (p− αc)x−

=αGs(s) + Φ(c) + (h+ αc)x+ + (p− αc)x−,

so we must have αGs(s)+Φ(c)+ (h+αc)x++(p−αc)x− ≥ 0 for x < s. If we have
s < 0, this condition will mean

αGs(s) + Φ(c)− s(p− αc) > 0.

So, if the pair made of s and the function Gs(x) solution of (3.10) satisfies also
(3.11) , (3.12), and

Gs(x) ≥ M(Gs)(x), ∀x > s, (3.13)

s < 0, αGs(s) + Φ(c)− s(p− αc) > 0,

then the function G(x) = Gs(x), x ≥ s, G(x) = Gs(s), x ≤ s, is solution of the
Q.V.I. (3.7).

4. SOLUTION OF THE INVENTORY CONTROL
AND PRICING PROBLEM.

4.1. PRICING FEEDBACK.

Suppose we find a pair s < 0 Gs(x), satisfying (3.6), (3.11), (3.12), (3.13). We
set Hs(x) = G′

s(x). We shall give below estimates on H ′
s(x) and prove that it is

bounded as x → +∞. In fact, formally H ′
s(+∞) = 0, since Hs(+∞) + c = 0. Also

Hs(x) is bounded. In fact we shall have

− c− h

α
< Hs(x) ≤ −c+

p

α
. (4.1)

The fact that Hs(x) + c → 0, as x → +∞ can be seen by contradiction. Otherwise
Φ(Hs(x)+c) remains bounded as x → +∞. But then, considering (3.10) as a linear
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equation, in which Φ(Hs(x)+ c) is given, we would have Hs(x) → −c− h

α
and then

Φ(Hs(+∞) + c) = −∞, which would be a contradiction.

We next define the feedback ( it will be the optimal pricing feedback)

π̂(x) = ϖ̂(Hs(x) + c), x ≥ s, (4.2)

π̂(x) = ϖ̂(c), x ≤ s.

It takes the value 0, when x = +∞. Moreover

π̂′(x) = ϖ̂′(Hs(x) + c))H ′
s(x).

Therefore, from the property ϖ̂′(λ) bounded, see Section 3.2, the feedback π̂(x) is
C1, and has bounded derivative. From (4.2) we can also state that π̂(x) is bounded
and away from 0, on compact sets of the argument x.

We shall also show that Hs(x) > 0, for x close to s, larger than s. Since
Hs(+∞) = −c, and Hs(x) is continuous, there will exist S(s) > s, such that
Hs(S) = 0. We shall see that S(s) is uniquely defined, but at this stage, it is suffi-
cient to define S(s) as the smallest value > s, such that Hs(S) = 0. The pair s, S
will form the s, S policy defining the inventory control.

4.2. INVENTORY ORDERING POLICY

To define the optimal inventory policy, we consider the function ν(π̂(x)). From the
considerations of the previous section, we can claim that it is C1 bounded with
bounded derivatives on compact sets. We solve the stochastic differential equation
with impulses

dx̂(t) + ν(π̂(x̂))dt+ σdw(t) = 0, τ̂i < t < τ̂i+1, · · · (4.3)

x̂(τ̂i) = S, if, i ≥ 1,

τ̂0 = 0, x̂(0) = x,

τ̂i = inf{t > τ̂i−1|x̂(t) = s}, i = 1, · · · .

In the next section we shall solve (4.3) piecewise. We set next

ϖ̂x(t) = π̂(x̂(t)). (4.4)

Then this is the optimal joint inventory and pricing policy. The process x̂(t) is the
optimal inventory.When the inventory is lower than s, we use the price π̂(s) = ϖ̂(c).
But then we jump immediately to S, by putting an order. The stock becomes S,
and as long as the inventory is above s, we use the pricing π̂(x̂(t)). So we have
the analogue of the s, S, p policy in discrete time. The feedback π̂(x) captures the
pricing policy p. We shall study its properties below.

4.3. VERIFICATION THEOREM

In this section, we provide a verification theorem to check that the policy defined
above is indeed optimal. We first study the stochastic equation (4.3). We have the



814 A. Bensoussan, S. Skaaning & J. Turi

Proposition 4.1. Assume (2.2), (2.3), (2.4) and (3.3). Then there exists one and
only one solution of (4.3) such that

E

[
sup

0≤t≤T
|x̂(t)|2

]
< c0 max(S2, x2) + c1T, ∀T. (4.5)

Proof. To simplify notation, we set y(t) = x̂(t) , τi = τ̂i and a(x) = ν(π̂(x)). So
we have

dy + a(y)dt+ σdw(t) = 0, (4.6)

y(τi) = S, i ≥ 1,

y(0) = x.

τi = inf{t > τi−1|y(t) = s}, i = 1, · · · .

The difficulty we have here is that the nonlinear function a(x) is not globally Lips-
chitz. The derivative a′(x) exists but it is not bounded. However it is bounded
on any compact interval and a(x) is positive. So in fact, we replace a(x) by
aM (x) = a(x ∧ M) which is also positive and globally Lipschitz and let M go
to +∞. If we solve (4.6) with aM replacing a and obtain sufficient estimates to pass
to the limit, we will solve (4.6). To shorten the proof, we shall obtain the a priori
estimates directly on a solution of (4.6) assuming it exists and leave the details to
the reader. We proceed as follows: Define the process y0(t) by solving

dy0 + a(y0)dt+ σdw(t) = 0,

y0(0) = x.

We then define
τ1 = inf{t|y0(t) ≤ s}.

For i ≥ 1, if we have defined a stopping time τi , we define the process yi(t) by
solving

dyi + 1It>τi(a(y
i)dt+ σdw(t)) = 0,

yi(0) = S,

and we define
τi+1 = inf{t|yi(t) ≤ s}.

We then set

y(t) = y0(t)1It<τ1 +
+∞∑
i=1

yi(t)1Iτi≤t<τi+1 .

This process is the solution. We prove only the a priori estimates. We note that

y2(t) = (y0(t))21It<τ1 +
+∞∑
i=1

(yi(t))21Iτi≤t<τi+1 . (4.7)

But for i ≥ 1

d(yi(t))2 = −2yi(t)1Iτi<t(a(y
i)dt+ σdw(t)) + σ21Iτi<tdt

≤ −2yi(t)1Iτi<tσdw(t) + σ21Iτi<tdt
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hence

(yi(t))2 ≤ S2 − 2

ˆ t

0

yi(s)1Iτi<sσdw(s) + σ2

ˆ t

0

1Iτi<sds.

We also have

(y0(t))2 ≤ x2 − 2

ˆ t

0

y0(s)σdw(s) + σ2t.

