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1. Introduction

Oscillation is one of the important qualitative properties of differential equa-
tions. There are thousands of papers majoring in this field since the foundation
work of Sturm. The important contribution of Sturm is the comparison of solutions
of second order linear differential equations which is known as Sturm’s comparison
theorem now. Let pi, qi(i = 1, 2), be real-valued continuous functions on the interval
[a, b] and let

(r1(t)y
′)′ + q1(t)y = 0, (1.1)

(r2(t)y
′)′ + q2(t)y = 0 (1.2)

be two homogeneous linear second order differential equations in self-adjoint form
with 0 < r2(t) ≤ r1(t) and q1(t) ≤ q2(t).

Let u be a non-trivial solution of (1.1) with successive roots at t1 and t2 and
let v be a non-trivial solution of (1.2). Then one of the following properties holds:
there exists a t in (t1, t2) such that v(t) = 0; or there exists a λ in R such that
v(t) = λu(t). The first part of the conclusion is due to Sturm [65] in 1836, while
the second (alternative) part of the conclusion is due to Picone [58] in 1910 whose
simple proof was given using his now famous Picone identity. He showed that for
all t with v(t) ̸= 0, the following identity holds(u

v
(r1u

′v − r2uv
′)
)′

= (r1 − r2)u
′2 + r2

(
u′ − v′

u

v

)2
+ (q2 − q1)u

2.

In the special case where both equations are identical, one obtains the Sturm sep-
aration theorem.
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There are many methods in investigating oscillation for ordinary differential
equations, for example, comparison methods, Riccati transformation and integral
average method, asymptotic analysis and inequalities methods, symplectic trans-
formation methods (See [1]- [100]).

In this paper, we will major in oscillation of second order differential equations
and first order systems of differential equations, oscillation of higher differential
equations [20,22,24,68,91], oscillation of fractional differential equations [4,8,9,19,
59, 60, 71, 86, 100], oscillation of dynamical equations on time scale [16, 23, 36, 55,
76, 85, 87], computation of oscillation solutions [79, 80, 88, 90] are not involved, the
readers are advised to see the above papers and references cited therein. As we
know, second order differential equations origin many problems in engineers and
physics, a Newton mechanics process is characterized by a second order differential
equation. Oscillatory property is one of the important properties of second order
differential equations and it has been widely used in engineer and mechanics. On
the other hand, for a second order differential equation, if it has a solution without
any zero in some intervals, then Riccati transformation deduces it to a nonlinear
differential equation of first order in the same intervals, then many of properties
can be obtained by the Riccati equation. This transformation is of great important
in oscillation theory since nonoscillation implies the existence of a solution which
preserves its sign ultimately.

A nontrivial solution of the considered equation is called oscillatory if it has
arbitrarily large zeros; otherwise, it is said to be non-oscillatory. The equation is
said to be oscillatory if all its solutions are oscillatory.

For convenience, we list some function classes which will be used later.

We say that a function H = H(t, s) belongs to a function class H, denoted by
H ∈ H if H : D ≡ {(t, s) : t ≥ s ≥ t0} → R is a continuous function which satisfies
H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0, H has a continuous and non-
positive partial derivative on D0 ≡ {(t, s) : t > s ≥ t0} with respect to the second
variable. Moreover, let h : D0 → R be a continuous function with

−∂H
∂s

(t, s) = h(t, s)
√
H(t, s)

for all (t, s) ∈ D0.

A function Φ = Φ(t, s, l) is said to belonging the function class Y, denoted
by Φ ∈ Y, if Φ ∈ C(E,R), where E = {(t, s, l) : t0 ≤ l ≤ s ≤ t < ∞}, which
satisfies Φ(t, t, l) = 0,Φ(t, l, l) = 0,Φ(t, s, l) ̸= 0 for l < s < t, and has the partial
derivative ∂Φ/∂s on E such that ∂Φ/∂s is locally integrable with respect to s in E
and ∂Φ(t, s, l)/∂s = ϕ(t, s, l)Φ(t, s, l).

For any given interval [a, b], we define another function class as below

D(a, b) = {u(t)| u and u′(t) ∈ C1[a, b], u(a) = u(b) = 0, u(t) ̸= 0 in (a, b)}. (1.3)

This paper is organized as follows: after this introduction part, we give some
known oscillation criteria for second order linear differential equations in Section 2,
and Section 3 is major in oscillation for second order nonlinear differential equa-
tions and Section 4 is major in oscillation for second order functional differential
equations, in Section 5, we give oscillation for systems of differential equations of
first order.
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2. Oscillation for linear differential equations

For second order linear differential equations, the classical form is now called Hill
equation of the form

y′′(t) + q(t)y(t) = 0, (2.1)

which has great physics background in mechanics systems and it is widely researched
in many qualitative fields. It has many generalizations in format of equations. For
example, if a damping term is added, we obtained the damped linear differential
equation

y′′(t) + p(t)y′ + q(t)y(t) = 0, (2.2)

this equation can be deduced to a formally self-adjoint equation which is called
normal form of second order linear differential equation

(r(t)y′(t))′ + q(t)y(t) = 0 (2.3)

by multiplying an integral factor. If forcing term is added, we obtain the forced
linear differential equation

(r(t)y′(t))′ + q(t)y(t) = e(t). (2.4)

Oscillation (and nonoscillation) for these linear equations and many kinds of gener-
alizations are widely researched in past more than one hundred years. Here we list
some known oscillation criteria for equation (2.1):

lim sup
t→∞

t2q(t) >
1

4
(Kenser); (2.5)

lim
t→∞

∫ t

t0

q(s)ds = ∞ (Fite-Wintner-Leighton [39]); (2.6)

lim
t→∞

1

t

∫ t

t0

∫ s

t0

q(τ)dτds = ∞ (Wintner [81]); (2.7)

lim inf
t→∞

1

t

∫ t

t0

∫ s

t0

q(τ)dτds < lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

q(τ)dτds ≤ ∞ (Hartman). (2.8)

In 1978, Kamenev [31] established a new oscillation criterion of differential equa-
tion (2.1), using integral average method, which has the result of Wintner as a
particular case. The obtained result in [31] states that the condition

lim sup
t→∞

1

tm

∫ t

t0

(t− s)mq(s)ds = ∞

for some integer m > 1 is sufficient for the oscillation of (2.1).
In 1989, Philos [57] improved the Kamenev type criterion by defining a new class

of functions H. He obtained the following results for (2.1).