We can combine both inequalities by writing

(yi(t))2 ≤ max(S2, x2)− 2

ˆ t

0

yi(s)1Iτi<sσdw(s) + σ2

ˆ t

0

1Iτi<sds (4.8)

for i ≥ 0, with τ0 = 0. From (4.7) it follows

y2(t) ≤max(S2, x2)− 2
+∞∑
i=0

1Iτi≤t<τi+1

ˆ t

0

yi(s)1Iτi<sσdw(s)

+ σ2
+∞∑
i=0

1Iτi≤t<τi+1

ˆ t

0

1Iτi<sds.

It follows

y2(t) ≤ max(S2, x2) + 2σ
+∞∑
i=0

1Iτi≤t<τi+1 |
ˆ t

0

yi(s)1Iτi<s<τi+1dw(s)|+ σ2t

and thus also

y2(t) ≤ max(S2, x2) + σ2t+
σ2

ϵ
+ ϵ

+∞∑
i=0

|
ˆ t

0

yi(s)1Iτi<s<τi+1dw(s)|2, (4.9)

sup
0≤t≤T

y2(t) ≤ max(S2, x2) + σ2T +
σ2

ϵ
+ ϵ

+∞∑
i=0

sup
0≤t≤T

|
ˆ t

0

yi(s)1Iτi<s<τi+1dw(s)|2.

Taking the expectation, and using estimates on martingales we obtain

E

[
sup

0≤t≤T
y2(t)

]
≤ max(S2, x2) + σ2T +

σ2

ϵ
+ 4ϵ

+∞∑
i=0

E

[ˆ T

0

(yi(s))21Iτi<s<τi+1ds

]

≤ max(S2, x2) + σ2T +
σ2

ϵ
+ 4ϵE

[ˆ T

0

y2(s)ds

]

≤ max(S2, x2) + σ2T +
σ2

ϵ
+ 4ϵT E

[
sup

0≤t≤T
y2(t)

]
and choosing 4ϵT =

1

2
we deduce easily

E

[
sup

0≤t≤T
y2(t)

]
≤ 2max(S2, x2) + 18σ2T. (4.10)

So the estimate (4.5) has been obtained. The proof has been completed.
We then can state the verification theorem
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Theorem 4.1. We make the assumptions of Proposition 4.1. and suppose that we
can find s < 0, Gs(x) satisfying (3.6),(3.9), (3.12), (3.13), (4.1). Also assume that
S is the point of maximum of Gs(x), then we can construct the pricing policy ϖ̂x(t)
by the feedback π̂(x) as explained in (4.2), (4.4). Define

V̂x = (τ̂1, S − x̂(τ̂1 − 0); · · · ; τ̂i, S − x̂(τ̂i − 0); · · · )

with the notation of (4.3). Then the pair ϖ̂x(.), V̂x is optimal for the payoff (2.9),
among all policies ϖ(.), V such that

E

[
sup

0≤t≤T
x(t)2

]
< +∞, ∀ T,

E

[
sup

0≤t≤T
x(t)2

]
exp(−αT ) → 0, as T → +∞. (4.11)

Proof. We first note that, without loss of generality, we can assume that θi → +∞
as i → +∞. Indeed, otherwise θi ↑ τ > 0 on a set of positive measure. But then,
from formula (2.9) we have

Jx(ϖ(.), V ) ≤
ˆ +∞

0

exp(−αt)ϖ(t)ν(ϖ(t))dt−
+∞∑
i=0

kE [exp(−ατ)] = −∞

since E [exp(−ατ)] > 0. Such a policy cannot be optimal, so we can discard it. We
note that τ̂i → +∞, as i → +∞. Indeed, consider the differential equation

−1

2
σ2φ+ φ′ν(π̂) + αφ = 0, x > s,

φ(s) = 1, φ(+∞) = 0.

We check easily the formula φ(S)E exp−ατ̂i = E exp−ατ̂i+1. It follows that
E exp−ατ̂i = (φ(S))i. However τ̂i ↑ τ̂ and this E exp−ατ̂ = 0. This implies
τ̂ = +∞, a.s. Moreover, from Proposition 4.1, we see that the condition (4.11) is
satisfied, see (4.10).

We have constructed a number a pair s, S and a function u(x) = cx + Gs(x)
which is C1 , and C2 except at point s. It has bounded derivative and satisfies

u(x) = −k + sup
ξ>0

(u(x+ ξ)− cξ)

= cx− k + u(S)− cS, x ≤ s,

−1

2
σ2u+ αu+Φ(u′) + hx+ + px− = 0, x > s, (4.12)

0 ≤ u′,

−1

2
σ2u+ αu+Φ(u′) + hx+ + px− ≥ 0, x < s, (4.13)

u(x) ≥ −k + u(x+ ξ)− cξ, ∀ξ > 0, ∀x ≥ s.

From the definition of Φ, we can write

− 1

2
σ2u+ αu+ (u′ −ϖ)ν(ϖ) + hx+ + px− ≥ 0, ∀x,∀ϖ ≥ 0. (4.14)
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Consider any admissible policyϖ(.), V and the corresponding inventory x(t) defined
by (2.7). We use Ito’s formula to compute

d(u(x(t)) exp(−αt)) = exp(−αt)[−αu(x(t))− u′(x(t))ν(ϖ(t)) +
1

2
σ2u(x(t))]dt

− σu′(x(t)) exp(−αt) dw(t).

Applying (4.14) with x = x(t) and ϖ = ϖ(t) we obtain

d(u(x(t)) exp(−αt)) ≤ exp(−αt)[hx+(t) + px−(t)−ϖ(t)ν(ϖ(t))]dt

− σu′(x(t)) exp(−αt) dw(t).

Integrating between θi ∧ T and (θi+1 − 0)∧ T , and taking the mathematical expec-
tation yields

E [u(x(θi ∧ T )) exp(−αθi ∧ T )]

≥E [u(x((θi+1 − 0) ∧ T )) exp(−αθi+1 ∧ T )]

+E[

ˆ θi+1∧T

θi∧T

exp−αt(ϖ(t)ν(ϖ(t))−hx+(t)−px−(t))dt] (4.15)

also

E [u(x(θi))1Iθi<T exp(−αθi)] ≥E
[
u(x((θi+1 − 0)))1Iθi+1<T exp(−αθi+1)

]
−E

[
u(x(T ))1Iθi<T<θi+1 exp(−αT )

]
+E[

ˆ θi+1∧T

θi∧T

exp−αt(ϖ(t)ν(ϖ(t))−hx+(t)−px−(t))dt].

But x(θi+1) = x(θi+1−0)+ξi+1 and from the 2nd inequality (4.13) we can write

u(x(θi+1 − 0)) ≥ u(x(θi+1))− k − cξi+1

and thus

E [u(x(θi))1Iθi<T exp(−αθi)] ≥E
[
u(x(θi+1))1Iθi+1<T exp(−αθi+1)

]
(4.16)

−E
[
(k + cξi+1)1Iθi+1<T exp(−αθi+1)

]
−E

[
u(x(T ))1Iθi<T<θi+1 exp(−αT )

]
+E[

ˆ θi+1∧T

θi∧T

exp−αt(ϖ(t)ν(ϖ(t))−hx+(t)−px−(t))dt].

We set θ0 = 0. We then sum the inequalities (4.16) between i = 0 and i = N . We
get

u(x) ≥E
[
u(x(θN+1))1IθN+1<T exp(−αθN+1)

]
− Eu(x(T )) exp(−αT )

− E

[
N∑
i=1

(k + cξi) exp(−αθi)

]

+ E

[ˆ θN+1∧T

0

exp(−αt)(ϖ(t)ν(ϖ(t))− hx+(t)− px−(t))dt

]
.
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We first letN → +∞.We know that θN+1 → +∞. Since u has a bounded derivative,
it has linear growth, then |u(x(θN+1))| ≤ C(1 + |x(θN+1|). Therefore

|Eu(x(θN+1))1IθN+1<T | ≤ CE(1 + |x(θN+1|)1IθN+1<T

≤ CE(1 + sup
0<t<T

|x(t)|)1IθN+1<T

≤ C
√

E(1 + sup
0<t<T

|x(t)|)2
√
E1IθN+1<T

→ 0, as N → +∞.

Therefore, we obtain

u(x) ≥− Eu(x(T )) exp(−αT )− E

[ ∞∑
i=1

(k + cξi) exp(−αθi)

]

+ E

[ˆ T

0

exp−αt(ϖ(t)ν(ϖ(t))− hx+(t)− px−(t))dt

]
.

We may then let T → +∞, and obtain u(x) ≥ Jx(ϖ(.), V ), for all admissible
policies. To prove the optimality of the pair ϖ̂x(t), V̂x, it is thus sufficient to check
that

u(x) = Jx(ϖ̂x(.), v̂x(.)). (4.17)

We know that the pair ϖ̂x(t), V̂x is admissible. The proof has many similarities
with the case of general policies, above except that inequalities will be replaced by
equalities. We leave details to the reader. The proof of the result has been obtained.

5. STUDY OF THE ANALYTIC PROBLEM

5.1. PRELIMINARIES

Our objective is now to study problem (3.10),(3.11),(3.12), (3.13), where the un-
known is the pair s,Gs which allows to define the optimal policy by the verification
theorem above. This will require also to check all the properties used in in this
theorem, namely if Hs(x) = G′

s(x) we need to check (4.1), the fact that H ′
s(x) is

bounded , that it has a unique 0, called S(s), and Hs(x) > 0, for x ∈ (s, S).

5.2. APPROXIMATION

The major difficulty lies in in the function Φ. It is increasing, but the derivative is
not bounded. We will need to proceed with an approximation. Define

Φϵ(λ) = Φ(λ+ + ϵ) (5.1)

which is defined on R, and not just on R+. We have Φ′
ϵ(λ) = Φ′(λ+ ϵ)1Iλ>0. Hence

0 ≤ Φ′
ϵ(λ) ≤ Φ′(ϵ). Note that the function Φϵ(λ) remains concave on R+, but is not

globally concave. For any s ≤ 0, given, we consider the problem

− 1

2
σ2Hs(x)+αHs(x)+

d

dx
Φϵ(Hs(x)+c)+(h+αc)1Ix>0−(p−αc)1Ix<0 = 0, x > s,
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Hs(s) = 0, Hs(+∞) = −c− h

α
. (5.2)

We simultaneously consider the problem

−1

2
σ2Gs(x) + αGs(x) + Φϵ(G

′
s(x) + c) + hx+ + px− + αcx = 0, x > s, (5.3)

G′
s(s) = 0, G′

s(+∞) = −c− h

α
.

The problems (5.2) and (5.3) are equivalent. If Gs(x) is solution of (5.3), then
Hs(x) = G′

s(x) is solution of (5.2). Conversely, if Hs(x) is solution of (5.2), then
setting

Gs(s) =
1

α
(
1

2
σ2H ′

s(s)− Φϵ(c) + s(p− αc)), (5.4)

Gs(x) = Gs(s) +

ˆ x

s

Hs(ξ)dξ

we obtain a solution of (5.3). Of course, the solution depends also on ϵ. But we
consider first ϵ fixed. Many steps are identical to those in our previous paper [8]. We
shall then state them without details. We shall restrict the interval for s, although
it is not directly related to obtaining existence results. Eventually, it will be needed

anyway. We introduce the number β =

√
2α

σ
. We have seen in our previous paper

that (5.2) is equivalent to an integral equation as follows

Hs(x) =
2

σ2β

ˆ x

s

exp(−β(x− ξ)) (p− αc− (p+ h) exp(−βξ)−)dξ (5.5)

+
1

σ2

ˆ x

s

(exp(−β(x−ξ))+exp(−β(x−s))exp(−β(ξ−s)))Φϵ(Hs(ξ)+c)dξ

+
1

σ2

ˆ +∞

x

(exp(−β(x−s)) exp(−β(ξ−s))− v exp(−β(ξ−x)))Φϵ(Hs(ξ)+c)dξ.

We can compute

H ′
s(x) =

2

σ2β
[p− αc− (p+ h) exp(−βx−) (5.6)

−β

ˆ x

s

exp(−β(x− ξ)) (p− αc− (p+ h)exp(−βξ−))dξ]+
2

σ2
Φϵ(Hs(x)+c)

− β

σ2

ˆ x

s

(exp(−β(x−ξ))+exp(−β(x−s)) exp(−β(ξ−s)))Φϵ(Hs(ξ)+c)dξ

− β

σ2

ˆ +∞

x

(exp(−β(x−s)) exp(−β(ξ−s))+exp(−β(ξ−x)))Φϵ(Hs(ξ)+c)dξ.

In particular, for x = s, we get

H ′
s(s) =

2

σ2β
(p− αc− (p+ h) exp(−βs−)) (5.7)

+
2

σ2
[Φϵ(c)− β

ˆ +∞

s

exp(−β(ξ − s))Φϵ(Hs(ξ) + c)dξ].

We now state the following
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Theorem 5.1. We make the assumptions of Proposition 4.1. For any s ≤ 0, there
exists one and only one function Hs(x) solution of (5.2) which is C2(s,+∞) and
satisfies

− c− h

α
≤ Hs(x) ≤ −c+

p

α
. (5.8)

Alternatively, there exists one and only one solution Gs(x) of (5.3) which is C3(s,+∞).
and has linear growth. The functions Hs(x) and Gs(x) are related by formulas (5.4).