Theorem 2.1. Let H ∈ H. Then equation (2.1) is oscillatory if

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)q(s)− 1

4
h2(t, s)

]
ds = ∞.
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Theorem 2.2. Let H ∈ H. Suppose that

0 < inf
s≥t0

[
lim
t→∞

inf
H(t, s)

H(t, t0)

]
≤ ∞ (2.9)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

h2(t, s)ds <∞.

Moreover, there exists a continuous function A : [t0,∞) → R such that for every
T ≥ t0,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)q(s)− 1

4
h2(t, s)

]
ds ≥ A(T ),

where A+(t) = max{A(t), 0}. Then equation (2.1) is oscillatory provided∫ ∞

t0

A2
+(t)dt = ∞. (2.10)

However, except Kenser’s oscillation criterion, all these oscillation criteria in-
volving integral forms can not determine the oscillation of Euler equation

y′′ +
γ

t2
y = 0, t ≥ 1. (2.11)

We know (2.11) is oscillation for γ > 1
4 , while nonoscillation for 0 < γ ≤ 1

4 . In 1995,
using a generalized Riccati transformation, Li [41] improved Kamenev oscillation
criteria to grantee the oscillation of Euler equation (2.11).

Theorem 2.3. Let H ∈ H. If there exists a C1 function f such that∫ t

t0

a(s)r(s)h2(t, s)ds <∞

for all t ≥ t0 and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)ψ(s)− 1

4
a(s)r(s)h2(t, s)

]
ds = ∞,

where a(t) = exp{−2
∫ t
f(s)ds}, ψ(t) = a(t)[q(t) + r(t)f2(t) − (r(t)f(t))′]. Then

equation (2.3) is oscillatory.

In 1999, Kong [33] gave an interval criterion for oscillation of (2.3).

Theorem 2.4. Let H ∈ H with ∂H
∂t = h1(t, s)

√
H(t, s) for some function h1 ∈ D0.

Then equation (2.3) is oscillatory if for all T ≥ t0, there exist a, b, c ∈ R with
T ≤ a < c < b such that

1

H(c, a)

∫ c

a

H(s, a)q(s)ds+
1

H(b, c)

∫ b

c

H(b, s)q(s)ds

≥1

4

[
1

H(c, a)

∫ c

a

r(s)h21(t, s)ds+
1

H(b, c)

∫ b

c

r(s)h2(b, s)ds

]
ds.

In 2004, Sun et. al. [70] gave a new type oscillation criterion by defining a new
type of kernel function Y, which is essential a product H(t, s)H(s, l) for a kernel
H(t, s) of Philos type.
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Theorem 2.5. Equation (2.3) is oscillatory provided for each l ≥ t0, there exists
a function Φ ∈ Y such that

lim
t→∞

∫ t

l

Φ2(t, s, l)[q(s)− r(s)ϕ2(t, s, l)]ds > 0.

As we know, oscillation is a property of interval type. We just need to pay
attention to the intervals containing zero of a solution, i.e., if there exists a sequence
of intervals [ai, bi] of [t0,∞), ai → ∞, such that for each i, there exists a solution of
(2.3) which has at least one zero in [ai, bi], then every solution of (2.3) is oscillatory,
no matter how “bad” the equation (2.3) is on the remaining parts of [t0,∞). Based
on these facts, the classical Sturm comparison reflects the Leighton’s variational
property of the equation, which can be used to obtain oscillation criterion. Here we
list the Leighton variation principle as follows:

Theorem 2.6 ( [40]). Let u ∈ D(a, b) such that the quadratic functional satisfying∫ b

a

(qu2 − ru′2)ds > 0.

Then a solution of equation (2.3) with y(a) = 0 must have a zero in (a, b).

In paper [32], Komkov gave a generalized Leighton’s variational principle.

Theorem 2.7. Suppose that there exist a C1 function u(t) defined on [s1, t1] and a
function G(u) such that G(u(t)) is not constant on [s1, t1], G(u(s1)) = G(u(t1)) = 0,
g(u) = G′(u) is continuous,∫ t1

s1

[q(t)G(u(t))− r(t)(u′(t))2]dt > 0, (2.12)

and (g(u(t)))2 ≤ 4G(u(t)) for t ∈ [s1, t1]. Then each solution of equation (2.3)
vanishes at least once on [s1, t1].

Based on the Leighton’s variation principle and the “oscillatory interval” of
forcing term, Wong [82] give a new type kind of oscillation criterion for the forced
linear differential equation (2.4)

Theorem 2.8. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2
such that

(−1)ie(t) ≥ 0, for t ∈ [ai, bi]. (2.13)

If there exists u ∈ D(si, ti) such that

Qi(u) :=

∫ ti

si

[q(t)u2(t)− r(t)(u′(t))2]dt > 0, i = 1, 2. (2.14)

Then equation (2.4) is oscillatory.

This result is remarkable since it lays a road between variational principle and
oscillation criteria of interval type using Riccati transformation. The detailed dis-
cussion of this theorem and its generalizations can be found in Kong and Pasic [34].
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3. Oscillation for nonlinear differential equations

In recent years, there are a lot of papers majoring in oscillation criteria for some
nonlinear differential equations, most of them are modeled the known results for
linear differential equations list above, we note also that a summarized paper is
published by Kong and Pasic [34]. We will give some further results in these years.

A natural generalization of Wong’s criteria is oscillation for nonhomogeneous
half-linear differential equations of the form(

r(t)|y′(t)|α−1y′(t)
)′
+ q(t)|y(t)|α−1y(t) = e(t), t ≥ t0, (3.1)

where α is a positive constant, r, q, e ∈ C([t0,∞),R) with r(t) > 0, and second
order forced quasi-linear differential equation(

r(t)|y′(t)|α−1y′(t)
)′
+ q(t)|y(t)|β−1y(t) = e(t), t ≥ t0, (3.2)

where r, q, e ∈ C([t0,∞),R) with r(t) > 0 and 0 < α ≤ β are constants. We note
that when β = α, (3.2) reduces to (3.1).

In 2002, Li and Cheng [44] obtained an oscillation criterion for (3.1) as follows:

Theorem 3.1. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2
such that (2.13) holds. Let D(si, ti) be defined as (1.3) for i = 1, 2. If there exist
H ∈ D(si, ti) and a positive, nondecreasing function ϕ ∈ C1([t0,∞),R) such that∫ ti

si

H2(t)ϕ(t)q(t)dt >

(
1

α+ 1

)α+1 ∫ ti

si

r(t)ϕ(t)

|H(t)|α−1

(
2|H ′(t)|+ |H(t)|ϕ

′

ϕ

)α+1

dt

(3.3)
for i = 1, 2. Then equation (3.1) is oscillatory.

However, the inequality (3.3) is no relation to the (α+ 1)−degree functional∫ ti

si

[
q(t)Hα+1(t)− r(t)|H ′(t)|α+1

]
dt,

which is a natural generalization of quadratic functional to half-linear differential
equation, and Theorem 3.1 cannot be applied when α > 1, since |H(t)|α−1 is the
denominator of the fraction on the right-side integral of (2.14), andH(si) = H(ti) =
0. Hence, an improvement of Theorem 3.1 which conquered the deficiency to (3.2)
was given as below (see [95]).

Theorem 3.2. Assume that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2
such that (2.13) holds. Let D(si, ti) be defined as (1.3) for i = 1, 2. If there exist
H ∈ D(si, ti) and a positive, nondecreasing function ϕ ∈ C1([t0,∞),R) such that

Qϕ
i (H) :=

∫ ti

si

ϕ(t)

[
Qe(t)H

α+1(t)− r(t)

(
|H ′(t)|+ H(t)ϕ′(t)

(α+ 1)ϕ(t)

)α+1
]
dt > 0

(3.4)
for i = 1, 2. Then equation (3.2) is oscillatory, where

Qe(t) = α−α/ββ(β − α)(α−β)/β [q(t)]α/β |e(t)|(β−α)/β (3.5)

with the convention that 00 = 1.
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The above obtained results can reduces to Wong’s result when particular func-
tions are selected. Some other generalized oscillation results align this line are
generalization of the equations (3.1) and (3.2) to more general cases. For example,
oscillation criteria of a damped half-linear differential equation of the form(

r(t)|y′(t)|α−1y′(t)
)′
+ p(t)|y′(t)|α−1y′(t) + q(t)|y(t)|α−1y(t) = e(t), t ≥ t0,

and a more generalized nonlinear differential equation(
r(t)Ψ(y(t))|y′(t)|α−1y′(t)

)′
+ q(t)f(y(t)) = e(t), t ≥ t0, (3.6)

under some mild hypotheses such as

(S1) 0 < Ψ(u) ≤M, and f ′(u) ≥ K |f(u)|
β−1
β > 0 for u ̸= 0; (3.7)

(S2)
f ′(u)

[Ψ(u)|f(u)|β−1]
1/β

≥ γ > 0 for u ̸= 0; (3.8)

(S3) 0 < Ψ(u) ≤M, and
f(u)

|u|β sgnu
≥ δ > 0 for u ̸= 0, (3.9)

here, M,K > 0, 0 < α ≤ β and γ, δ > 0 are constants can be obtained similarly
(see [10, 11, 15, 27, 29, 54, 62, 63, 93] and references cited therein). Meanwhile, using
Kokmov variational principle, oscillation criteria similar to Theorem 3.2 for second
order forced nonlinear differential equations can be obtained easily.

Among the nonlinear differential equation (3.2), a particular kind of them are
called mixed nonlinear differential equation of the form

(
r(t)|y′(t)|α−1y′(t)

)′
+ p(t)|y(t)|α−1y(t) +

m∑
j=1

qj(t)|y(t)|βj−1y(t) = e(t), t ≥ t0,

(3.10)
where r, p, qj (1 ≤ j ≤ m), e ∈ C([t0,∞),R) with r(t) > 0 and 0 < α < β1 <
β2 < · · · < βm are real numbers, p, qj (1 ≤ j ≤ m) and e might change signs. The
obtained results are a unification both of (3.1) and (3.2) (see [26,94,99] for details).
We list the main results of Zheng, Wang and Han [99].

Theorem 3.3 ( [99, Theorem 2.2]). Assume that for any T ≥ t0, there exist T ≤
s1 < t1 ≤ s2 < t2 such that (2.13) holds. Let D(si, ti) be defined as (1.3) for i = 1, 2.
If there exist H ∈ D(si, ti) and a positive, nondecreasing function ϕ ∈ C1([t0,∞),R)
such that∫ ti

si

ϕ(t)

p(t) + m∑
j=1

Qj(t)

Hα+1(t)− r(t)

(
|H ′(t)|+ |H(t)ϕ′(t)|

(α+ 1)ϕ(t)

)α+1
 dt > 0

(3.11)
for i = 1, 2. Then equation (3.10) is oscillatory, where

Qj(t) = α−α/βjβj [m(βj − α)](α−βj)/βj [qj(t)]
α/βj |e(t)|(βj−α)/βj , 1 ≤ j ≤ m

with the convention that 00 = 1.

Li, Rogovchenko and Tang [51] considered another differential equation of the
form (

r(t)|y′(t)|α−1y′(t)
)′
+ p(t)|y′(t)|α−1y′(t) + q(t)f(y(t)) = 0, t ≥ t0 (3.12)
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with f(v)/vγ ≥ µ for some positive number µ. We note that the results they
obtained are the same as those of (3.6) and (3.10) essentially since they only added
a damping term in the nonlinear equation.

For the nonlinear differential with mixed nonlinearity, we see that they are finite
numbers of terms, and we know that integral is a particular kind of sum. Hence
these equations are generalized to differential equations with integral terms. In
2011, Sun and Kong [66] considered the following differential equation

(r(t)y′(t))′ + q(t)y(t) +

∫ b

0

g(t, s)|y(t)|α(s)sgny(t)dξ(s) = e(t). (3.13)

They obtained another kind of oscillation criterion.

Theorem 3.4. Suppose that for any T > t0, there exist nontrivial subintervals
[a1, b1] and [a2, b2] of [T,+∞) such that for i = 1, 2, (2.13) holds and

g(t, s) ≥ 0, for (t, s) ∈ [ai, bi]× [0, b).

Let δ ∈
((∫ b

a
α−1(s)dξ(s)

)(∫ b

a
dξ(s)

)−1

,
(∫ a

0
α−1(s)dξ(s)

) (∫ a

0
dξ(s)

)−1
)

and η ∈

Lξ[0, b) satisfy
∫ b

0
α(s)η(s)dξ(s) = 1,

∫ b

0
η(s)dξ(s) = δ. We further assume that for

i = 1, 2, there exists a function ui ∈ D(ai, bi) such that∫ bi

ai

[Q(t)u2i (t)− r(t)u′2i (t)]dt > 0,

where

Q(t) = q(t) +

[
|e(t)|
1− δ

]1−δ

exp

(∫ b

0

η(s) ln
g(t, s)

η(s)
dξ(s)

)
with the convention that ln 0 = −∞, e−∞ = 0 and (1− δ)1−δ = 1 for δ = 1. Then
equation (3.13) is oscillatory.