Proof. Note that the two equations are equivalent. If Gs(x) is solution of (5.3),
then its derivative Hs(x) = G′

s(x) is solution of (5.2). Conversely if Hs(x) is a
solution of (5.2) , the the function Gs(x) defined by (5.4) is solution of (5.3). So
it is sufficient to prove existence and uniqueness from one of them. We shall prove
existence for Hs(x) and uniqueness for Gs(x). In fact we proved existence of a
solution Hs(x) in our previous paper. So we prove here only the uniqueness of
Gs(x). Suppose there are two solutions G1 and G2. We make explicit the definition
of Φϵ and thus can write

−1

2
σ2(G1)(x) + αG1(x) + min

ϖ≥0
[((G1)′(x) + c)+ + ϵ−ϖ)ν(ϖ)]

+ hx+ + px− + αcx = 0, x > s,

(G1)′(s) = 0, (G1)′(+∞) = −c− h

α
,

−1

2
σ2(G2)(x) + α(G2)(x) + min

ϖ≥0
[((G2)′(x) + c)+ + ϵ−ϖ)ν(ϖ)]

+ hx+ + px− + αcx = 0, x > s,

(G2)′(s) = 0, (G2)′(+∞) = −c− h

α
.

We also call ϖ̂1
ϵ (x), ϖ̂

2
ϵ (x) the optimal feedback. Clearly

−1

2
σ2(G1)(x) + α(G1)(x) + [((G1)′(x) + c)+ + ϵ− ϖ̂1)ν(ϖ̂1)]

+ hx+ + px− + αcx = 0, x > s,

(G1)′(s) = 0, (G1)′(+∞) = −c− h

α
,

−1

2
σ2(G2)(x) + α(G2)(x) + [((G2)′(x) + c)+ + ϵ− ϖ̂1)ν(ϖ̂1)]

+ hx+ + px− + αcx ≥ 0, x > s,

(G2)′(s) = 0, (G2)′(+∞) = −c− h

α
.

Define G̃(x) = G1(x)−G2(x). We thus have

−1

2
σ2 ˜(G)(x) + αG̃(x) + [((G1)′(x) + c)+ − ((G2)′(x) + c)+]ν(ϖ̂1) ≤ 0, (5.9)

G̃′(s) = 0, G̃′(+∞) = 0.
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We claim that G̃(x) ≤ 0. If not, there exist points where G̃ is strictly positive. But
G̃ cannot attain its maximum at ∞, Otherwise from the equation, recalling that
G̃ is C3, ˜(G)(+∞)¿0. This would imply G̃′(+∞) = +∞, which contradicts the
boundary condition at +∞.Similarly, a positive maximum cannot be attained at
s, because we would have ˜(G)(s)¿0. This would contradict the fact that G̃ has a
maximum at s. Finally a positive maximum cannot take place at a point inside the
interval. This would contradict the maximum principle. So we must have G̃(x) ≤ 0.
But changing the role of G1 and G2 the reverse is also true. Therefore G̃(x) = 0.
This completes the proof.

5.3. FURTHER PROPERTIES

Since Φϵ is monotone increasing , we obtain from (5.7) the estimate

H ′
s(s) ≥

2

σ2β
(p− αc− (p+ h) exp−βs−) (5.10)

+
2

σ2
(Φϵ(c)− Φϵ(

p

α
)).

We state

Φϵ(c)− Φϵ(
p

α
) = Φ(c+ ϵ)− Φ(

p

α
+ ϵ)

>Φ(c)− Φ(
p

α
)

by the concavity of Φ. Finally, from (5.10)

H ′
s(s) >

2

σ2β
(p− αc− (p+ h) exp−βs−) (5.11)

+
2

σ2
(Φ(c)− Φ(

p

α
))

the right hand side is independent of ϵ.
We make the fundamental assumption

1

β
(p− αc) + Φ(c)− Φ(

p

α
) > 0. (5.12)

Obviously, there is s∗ < 0, such that

1

β
(p− αc− (p+ h) exp(βs∗)) + Φ(c)− Φ(

p

α
) = 0 (5.13)

and
1

β
(p− αc− (p+ h) exp(βs)) + Φ(c)− Φ(

p

α
) ≥ 0, ∀s ≤ s∗, (5.14)

therefore H ′
s(s) > 0, ∀s ≤ s∗.

Proposition 5.1. Assume H ′
s(s) > 0. This is true as soon as s ≤ s∗. Then the

function Hs(x) (a solution of (5.2)) has a unique zero, S(s) > s as well as a unique
maximum σ(s) < 0. Moreover H ′

s(x) > 0, if s ≤ x < σ(s) and H ′
s(x) < 0 if

x > σ(s). Also Hs(x) > 0, if s < x < S and Hs(x) < 0 if x > S. If H ′
s(s) ≤ 0 then

H ′
s(x) < 0, ∀x > s. Also Hs(x) < 0, ∀x > s. Lastly we define S(s) = s.
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Proof. Since H ′
s(s) > 0, Hs(x) is strictly positive for x > s, close to s. Since

Hs(+∞) = −c− h

α
, andHs(x) is a continuous function, there is necessarily one zero.

Let S(s) be the smallest zero strictly larger than s. We first claim that S(s) ≥ s∗.
Suppose it is not true S(s) < s∗. Consider formula (5.5) for s < x ≤ S(s), We

have Hs(x) ≥ 0, hence Φϵ(Hs(x) + c) ≥ Φϵ(c). Moreover Hs(x) + c ≤ p

α
hence

Φϵ(Hs(x) + c) ≤ Φϵ(
p

α
). Therefore we can majorize

Hs(x) ≥
2

σ2β

ˆ x

s

exp(−β(x− ξ)) (p− αc− (p+ h) exp(βξ))dξ

+
1

σ2
[Φϵ(c)

ˆ x

s

(exp(−β(x− ξ)) + exp(−β(x− s)) exp(−β(ξ − s)))dξ

+Φϵ(
p

α
)

ˆ +∞

x

(exp(−β(x− s)) exp(−β(ξ − s))− exp(−β(ξ − x)))dξ

and

Hs(x) ≥
2

σ2β2
(p− αc− (p+ h) exp(βx))(1− exp(−β(x− s)))

+
1

σ2β
(Φϵ(c)− Φϵ(

p

α
))(1− exp(−2β(x− s)))

and since 1− exp(−2β(x− s)) ≤ 2(1− exp(−β(x− s))), we can state

Hs(x) ≥
2

σ2β2
(1− exp(−β(x− s)))

∗ [p− αc− (p+ h) exp(βx) + β(Φϵ(c)− Φϵ(
p

α
))]. (5.15)