Liu and Meng [49] considered a more generalized differential equation of the
form

(r(t)y′(t))′ + q(t)y(t) +

∫ b

a

g(t, s)|y(t)|γ(t,s)+1−β(t)sgny(t)dξ(s) = e(t), (3.14)

they gave the following theorems:

Theorem 3.5. Suppose that for any T > t0, there exist nontrivial subintervals
[a1, b1] and [a2, b2] of [T,+∞) such that for i = 1, 2, (2.13) holds and

g(t, s) ≥ 0, for (t, s) ∈ [ai, bi]× [a, b).

Let η : [t0,+∞)× [a, b) → (0,+∞) be a function in Lξ[a, b) such that∫ b

a

γ(t, s)η(t, s)dξ(s) = β2(t), (t, s) ∈ [t0,+∞)× [a, b),

and ∫ b

a

η(t, s)dξ(s) = β(t), (t, s) ∈ [t0,+∞)× [a, b).
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We further assume that for i = 1, 2, there exists a function vi ∈ D(ai, bi) such that∫ bi

ai

[Q(t)v2i (t)− r(t)v′2i (t)]dt > 0,

where

Q(t) = q(t) + exp

(
1

β(t)

∫ b

a

η(t, s) ln
β(t)g(t, s)

η(t, s)
dξ(s)

)
(3.15)

with the convention that ln 0 = −∞ and e−∞ = 0. Then equation (3.14) is oscilla-
tory.

Theorem 3.6. Suppose that for any T > 0, there exist nontrivial subintervals
[a1, b1] and [a2, b2] of [T,+∞) such that (2.13) holds for i = 1, 2. Let η : [t0,+∞)×
[a, b) → (0,+∞) be defined as in Theorem 3.5. We further assume that for i = 1, 2,
there exist a constant ci ∈ (ai, bi) and a function H ∈ H such that

1

H(ci, ai)

∫ ci

ai

[
Q(t)H(t, ai)−

r(t)h21(t, ai)

4

]
dt

+
1

H(bi, ci)

∫ bi

ci

[
Q(t)H(bi, t)−

r(t)h22(bi, t)

4

]
dt > 0,

where Q(t) is defined by (3.15). Then equation (3.14) is oscillatory.

Hassan and Kong [25, 26] considered the more general half-linear differential
equation of the form

(r(t)|y′(t)|α−1y′(t))′+q0(t)|y(t)|α−1y(t)+

∫ b

0

g(t, s)|y(t)|α(s)−1y(t)sgny(t)dξ(s)=e(t),

similar results were obtained as Theorem 3.4.

4. Oscillation for functional differential equations

Functional differential equations have similar oscillatory properties as linear equa-
tions in most cases. Under the hypothesis

lim
t→∞

R1(t) = lim
t→∞

∫ t

t0

ds

r(s)
= ∞.

Agarawal, Shieh and Yeh [3] obtained some oscillation criteria for the delay differ-
ential equation of the form

(r(t)y′(t))′ + q(t)y(τ(t)) = 0, t ≥ t0; (4.1)

while as

lim
t→∞

R2(t) = lim
t→∞

∫ t

t0

ds

r(s)1/α
= ∞, (4.2)

oscillation criteria were obtained in papers [10, 14] for the half-linear differential
equation with delay

(r(t)|y′(t)|α−1y′(t))′ + q(t)|y(τ(t))|α−1y(τ(t)) = 0, t ≥ t0. (4.3)

Here we list the main results of Dzurina and Stavroulakis [14].
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Theorem 4.1. Suppose that α ≥ 1 and (4.2) holds. If for some k ∈ (0, 1),∫ ∞ [
R2(τ(t))

αq(t)− ατ ′(t)

4kR2(τ(t))r(τ(t))1/α

]
ds = ∞,

then equation (4.3) is oscillatory.

Theorem 4.2. Suppose that 0 < α ≤ 1 and (4.2) holds. If∫ ∞ [
R2(τ(t))

αq(t)− ατ ′(t)

4R2(τ(t))2−αr(τ(t))2/α−1q̃(t)

]
ds = ∞,

where q̃(t) =
(

1
r(τ(t))

∫∞
t
q(s)ds

) 1−α
α

, then equation (4.3) is oscillatory.

Using variation of Young inequality, an improvement of Theorem 4.2 is listed as
follows (see [14]):

Theorem 4.3. Suppose that (4.2) holds. If∫ ∞
[
R2(τ(t))

αq(t)−
(

α

α+ 1

)α+1
τ ′(t)

R2(τ(t))r(τ(t))1/α

]
ds = ∞,

then equation (4.3) is oscillatory.

Based on oscillation criteria for linear and half-linear differential equations, there
are many new oscillation criteria for more generalized functional differential equa-
tions. In paper [43], Li and Chen extended (4.1) to the delay differential equation
of the form

(r(t)x′(t))′ + q(t)x(t− τ) +

n∑
i=1

qi(t)|x(t− τ)|αisgnx(t− τ) = e(t), t ≥ 0,

oscillation of interval type similar to Kong’s result was obtained, Liu and Bai [7]
obtained oscillation criteria for the more general equation of the form

(r(t)x′(t))′+

n∑
i=1

pi(t)x(t−τi)+
n∑

i=1

qi(t)|x(t−τi)|αisgnx(t−τi) = e(t), t ≥ 0, (4.4)

where r(t), pi(t), qi(t), e(t) are continuous functions defined on [0,∞) and r(t) >
0, p′(t) ≥ 0, α1 > · · · > αm > 1 > αm+1 · · · > αn > 0.

Theorem 4.4 ( [7, Theorem 2.1]). If for any T ≥ 0, there exist a1, b1, c1, a2, b2
and c2 such that T ≤ a1 < c1 < b1 ≤ a2 < c2 < b2, and

pi(t) ≥ 0, t ∈ [a1 − τi, b1] ∪ [a2 − τi, b2], i = 1, 2, · · · , n,
qi(t) ≥ 0, t ∈ [a1 − τi, b1] ∪ [a2 − τi, b2], i = 1, 2, · · · , n,
e(t) ≤ 0, t ∈ [a1 − τi, b1], e(t) ≥ 0, t ∈ [a2 − τi, b2].

Let D(aj , bj) be defined as (1.3), and there exist Hj ∈ D(aj , bj) such that

1

Hj(cj , aj)

∫ cj

aj

(Qj(s)Hj(s, aj)− r(s)h2j1(s, aj))ds

+
1

Hj(bj , cj)

∫ bj

cj

(Qj(s)Hj(bj , s)− r(s)h2j2(bj , s))ds > 0,
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for j = 1, 2, where η1, η2, · · · , ηn are positive constants, η0 = 1−
∑n

i=1 ηi,

Qj(t) =

n∑
i=1

pi(t)

(
t− aj

t− aj + τi

)
+ (η−1

0 |e(t)|)η0

n∏
i=1

(η−1
i qi(t))

ηi

(
t− aj

t− aj + τi

)αiηi

,

then equation (4.4) is oscillatory.

Neutral delay differential equations draw many researchers’ attention in recent
years. In 2009, Ye and Xu [98] considered the following neutral differential equation(

r(t)Ψ(y(t))
∣∣∣Z ′(t)

∣∣∣α−1

Z ′(t)
)′

+ q(t)f(y(σ(t))) = 0, (4.5)

where Z(t) = y(t) + p(t)y(τ(t)), α > 0, τ(t) ≤ t, σ(t) ≤ t. Under the hypothesis

f(u)

|u|α−1u
≥ K,Ψ(u) ≤ L−1 for u ̸= 0,

equation (4.5) is a generalization of half-linear differential equation of neutral type.

Theorem 4.5 ( [98, Theorem 2.1]). Let (4.2) hold. If there exists ρ∈C1([t0,∞),R+)
such that ∫ ∞ [

ρQ− 1

LK(α+ 1)α+1

(ρ′+(t))
α+1r(σ(t))

ρα(t)(σ′(t))α

]
dt = ∞, (4.6)

where Q(t) = q(t)(1− p(σ(t)))α, then equation (4.5) is oscillatory.

Using method similar to Sun et. al [70], Liu and Bai [42] obtained an oscillation
criterion of interval type for (4.5) with Ψ ≡ 1. They defined an operator T [·; l, t] by

T [g; l, t] =

∫ t

l

ϕ(t, s, l)g(s)ds, (4.7)

for t ≥ s ≥ l ≥ t0 and g(s) ∈ C1[t0,∞), where ϕ ∈ Y.

Theorem 4.6 ( [42, Theorem 2.1]). Let (4.2) hold. Assume that there exist func-
tions ϕ ∈ Y, ρ(t) ∈ C1([t0,∞),R+), such that

lim sup
t→∞

T

Q1(s)−
r(τ(s))ρ(s)

(τ ′(s))m

φ(s) + ρ′(s)
ρ(s)

α+ 1

α+1

; l, t

 > 0,

where Q1(s) = µρ(s)q(s)(1 − p(τ(s)))α, the operator T is defined by (4.7) and
φ = φ(t, s, l) is defined by ∂ϕ(t, s, l)/∂s = φ(t, s, l)ϕ(t, s, l). Then equation (4.5)
with Ψ ≡ 1 is oscillatory.

Liu, Meng and Liu [50] considered the following nonlinear functional differential
equation (

r(t)
∣∣∣Z ′(t)

∣∣∣α−1

Z ′(t)
)′

+ q(t)
∣∣∣y(σ(t))∣∣∣β−1

y(σ(t)) = 0, (4.8)

where Z(t) = y(t) + p(t)y(τ(t)), β ≥ α > 0, τ(t) ≤ t, σ(t) ≤ t. They obtained the
following theorem:
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Theorem 4.7 ( [50, Theorem 2.1]). Let (4.2) hold, r′(t) ⩾ 0 and σ(t) > 0. If there
exists a function ρ ∈ C1([t0,∞),R+) such that for any positive number M and for
some θ ⩾ 1, ∫ ∞

(
ρ(t)p(t)− θρ′2(t)rβ/α(σ(t))

4β(σ(t)2 )β−1σ′(t)M
α−β
α ρ(t)

)
dt = ∞, (4.9)

where p(t) = q(t)[1− p(σ(t))]β , then equation (4.8) is oscillatory.

We note that when β = α, Theorem 4.7 reduces to Theorem 4.5. Similar results
can be seen in Sun, Li, Han and Li [67] for the equation(

r(t)
∣∣∣Z ′(t)

∣∣∣α−1

Z ′(t)
)′

+ f(t, y(σ(t))) = 0

under f(t, y)sgn(y) ≥ q(t)|y|α for some positive function q(t), Li and Rogovchenko
[52] for the equation(

r(t)
∣∣∣Z ′(t)

∣∣∣α−1

Z ′(t)
)′

+ q(t)f(y(t), y(σ(t))) = 0

under f(x, y)/yα ≥ K for some positive constant K, Tunc and Grace [75] for the
equation with a damped term(

r(t)
∣∣∣Z ′(t)

∣∣∣α−1

Z ′(t)
)′

+ h(t)
∣∣∣Z ′(t)

∣∣∣α−1

Z ′(t) + q(t)f(y(σ(t))) = 0.

All these three equations origin from half-linear differential equation of neutral type.
A more general case is considered in paper [2] by Arul and Shobha

(r(t)z′(t))′ + q(t)y(σ(t)) = 0, t ≥ t0; (4.10)

where z(t) = y(t) + a(t)y(t− τ) + b(t)y(t+ δ). They showed that∫ ∞

t0

Q0(s)ds = ∞

is sufficient for oscillatory of equation (4.10), where Q0(t) = min{q(t), q(t−τ), q(t+
δ)}. Moreover, they obtained an oscillation criterion of interval type.

Theorem 4.8 ( [2, Theorem 2.3]). Let σ(t) ≤ t − τ . Assume that there exist
functions ϕ ∈ Y, ρ(t) ∈ C1([t0,∞),R+), such that

lim sup
t→∞

T

ρ(s)Q0(s)−
(1 + a+ b)

(
φ(s) + ρ′(s)

ρ(s)

)2
4σ′(s)

r(σ(s))ρ(s); l, t

 > 0, (2.1)

where the operator T is defined by (4.7) and φ = φ(t, s, l) is defined by ∂ϕ(t, s, l)/∂s =
φ(t, s, l)ϕ(t, s, l). Then equation (4.10) is oscillatory.

5. Oscillation for system of differential equations

In this section, we give some known results in oscillation criteria for linear system
of differential equations mainly.
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As a direct generalization, the equation (2.3) is generalized to the following
system of differential equations

(P (t)Y ′(t))′ +Q(t)Y (t) = 0, (5.1)

where P (t) = P ∗(t) > 0, Q(t) = Q∗(t), Y (t) are n × n matrices of real valued
continuous functions on the interval [t0,∞). By M∗ we mean the conjugate trans-
pose of the matrix M , for any n × n Hermitian matrix M , it eigenvalues are real
numbers, we always denote by λ1[M ] ≥ λ2[M ] ≥ · · · ≥ λn[M ]. The trace of M is
denoted by tr(M) and tr(M) =

∑n
k=1 λk(M).