Applied with x = S(s) we get

Hs(S(s)) ≥
2

σ2β2
(1−exp(−β(S(s)−s)))[p−αc−(p+h) exp(βS(s))+β(Φ(c)−Φ(

p

α
))]

and since S(s) < s∗ we get Hs(S(s)) > 0, which contradicts the definition of S(s).
Let us check that there cannot be another zero S̃ > S. Suppose there is such S̃ , we
claim that S̃ > 0. This is obvious if S ≥ 0. Suppose then that S < 0. The function
Hs(x) has clearly a negative minimum on (S, S̃). Such a minimum cannot occur on
(S, 0). It must take place on [0,+∞). This implies S̃ > 0. Since Hs(x) becomes
strictly positive right after S̃, the function must have a local positive maximum
on (S̃,+∞). This is impossible. Hence S̃ does not exist. Since H ′

s(s) > 0, the
function Hs(x) will have a first local positive maximum σ(s) < S(s). Necessarily
also σ(s) < 0, from maximum principle considerations. Of course, H ′

s(x) > 0, for
s ≤ x < σ(s).Let us check that H ′

s(x) < 0 for x > σ(s). This will imply that
σ(s) is the maximum and the only one. If this is not true, H ′

s(x) will vanish at
some point x∗ > σ(s) and x∗ is a local minimum of Hs(x). This point cannot

be on (σ(s), 0). Indeed, if it is then necessarily Hs(x
∗) > −c +

p

α
. On the other

hand Hs(σ(s)) < −c +
p

α
and Hs(σ(s)) > Hs(x

∗), which leads to a contradiction.

Suppose then that the first local minimum x∗ after σ(s) is positive. Since Hs(x
∗) ≥

−c− h

α
and since Hs(x) increases just after x

∗, there must be a local maximum after
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x∗. Indeed otherwise we could not have Hs(+∞) = −c − h

α
. Let x1 be this local

maximum . We have by maximum principle considerations Hs(x1) < −c− h

α
. But

also Hs(x1) > Hs(x∗) ≥ −c− h

α
, and we obtain again a contradiction. This proves

that H ′
s(x) < 0 for x > σ(s).Naturally Hs(x) > 0 for s < x < S and Hs(x) > 0, for

x > σ(s).
Assume now that H ′

s(s) ≤ 0, then Hs(x) is strictly negative for x > s, close to
s. This is obvious when H ′

s(s) < 0. When we have H ′
s(s) = 0, from the equation

(5.2) , we obtain Hs(s) < 0, which will also imply Hs(x) strictly negative for x > s,
close to s. We then proceed as above. If H ′

s(x) has a zero at some point x∗ larger
than s, the function Hs(x) has a local negative minimum at x∗. Such a point must
be positive. But then, there will be a local maximum x1 > x∗, which will lead to a
contradiction. The proof is completed.

We next provide estimates on the derivative of Hs(x).

Proposition 5.2. Assume H ′
s(s) > 0. We have the estimates

0 ≤ H ′
s(x) ≤

2(p− αc)

σ
√
α

, if 0 ≤ x ≤ σ(s), (5.16)

−
√
2

σ
√
α
(p+ h) ≤ H ′

s(x) ≤ 0, if σ(s) ≤ x < +∞.

If H ′
s(s) ≤ 0, then the second estimate holds for s ≤ x < +∞. So in all cases

|H ′
s(x)| ≤

√
2

σ
√
α
max(

√
2(p− αc), p+ h). (5.17)

Proof. We first deduce from ( 5.2) by multiplying by H ′
s(x)

−
σ2

4

d

dx
(H ′

s(x))
2 +Φ′

ϵ(Hs(x) + c)(H ′
s(x))

2 +
α

2

d

dx
(Hs(x))

2 (5.18)

=H ′
s(x)(−(h+ αc)1Ix>0 + (p− αc)1Ix<0).

Consider first the case s < x < σ(s). We know that Hs(x) > 0, H ′
s(x) > 0.

Remembering that Φ′
ϵ > 0, we obtain

−
σ2

4

d

dx
(H ′

s(x))
2 ≤ (p− αc)H ′

s(x)

and integrationg between x and σ(s) we obtain

σ2

4
(H ′

s(x))
2 ≤ (p− αc)(Hs(σ(s))−Hs(x))

≤ (p− αc)Hs(σ(s)) ≤
(p− αc)2

α

from which we obtain immediately the first inequality (5.16). Assume then x > σ(s),
which implies H ′

s(x) < 0. We deduce from (5.18)

−
σ2

4

d

dx
(H ′

s(x))
2 +

α

2

d

dx
(Hs(x))

2 ≤ −H ′
s(x)(h+ αc)1Ix>0.
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We integrate this inequality between x and +∞, to obtain

σ2

4
(H ′

s(x))
2 +

α

2
((Hs(+∞))2 − (Hs(x))

2) ≤ −(h+ αc)

ˆ +∞

x+

H ′
s(ξ)dξ

≤ −(h+ αc)(Hs(+∞)−Hs(x
+))

≤ −(h+ αc)(Hs(+∞)−Hs(x))

and by easy calculations

σ2

4
(H ′

s(x))
2 ≤ α

2
(Hs(+∞)−Hs(x))

2

=
α

2
(Hs(x) + c+

h

α
)2.

We note that

0 ≤ Hs(x) + c+
h

α
≤ p+ h

α

and the 2nd estimate (5.16) follows immediately. When H ′
s(s) ≤ 0, the proof of the

2nd estimate holds for x ≥ s. The proof is completed.

We also state the

Proposition 5.3. The function Hs(x) is continuous in s, and H ′
s(s) is also con-

tinuous.

Proof. We complete Hs(x) by 0 for x ≤ s. Let us consider a sequence sn → s.
The sequence of functions Hsn(x) is uniformly bounded, as well as its derivative.
Therefore, from Ascoli theorem, we can extract a subsequence such that Hsn(x) →
ζ(x), ∀x. Considering the integral equation (5.5) it is easy to check that ζ(x) =
Hs(x). In this identification, we have used the fact that the solution of (5.2) or (5.5)
is unique. Now if we look at formula (5.7) which gives H ′

s(s), from the convergence
Hsn(x) → Hs(x), we see easily that H ′

sn(sn) → H ′
s(s). The proof is completed.

Consider next equation (5.2) with s = 0. It writes

− 1

2
σ2H0(x) + αH0(x) +

d

dx
Φϵ(H0(x) + c) + (h+ αc) = 0, x > 0, (5.19)

H0(0) = 0, H0(+∞) = −c− h

α
.

It is clear that H0(x) cannot have a positive local maximum, hence H0(x) ≤ 0.
Then H ′

0(0) ≤ 0, and in fact H ′
0(0) < 0. Indeed if H ′

0(0) = 0, the equation leads to
H0(0) > 0, which will contradict the fact that 0 is the maximum.

Therefore we have

H ′
0(0) < 0, H ′

s(s) > 0, ∀s ≤ s∗. (5.20)

From the continuity of the function H ′
s(s), there exists a point s̄ ∈ (s∗, 0) such

that H ′
s̄(s̄) = 0. We can take the smallest one, so that H ′

s(s) > 0, ∀s < s̄. It
follows that S(s) > max(s, s∗) for s < s̄ and S(s̄) = s̄. Moreover the function
S(s) is continuous on (−∞, s̄). Indeed, if sn → s, and we note Sn = S(sn), then
Sn is necessarily bounded. Otherwise there will be a subsequence, also denoted



Inventory control with fixed cost . . . 825

Sn → +∞. From formula (5.5) , written with x = Sn and the convergence of

Hsn(x) to Hs(x), we can check easily that Hsn(Sn) → −c − h

α
which contradicts

the fact that Hsn(Sn) = 0. From that, the limit points of the sequence Sn reduce
to S(s). Therefore S(sn) → S(s), which proves the continuity.

5.4. FINDING s

We obtain s by solving (3.11) which amounts to solving

k =

ˆ S(s)

s

Hs(x)dx. (5.21)

We have the

Proposition 5.4. There exists a solution of equation (5.21), in the interval (−∞, s̄).
We take the smallest value, in case there are several

Proof. Define the function

γ(s) =

ˆ S(s)

s

Hs(x)dx

then, from the continuity properties of Hs(x) and S(s), with respect to s, the
function γ(s) is continuous. Moreover γ(s̄) = 0. Since S(s) ≥ s∗ and Hs(x) > 0, for
x < S(s) we have

γ(s) ≥
ˆ s∨s∗

s

Hs(x)dx.

We next use (5.15) to state the majoration

Hs(x) ≥
2

σ2β2
[p− αc+ β(Φ(c)− Φ(

p

α
))− (p+ h) exp(βx)

− (p− αc) exp(−β(x− s))]

and thus for s < s∗ we obtain

γ(s) ≥ 2

σ2β2

[
(s∗ − s)(p− αc+ β(Φ(c)− Φ(

p

α
)) (5.22)

− p+ h

β
exp(βs∗)− p− αc

β

]
therefore γ(s) → +∞ as s → −∞. It follows that equation (5.21) has indeed a
solution. This completes the proof.

We conclude by giving estimates useful as we shall let ϵ go to 0. We keep s as
the solution of (5.21). From (5.22) we have

k +
4(p− αc)

σ2β3
≥ 2

σ2β2
(s∗ − s)(p− αc+ β(Φ(c)− Φ(

p

α
))). (5.23)

We get also an estimate from above on S = S(s). Suppose S > 0, then writing (5.2)
for x > 0, yields

−1

2
σ2Hs(x) + αHs(x) +

d

dx
Φϵ(Hs(x) + c) + (h+ αc) = 0
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and integrating between 0 and S, we obtain

(h+ αc)S + α

ˆ S

0

Hs(x)dx+Φϵ(c)− Φϵ(Hs(0) + c)− 1

2
σ2H ′

s(S) +
1

2
σ2H ′

s(0) = 0.

We use Φϵ(c) − Φϵ(Hs(0) + c) ≥ Φϵ(c) − Φϵ(
p

α
) ≥ Φ(c) − Φ(

p

α
), α
´ S
0
Hs(x)dx >

0, − 1
2σ

2H ′
s(S) > 0 to obtain

(h+ αc)S +Φ(c)− Φ(
p

α
) +

1

2
σ2H ′

s(0) < 0

and using the estimate (5.16) it follows

(h+ αc)S ≤ Φ(
p

α
)− Φ(c) +

σ√
2α

(p+ h) (5.24)

and this estimate remains valid if S ≤ 0. In the sequel we shall need the following
property

0 ≥ −k +

ˆ y

x

Hs(ξ)dξ, ∀s ≤ x ≤ y. (5.25)

This property is obvious if x ≥ S, since Hs(ξ) < 0 for ξ > x. So we may assume
x < S. But then

−k +

ˆ y

x

Hs(ξ)dξ ≤ −k +

ˆ y∧S

x

Hs(ξ)dξ

≤ −k +

ˆ S

s

Hs(ξ)dξ = 0

which implies (5.25).

5.5. MAIN RESULT

Our objective is to prove the existence of the pair s,Gs(x) satisfying (3.6),(3.11),(3.12),
(3.13). We have considered an approximation using the function Φϵ(λ). We will now
let ϵ go to 0. We begin by collecting results. We denote by sϵ, Sϵ,Hϵ(x) the various
quantities introduced above. So we have the following facts

sϵ < 0, Hϵ(x) is in C1(sϵ,+∞), (5.26)

−1

2
σ2(Hϵ)(x)+αHϵ(x)+

d

dx
Φϵ(Hϵ(x)+c)+(h+αc)1Ix>0−(p−αc)1Ix<0 = 0, x > sϵ,

Hϵ(sϵ) = 0, Hϵ(+∞) = −c− h

α
, H ′

ϵ(+∞) = 0,

Hϵ(Sϵ) = 0, k =

ˆ Sϵ

sϵ

Hϵ(x)dx,

Hϵ(x) > 0∀x ∈ (sϵ, Sϵ), Hϵ(x) < 0, ∀x > Sϵ,

H ′
ϵ(x) > 0, sϵ ≤ x < σϵ < Sϵ, H

′
ϵ(x) < 0, x > σϵ,
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and also

− k +

ˆ y

x

Hϵ(ξ)dξ ≤ 0, ∀sϵ ≤ x ≤ y, (5.27)

with the estimates

−c− h

α
≤ Hϵ(x) ≤ −c+

p

α
, (5.28)

|H ′
ϵ(x)| ≤

√
2

σ
√
α
max(

√
2(p− αc), p+ h).

On the pair sϵ,Sϵ we have the estimates

k +
4(p− αc)

σ2β3
≥ 2

σ2β2
(s∗ − sϵ)(p− αc+ β(Φ(c)− Φ(

p

α
))), (5.29)

Sϵ > s∗, (h+ αc)Sϵ ≤ Φ(
p

α
)− Φ(c) +

σ√
2α

(p+ h).

Moreover integrating (5.2) between sϵ and x, and using previously obtained esti-
mates it follows

−Φϵ(H
ϵ(x) + c) ≤ (p+ h)x+ + σ

√
2

α
max(p+ h,

√
2(p− αc)− Φ(c), (5.30)

∀x ≥ sϵ.