A solution Y (t) of (5.1) is said to be nontrivial solution if detY (t) ̸= 0 for at
least one point t ∈ [t0,∞). In this paper, we say a nontrivial solution Y (t) of (5.1)
is prepared if for t ∈ [t0,∞),

Y ∗(t)P (t)Y ′(t)− (Y ∗(t))′P (t)Y (t) ≡ 0, (5.2)

i.e., Y ∗(t)P (t)Y ′(t) is symmetric. A prepared solution Y (t) of (5.1) is called to be
oscillatory, if detY (t) has arbitrarily large zeros on t ∈ [t0,∞). System (5.1) is said
to be oscillatory on [t0,∞) if every nontrivial prepared solution is oscillatory.

Etgen and Pawlowski [18] showed that system (5.1) is oscillatory provided the
scalar linear differential equation(

g[P (t)]y′
)′

+ g
[
Q(t)

]
y = 0

is oscillatory, where g : Rn×n → R+ is a positive linear functional. So the very large
number of well-known oscillation criteria for the above scalar linear differential
equation can be used to determine associated oscillation criteria for system (5.1).

Other oscillation criteria related to (5.1) is using a nonlinear function such as the
maximal eigenvalue functional λ1(·) or negative-preserving functional, a nonlinear
(and possibly discontinuous) functional q : S → R with q(A) ≤ 0 whenever A ≤ 0 is
called negativity-preserving, the class of all such negativity-preserving functionals
on S being denoted by N (S). The negativity-preserving functionals N (S) contain
most known functionals used in oscillation, for example, q(A) = λ1(A); q(A) =
tr(A − P ) where P is positive semi-definite and fixed, are of negativity-preserving
functionals. In addition,

q(A) =
λ1(A)

1− λ1(A)
; q(A) = aii, 1 ≤ i ≤ n,

are also negativity-preserving functionals. We also note that any positive linear
functional is negativity-preserving. Thus, functionals in the class N (S) make up all
the functionals being used in the current study of matrix oscillation theory. here
we give a Kamenev type oscillation criteria for system (5.1).

Theorem 5.1 ( [17]). Let H ∈ H. Then system (5.1) is oscillatory if

lim sup
t→∞

1

H(t, t0)
λ1

{∫ t

t0

[
H(t, s)Q(s)− 1

4
h2(t, s)P (s)

]
ds

}
= ∞.

Another type of oscillation criteria are related to matrix differential system of
the form

(P (t)Y ′(t))′ +R(t)Y ′(t) +Q(t)Y (t) = 0, (5.3)
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which is modeled by the damped second order linear differential equations

(p(t)y′)′ + r(t)y + q(t)y = 0. (5.4)

These results are obtained by new defined prepared solutions which satisfy both
(5.2) and

Y ∗(t)R(t)Y ′(t)− (Y ∗(t))′R(t)Y (t) ≡ 0. (5.5)

In paper [72], by the function class Y, the authors defined a linear operator

Ta(D,E, F ; r, t)=

∫ t

r

a(s)
[
Φ2(t, s, r)D(s)+Φ(t, s, r)Φ′

s(t, s, r)E(s)−Φ′2
s (t, s, r)F (s)

]
ds

for any D(t), E(t) and F (t) being n × n matrices of real valued continuous func-
tions on the interval [t0,∞), where a(t) is a positive and continuously differentiable
function on [t0,∞), Φ(t, s, l) ∈ Y. They obtained the oscillation for system (5.3).

Theorem 5.2. If there exist Φ ∈ Y and f ∈ C1[t0,∞) such that for each r ≥ t0,

lim sup
t→∞

λ1[Ta(D,R, P ; r, t)] > 0,

where a(s) = exp(−2
∫ s
f(s)ds), D(s) = (M −RP−1R/4)(s), M(s) = (Q+(f2P )−

(fP )′ − fR)(s), then system (5.3) is oscillation.

Using Sturm’s comparison theorem and a positive linear functions, Liu and
Meng [48] obtained the following theorems for system (5.3).

Theorem 5.3. Suppose equation (2.3) is oscillatory. If there exist a function f(t) ∈
C1[t0,∞) and a positive linear functional g such that

(i) g
[
M(t)− q(t)In −

(ρRP−1R

4

)
(t)
]
⩾ 0,

(ii) g
[
p(t)In − ρP (t)

]
⩾ 0,

on [t1,∞) for some t1 ⩾ t0, where ρ(t) = exp
(
− 2

∫ t
f(s)ds

)
, and M(t) =

ρ(t)
[
Q(t) + (f2P )(t)− (fP )′(t)−

(
R
2

)′
(t)
]
, then system (5.3) is oscillatory.

Another system of differential equations is linear Hamiltonian system. The
oscillatory properties for the linear Hamiltonian vector systemx′ = A(t)x+B(t)u,

u′ = C(t)x−A∗(t)u, t ≥ t0,
(5.6)

are investigated together with its corresponding matrix systemX ′ = A(t)X +B(t)U,

U ′ = C(t)X −A∗(t)U, t ≥ t0,
(5.7)

where A(t), B(t), C(t) are real n×n matrix-valued functions, B,C are Hermitian, B
is positive definite, x, u ∈ Rn andX,U ∈ Rn×n. For any two solutions (X1(t), U1(t))
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and (X2(t), U2(t)) of system (5.7), the Wronski matrix X∗
1 (t)U2(t)− U∗

1 (t)X2(t) is
a constant matrix. In particular, for any solution (X(t), U(t)) of system (5.7),
X∗(t)U(t)− U∗(t)X(t) is a constant matrix.

A solution (X(t), U(t)) of system (5.7) is said to be nontrivial, if detX(t) ̸= 0
is fulfilled at least one t ≥ t0. A nontrivial solution (X(t), U(t)) of system (5.7) is
said to be conjoined (prepared) if X∗(t)U(t)− U∗(t)X(t) ≡ 0, t ≥ t0. A conjoined
solution (X(t), U(t)) of (5.7) is said to be a conjoined basis of (5.6) (or (5.7)) if the

rank of the 2n× n matrix

X(t)

U(t)

 is n.