We can now state the main result

Theorem 5.2. Assume (2.2),(2.3),(2.4),(3.3),(5.12). Then there exists a triplet
(s, S,H(x)) satisfying

s < 0, S > max(s, s∗),H(x) is Lipschitz continuous, (5.31)

−1

2
σ2H(x) + αH(x) +

d

dx
Φ(H(x) + c) + (h+ αc)1Ix>0 − (p− αc)1Ix<0 = 0, x > s,

H(s) = 0, H(+∞) = −c, H ′(+∞) = 0,

H(S) = 0, k =

ˆ S

s

H(x)dx,

H(x) > 0∀x ∈ (s, S), H(x) < 0, ∀x > S,

H ′(x) > 0, s ≤ x < σ < S, H ′(x) < 0, x > σ,

and also

− k +

ˆ y

x

H(ξ)dξ ≤ 0, ∀s ≤ x ≤ y, (5.32)

with the estimates

−c− h

α
≤ H(x) ≤ −c+

p

α
, (5.33)

|H ′(x)| ≤
√
2

σ
√
α
max(

√
2(p− αc), p+ h).
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Proof. By the estimates (5.29) the numbers sϵ, Sϵ remain bounded. So we can
extract subsequences such that sϵ → s, Sϵ → S. We have s ≤ 0, S ≥ max(s, s∗).
Consider the Hilbert space

L2
1(R) = {φ(.)|

ˆ +∞

−∞

φ2(x)

1 + x2
dx < +∞}.

Define next a subset of L2
1(R) as follows

Γ = {φ(x)| − h

α
− c ≤ φ(x) ≤ −c+

p

α
, |φ′(x)| ≤

√
2

σ
√
α
max(

√
2(p− αc), p+ h)}

then Γ is a compact subset of L2
1(R), and Hϵ(x) belongs to Γ. So we can extract a

subsequence, still denoted Hϵ(x) such that

Hϵ(x) → H(x), pointwise, (5.34)

(Hϵ)
′(x) → H ′(x) weakly in L2

1(R),

and the limit H(x) belongs to Γ. Consider s− δ, δ > 0 fixed. We can find ϵ(δ) such
that for ϵ < ϵ(δ), sϵ > s − δ. So for x < s − δ, we have Hϵ(x) = 0, for ϵ < ϵ(δ).
Therefore, necessarily H(x) = 0, for x < S − δ. But H(x) is continuous and δ is
arbitrarily small. This implies H(x) = 0, ∀x ≤ s. Consider next s+ δ and ϵ(δ) such
that for ϵ < ϵ(δ), sϵ < s + δ. We take x > s + δ, the inequality (5.30) is valid for
ϵ < ϵ(δ). Passing to the limit, we obtain

−Φ((H(x) + c)+) ≤ (p+ h)x+ + σ

√
2

α
max(p+ h,

√
2(p− αc)− Φ(c).

Since the right hand side is finite, necessarily H(x) + c > 0, for x > S + δ. Since
there is continuity at s, we have necessarily

H(x) + c ≥ 0, −Φ(H(x) + c) ≤ (p+ h)x+ (5.35)

+σ

√
2

α
max(p+ h,

√
2(p− αc)− Φ(c), ∀x ≥ s, x < +∞.

Take again x > s+δ, and ϵ < ϵ(δ) so that sϵ < s+δ. Let φ(x) be a smooth function
with compact support in [s + δ,+∞) and φ(x) = 0, for x ≤ s + δ. We can write
from the differential equation (5.26)

1

2
σ2

ˆ +∞

s+δ

H ′
ϵφ

′dx+ α

ˆ +∞

s+δ

Hϵφdx−
ˆ +∞

s+δ

Φϵ(Hϵ(x) + c)φ′dx

+(h+ c)

ˆ +∞

s+δ

1Ix>0φ(x)dx− (p− αc)

ˆ +∞

s+δ

1Ix<0φ(x)dx.

Since H ′
ϵ → H ′ in L2

1(R) weakly, we can pass to the limit in this equality. Using
the fact that δ is arbitrary, we obtain easily that H(x) satisfies the differential
equation (5.31) in the sense of distributions. Since H(x) + c is strictly positive on

any compact subset of [s,+∞) , the function
d

dx
Φ(H(x) + c) is bounded on any

compact subset of [s,+∞). Therefore also H(x) is bounded on any compact subset
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of [s,+∞). It follows that H(x) is C1 on any compact subset of [s,+∞). Therefore
H ′(s) is well defined. It is then easy to check that

H ′(s) = lim
ϵ→0

H ′
ϵ(sϵ).

Then integrating the equation (5.31) between s and x, we obtain

−1

2
σ2H ′(x) +

1

2
σ2H ′(s) + α

ˆ x

s

H(ξ)dξ +Φ(H(x) + c)− Φ(c)

+(h+ αc)x+ − (p− αc)(x− + s) = 0.

We know that H(x)+ c > 0. Consider H(N) as N → +∞. Since H(N) is bounded,
we can extract a converging subsequence. IfH(N) does not tend to −c, the sequence

Φ(H(N)+c) remains bounded, but then α
´ N
s

H(ξ)dξ+(h+αc)N remains bounded.
This implies

α

´ N
s

H(ξ)dξ

N
+ h+ αc → 0

and also α limH(N) + h+ αc → 0, which is impossible since limH(N) + c ≥ 0. So
H(+∞) = −c. Similarly, H ′(N) is bounded. If we extract a converging subsequence
and the limit is not 0,the function H cannot remain bounded. Therefore H ′(+∞) =
0. Next |Hϵ(Sϵ) − Hϵ(S)| ≤ C|Sϵ − S| → 0, hence Hϵ(S) → 0, which implies

H(S) = 0. We also check easily that k =
´ S
s
H(x)dx, H(x) > 0,∀x ∈ (s, S) and

H(x) < 0, ∀x > S. We have also σϵ → σ, and by similar reasoning H ′(x) > 0, ∀x ∈
(s, σ) and H ′(x) < 0, ∀x > σ. We also have (5.32) and (5.33). This concludes the
proof.

We next define

Gs(x) = Gs(s) +

ˆ x

s

Hs(ξ)dξ, (5.36)

Gs(s) =
1

α
(
1

2
σ2H ′

s(s)− Φ(c) + s(p− αc)),

then we see easily that it is a solution of (3.6),(3.11),(3.12), (3.13).Since Gs(x)+ cx
is the value function u(x) defined by (2.11), it is necessarily unique.