Two distinct points a, b in [t0,∞) are said to be (mutually) conjugate with
respect to (5.6) if there exists a solution (x(t), u(t)) of (5.6) with x(a) = x(b) = 0
and x(t) ̸= 0 on the subinterval with end-points a and b. The system (5.6) is said to
be disconjugate on a subinterval J of [t0,∞) if no two distinct points are conjugate.
If (5.6) is disconjugate on J and (X(t), U(t)) is the conjoined basis of (5.7) satisfying
X(a) = 0, U(a) = I, the identity n × n matrix, a ∈ J, then detX(t) ̸= 0 for t ∈ J.
A conjoined basis (X(t), U(t)) of system (5.7) is said to be oscillatory in case the
determinant of X(t) vanishes on [T,∞) for each T ≥ t0.

Let Φ(t) be a fundamental matrix for the linear system v′ = A(t)v. The pair
(A(t), B(t)) is called be controllable if the row of Φ−1(t)B(t) are linearly indepen-
dent over any subinterval of [t0,∞). This definition is coincided with the following
fact: if for any solution (x(t), u(t)) of (5.6), one have that x(t) ≡ 0 on any non-
degenerate subinterval J ⊆ [t0,∞) implies x = u ≡ 0 on [t0,∞). Since B(t) > 0, we
have the pair (A(t), B(t)) is controllable, suppose there exists an oscillatory con-
joined basis of system (5.7), then by Sturm’s separation theorem, we know that
each conjoined basis of system (5.7) is oscillatory, so system (5.6) (or (5.7)) is called
oscillatory. Now the definition of oscillation agrees with the non-disconjugacy of
system (5.6) (or (5.7)) on any neighborhood of +∞.

When considering the oscillatory properties for linear Hamiltonian system (5.6),
one of the most useful methods is the so-called Reid’s roundabout theorem. It gives
an equivalence among disconjugacy; the existence of solution for Riccati differen-
tial equation and the positivity of corresponding quadratic functional on an given
interval [a, b].

Theorem 5.4 (Reid’s Roundabout Theorem). The following statements are equiv-
alent:
(i) System (5.6) is disconjugate in the interval [a, b].
(ii) The quadratic functional

F(x, u; a, b) =

∫ b

a

[uT (t)B(t)u(t) + xT (t)C(t)x(t)]dt

is positive for every nontrivial admissible pairs x, u, that is x′ = A(t)x+B(t)u and
x(a) = 0 = x(b).
(iii) The solution (X,U) of system (5.7) given by the initial condition X(a) = 0,
U(a) = I satisfies detX(t) ̸= 0 for t ∈ (a, b].
(iv) There exists a conjoined basis (X,U) of system (5.7) such that X(t) in non-
singular for t ∈ [a, b].
(v) There exists a symmetric matrix Q(t) which for t ∈ [a, b] solves the Riccati



Recent development in oscillatory properties· · · 1297

matrix differential equation

Q′(t)− C(t) +AT (t)Q(t) +Q(t)A(t) +Q(t)B(t)Q(t) = 0

related to system (5.7) by the substitution Q = UX−1.

Using Theorem 5.4, one can obtain oscillation for linear Hamiltonian system
(5.6) as follows: if for arbitrarily large a < b, there exists an admissible pair x, u
such that F(x, u; a, b) < 0, then system (5.6) is oscillatory. However, since x and u
are n-dimensional vectors, it is difficult for one to find such an admissible pair x, u.
It looks easier for us to obtain oscillation by scalar function, rather than vector
function.

Some of oscillation criteria involve the fundamental matrix Φ(t) for the linear
system v′ = A(t)v. For example, using the fundamental matrix Φ(t), Kamenev
type, Philos type and interval type oscillation criteria for Hamiltonian system (5.7)
can be obtained in a similar manner. These results are generalized by Li, Meng and
Zheng [46] by introducing a new parameter β.

Theorem 5.5. Suppose that there exist three positive and real-valued functions
ϕ, θ, k ∈ C1[t0,∞), such that, for some β ≥ 1, and for some H ∈ W,

lim sup
t→∞

1

H(t, t0)
λ1

{∫ t

t0

[
H(t, s)k(s)C2(s)−

β

4
h2(t, s)B−1

2 (s)

]
ds

}
= ∞, (5.8)

where C2(t) = −
[
Φ∗ θ

ϕ

{
C + α

θ (B
−1A+A∗B−1) + (αθB

−1)′ − α2

θ2 B
−1
}
Φ
]
(t) and

B2(t) =
ϕ(t)
θ(t)Φ

−1(t)B(t)Φ∗−1(t). Then system (1.2) is oscillatory.

In paper [13], the authors obtain oscillation criteria with the fundamental matrix
Φ(t) as follows:

Theorem 5.6. System (5.7) is oscillatory provided for each T ≥ t0, there exist
a, b ∈ R, T ≤ a < b and u ∈ C1[a, b] satisfying u(a) = u(b) = 0, such that

λ1

[∫ b

a

(
u2(s)C2(s)− (u′(s))2B2(s)

)
ds

]
= ∞,

where C2(s) = −Φ∗(t)C(t)Φ(t) and B2(s) = Φ∗(t)B−1(t)Φ(t).

However, the use of the fundamental matrix Φ(t) eliminates the applications
of these criteria, because such a system cannot be solved for variation of A(t) in
general. Moreover, by using the transformationX

U

 =

Φ−1(t) 0

0 Φ∗(t)

X

U

 , (5.9)

we can transforming (5.7) into the following Hamiltonian systemX
′
= Φ∗(t)B(t)Φ(t)U,

U
′
= Φ−1(t)C(t)Φ∗−1(t)X, t ≥ t0.

(5.10)
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We can easily transform (5.10) into (5.1) with P (t) = Φ−1(t)B−1(t)Φ∗−1(t), Q(t) =
−Φ−1(t)C(t)Φ∗−1(t). Thus these criteria are similar to that of system (5.1).

Similar to [70], by multiplying a ternary function ϕ(t, s, r) = (t − s)2(s − r)2ξ,
one can obtain oscillation for system (5.7). Here we list a result as follows.

Theorem 5.7. System (5.7) is oscillatory provided for some ξ > 1
2 and for each

r ≥ t0,

lim sup
t→∞

1

t2ξ+1
λ1

{∫ t

r

(t− s)2(s− r)2ξ
(
D0(t) +

ξt− (ξ + 1)s+ r

(t− s)(s− r)
K(s)

)
ds

}
>

ξ

(2ξ − 1)(2ξ + 1)
,

where D0(s) = (−C −A∗B−1A)(s) and K(s) = (A∗B−1 +B−1A)(s).

Dube and Minagrelli [13, 53] obtained some oscillation criteria for system (5.7)
of interval type. Here we lists two of these theorems.

Theorem 5.8. Suppose that there exists f(t) ∈ C([t0,∞);R) such that fB−1 is

differentiable, and α(t) = exp{−2
∫ t
f(s)ds}. If there exists q ∈ N (S), and for each

T ≥ t0, there exist a, b ∈ R, T ≤ a < b, u ∈ Z[a, b] such that

q

{∫ b

a

[
u2D − α (uA∗ − u′I)B−1 (uA− u′I)

]
(t)dt

}
> 0, (5.11)

where D(t) = {α[−C − 2fK + f2B−1 − (fB−1)′]}(t). Then system (5.7) is oscilla-
tory.

Theorem 5.9. Suppose that there exists a(t)∈C([t0,∞);R+) such that a(t)B−1(t)≤
I and f(t)B−1(t) is differentiable, where f(t) = −a′(t)

a(t) . If for each r ≥ t0 and for
some µ, ν > 1,

lim sup
t→∞

1

tµ+ν−1
λ1

{∫ t

r

(t− s)µ(s− r)ν
(
D1(s) +

νt− (µ+ ν)s+ µr

(t− s)(s− r)
K(s)

)
ds

}
> µν(µ+ ν − 2)

Γ(µ− 1)Γ(ν − 1)

4Γ(µ+ ν)
, (5.12)

where where D1(t) = D(t) − (aA∗B−1A)(t), K(t) = a(t)
2 (A∗B−1 + B−1A)(t), and

D(t) = {a[−C − 2fK + f2B−1 − (fB−1)′]}(t). Then system (5.7) is oscillatory.

In 2009, Li, Meng and Zheng [47] obtained a new type of oscillation criteria for
system (5.7) using a parameter β ≥ 1.

Theorem 5.10 ( [47, Theorem 2.1]). Suppose there exist a function f(t) ∈ C1[t0,∞)
and a positive linear functional g on R, for some β ≥ 1, such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

g

[
−H(t, s)

(
C1+A

∗B−1
1 A+(B−1

1 A)′
)
(s)− β

4
h2(t, s)B−1

1 (s)

]
ds=∞,

where

B1(t) = a−1(t)B(t), a(t) = exp

{
−2

∫ t

f(s)ds

}
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and

C1(t) = a(t)
{
C(t) + f(t)[B−1A+A∗B−1](t) + [f(t)B−1(t)]′ − f2(t)B−1(t)

}
,

then system (5.7) is oscillatory.

Using positive linear functional, Yang, Mathsen and Zhu [96] obtained the fol-
lowing oscillation criteria for system (5.7).

Theorem 5.11. Assume there exist a positive function v ∈ C1 ([a,∞), (0,∞)) and
a positive linear functional satisfying g on the collections of real n×n matrix, such
that

lim
t→∞

∫ t

a

1

v(s)g(B−1(s))
ds = ∞,

and
lim
t→∞

g(J0(t)) = ∞,

where

J0(t) =

∫ t

a

[
−v(A∗B−1A+ C) +

v′

2
(A∗B−1 +B−1A)− v′2

4v
B−1

]
(s)ds

− v(t)B−1(t)A(t) +
v′(t)

2
B−1(t).

Then system (5.7) is oscillatory.

Since J0(t) is not symmetric, by defining a symmetric matrix J(t) = (J0(t) +
J∗
0 (t))/2, one can obtain Hatman type oscillation criterion for Hamiltonian system

(5.7) based on the above mentioned oscillation criterion and Hartman type oscilla-
tion criterion (2.8) of equation (2.3).

Theorem 5.12. Assume that there exists a positive function v ∈ C1 ([a,∞), (0,∞))
satisfying v(t) ≤ λn(B(t)). Moreover,

lim inf
t→∞

1

t

∫ t

a

trJ(s)ds = −∞. (5.13)

Then system (5.7) is oscillatory if

lim approx supt→∞λn(J(t)) > −∞; (5.14)

Al-Dosary, Abdullah and Hussein [1] obtained some new oscillation criteria for
the linear Hamiltonian matrix system of the formU ′ = A(t)U +B(t)V,

V ′ = C(t)U + (µI −A∗(t))V,
(5.15)

where A(x), B(x) = B∗(x), B(x) is either positive definite or negative definite,
C(x) = C∗(x) are n×n matrices of real valued continuous functions on the interval
J = [t0,∞). A more generalized Hamiltonian system of the formU ′ = (A(t)− λ(t)I)U +B(t)V,

V ′ = C(t)U + (µ(t)I −A∗(t))V, t ≥ t0.
(5.16)



1300 F. Meng & Z. Zheng

is considered in [69]. In fact, this system can be transformed into Hamiltonian
system (5.7) by the transformation introduced by Shao, Meng and Zheng [69] as
follows:

Lemma 5.1 ( [69, Lemma 2.1]). The transformation

T =

 αe
∫
λI 0(

e−
∫
µ
)
Q
(
e−

∫
µ
)
I

 (5.17)

makes system (5.16) to the Hamiltonian system (5.7) where

α =

 1, if B is positive definite,

−1, if B is negative definite,

and I is the identity matrix, 0 is the zero matrix, Q is any constant nonzero sym-
metric n × n matrix, A1 = A − BQ, B1 = αe

∫
(λ+µ)B, C1 = αe−

∫
(λ+µ)(QA −

QBQ+ C − (λ+ µ)Q+A∗Q) and D1 = A∗ −QB.

By introducing a new constant matrix Q, the authors in [69] obtained a new
interval oscillation criterion for system (5.16), which improved Theorem 5.8.

Theorem 5.13. Suppose that there exists f(t) ∈ C([t0,∞);R) such that fB−1 is

differentiable, and α(t) = exp{−2
∫ t
f(s)ds}. If there exists q ∈ N (S), and for each

T ≥ t0, there exist a, b ∈ R, T ≤ a < b, z ∈ Z[a, b] such that

q

{∫ b

a

[
(z2D)(t)−α(t)e−

∫ t
t0

(λ+µ)(s)ds[
(z(A∗−QB)−z′I)B−1(z(A−BQ)−z′I)

]
(t)
]
dt

}
> 0,

where

D(t) =
{
α
[
−e−

∫
(λ+µ)(QA−QBQ+ C − (λ+ µ)Q+A∗Q)− 2fK

+e−
∫
(λ+µ)f2B−1 −

(
e−

∫
(λ+µ)fB−1

)′]}
(t),

K(t) = e
−

∫ t
t0

(λ+µ)(s)ds
[
(
A∗B−1 +B−1A

)
(t)− 2Q]

and Q is any constant nonzero symmetric n× n matrix, then system (5.7) is oscil-
latory.
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