6. NUMERICAL WORK

6.1. INTRODUCTION

A computational procedure is presented in this section to find approximations of the
solution pair (s,Hs(x)) by solving the associated epsilon problem (5.2) repeatedly
to obtain the pair (sϵ,Hϵ(x)) for decreasing epsilon values. The technique used is
similar to what was applied for the Base-Stock case in [8]. In particular, in [8], the
value for Sϵ was found by adding the condition H ′

ϵ(Sϵ) = 0 and in the current study

the condition k =
´ S(sϵ)

sϵ
Hϵ(x)dx is imposed (see also (6.1) below). The specific

case is considered in the calculations where the average demand function is defined
by (2.5) similarly to [8]. The MATLAB boundary value solver (bvp5c), see [22],
was used in the solution process..
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6.2. SETUP AND NUMERICAL METHODOLOGY

We restate for convenience both the epsilon and base problems for the special case
(2.5) and outline the numerical procedure used for their solutions.

6.2.1. Epsilon Problem

We will seek a solution triplet sϵ, Sϵ,Hϵ(x) that satisfies the non-linear two point

boundary value problem with the extra condition k =
´ S(sϵ)

sϵ
Hϵ(x)dx:

H ′′
ϵ (x) =

2

σ2
(h+ αc)1x>0 −

2

σ2
(p− αc)1x<0 +

2α

σ2
Hϵ(x)

+
2

σ2

(
γ

γ + 1

)γ+1 (
1

(Hϵ(x) + c)+ + ϵ

)γ+1

H ′
ϵ(x) (6.1)

Hϵ(sϵ) = 0, Hϵ(∞) = −c− h

α
, k =

ˆ S(sϵ)

sϵ

Hϵ(x)dx, Hϵ(x) is in C1(sϵ,∞)

6.2.2. Base Problem

Our goal is to find a solution triplet s, S,Hs(x) to the non-linear two point boundary

value problem with the extra condition k =
´ S(s)

s
Hs(x)dx:

H ′′
s (x) =

2

σ2
(h+ αc)1x>0 −

2

σ2
(p− αc)1x<0 +

2α

σ2
Hs(x)

+
2

σ2

(
γ

γ + 1

)γ+1 (
1

Hs(x) + c

)γ+1

H ′
s(x) (6.2)

Hs(s) = 0, Hs(∞) = −c, k =

ˆ S(s)

s

Hs(x)dx, Hs(x) is Lipschitz continuous

Note that the epsilon problem provides a regularization for the base problem as
x → ∞.

6.2.3. Numerical Methodology

We will briefly describe how (6.1) is solved using MATLAB. The solver bvp5c pro-
vides a C1 solution to the general ordinary differential equation, y

′′
= f(x, y), on

the interval [a, b] for given boundary conditions at a and b. In our problem we
impose the conditions Hϵ(sϵ) = 0 and Hϵ(b) = −c − h

α for fixed value of epsilon.
In Subsection 5.4 we established a criteria for finding sϵ. Namely, we consider the
condition

k =

ˆ S(sϵ)

sϵ

Hϵ(x)dx. (6.3)

We know Hϵ(x) > 0 when x ∈ [sϵ, Sϵ). From (5.13) and Proposition 5.1 we have
an upper bound for sϵ, i.e., sϵ < s∗. We initiate an iteration for sϵ by using the initial

guess s′ = s∗ and checking numerically if k >
´ S(s′)

s′
Hs(x)dx. If yes, we can decrease

the value of s′ systematically until we satisfy the condition k =
´ S(s′)

s′
Hϵ(x)dx
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within tolerance level. We then have a good estimation for the value of sϵ. By
locating x such that Hϵ(x) = 0 we have the associated value of Ssϵ .

Note that he original problem is defined on a semi-infinite interval which we
truncate to a finite interval (sϵ, b) as follows: We set b = 10 and find the value of sϵ
that satisfies (6.3). We have our solution within tolerance on (sϵ, b), then increase
the value of b until we see only small changes in the corresponding new Hϵ(x) as
well as we are able to avoid numerical instabilities.

6.3. RESULTS

For these specific results we used the following constants, γ = 2, α = .9, c = 3, p =
10, σ = 2, h = 1, which satisfied the assumptions needed for a solution to exist.
Namely, we have

p− αc

β
+Φ(c)− Φ(

p

α
) =

2694

498
> 0.

The value of s∗ which is the beginning point of our search algorithm is calculated
from the equation

exp(βs∗) =
p− αc+ β(Φ(c)− Φ( p

α ))

p+ h
. (6.4)

Figure 1, together with Figure 2 and Figure 3 show the structure Hϵ(x) for
decreasing values of epsilon.
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Figure 1. Hϵ(x) for decreasing epsilon values

Our numerical results indicate that sϵ is increasing when ϵ is decreasing as is
evident from Figure 2 (Hϵ around sϵ)..
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Figure 2. Hϵ(x) for decreasing epsilon values around sϵ

We saw through theoretical results that we have a drop at x = ∞. We impose
this boundary condition at x = b and Figure 3 (Hϵ around b) displays how the drop
occurs for decreasing values of epsilon.

22 23 24 25 26 27 28 29 30 31
Inventory Level

-4.5

-4

-3.5

-3

-2.5

H
e
(x

)

H
e
(x) for decreasing values of epsilon

ǫ = .5 ǫ = .4 ǫ = .3 ǫ = .2 ǫ = .1

Figure 3. Hϵ(x) for decreasing epsilon values around b

We know from [8] that when k = 0 we have sϵ = Sϵ. Table 1 shows (for ϵ = 0.2)
for decreasing values of k that sϵ and Sϵ gets closer and closer together.

Table 1. Values of sϵ and Sϵ for decreasing k

k sϵ Sϵ

10 -3.42647 0.46053
5 -2.56222 0.31192
3 -2.12918 0.20363
2 -1.86522 0.12492
1 -1.52656 0.01140
0 -0.55901 -0.55901
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On Figure 4 we display Hϵ for decreasing values of k.
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Figure 4. Hϵ(x) for decreasing k

Lastly, we discuss how the analysis above enables us to solve the base problem.
Using the theoretical convergence of (sϵ,Hϵ(x)) to (s,Hs(x)) the same truncated
interval is applied for the base problem. However, for the right boundary condition
we cannot impose Hs(b) = −c due to the singularity in (6.2) . Instead we use
the information from the epsilon solution, with epsilon small, to acquire a suitable
right boundary condition. In particular, we impose the condition H ′

s(b) = −δ with
δ = 0.1. We display the solution, Hs(x) on [s, b] on Figure 5.

-5 0 5 10 15 20 25 30
Inventory Level

-3

-2

-1

0

1

2

3

4

5

H
s(x

)

H
s
(x) with s = -3.41999 and S=0.47244 when k=10

Figure 5. Hs(x) when k = 10

We finish by noting that once Hs(x) is known formula (4.2) gives the optimal
pricing structure for our case study.
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