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Abstract In this paper we provide sufficient conditions which guarantee the
existence of a system of invariant measures for semigroups associated to sys-
tems of parabolic differential equations with unbounded coefficients. We prove
that these measures are absolutely continuous with respect to the Lebesgue
measure and study some of their main properties. Finally, we show that they
characterize the asymptotic behaviour of the semigroup at infinity.
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1. Introduction

In this paper we prove the existence of systems {; : i = 1,...,m} of finite signed
Borel measures which satisfy the equality

Z/Rd dm:Z/Rdfidui, i=1,...,m, (1.1)
=1

for any ¢t > 0 and f € B,(R% R™) (the space of vector-valued bounded Borel func-
tions f : R? — R™) or, equivalently, for any f € C,(R% R™) (the subspace of
By (R4 R™) consisting of continuous functions). Here, {T(t)};>¢ (from now on sim-
ply denoted by T(t)) is the semigroup of bounded linear operators on By(R%; R™),
associated to the vector-valued differential operator A, defined on smooth functions
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for any 2 € R% and j = 1,...,m, under suitable assumptions on its coefficients.
Formula (1.1) seems the natural vector-valued counterpart of the invariant measure
of the scalar case. A probability measure is called invariant for a Markov semigroup
{T(t)}+>0 (from now on simply denoted by T(t)) associated in By(R?) to an elliptic
operator (with unbounded coefficients) A if

[ rOsau= [ san >0, e B,
Rd R

For this reason, we call system of invariant measures for T(t) any family {p; : ¢ =
1,...,m} of finite measures which satisfy (1.1).

In the scalar case, under quite mild (algebraic) conditions on the coefficients of
the operator A, there exists a unique invariant measure p and p is equivalent to the
Lebesgue measure (see Lorenzi [16] and Metafune etc [23]). This measure plays an
essential role in the analysis of the semigroup T'(t). Indeed, if the coefficients of A
are unbounded, then the LP-spaces with respect to the measure u (say LP(R?, 1))
are the best LP-setting where to study the semigroup T'(t) (see e.g., Angiuli etc [4,5],
Davies etc [9], Farkas etc [11], Gross [12], Lorenzi etc [17], Lunardi [19], Metafune
etc [22], Rockner ete [26], Wang [27]). As it is shown in Priiss etc [25], the usual
Lebesgue LP-spaces are not, in general, a good setting for the semigroup T'(¢), unless
(restrictive) assumptions are prescribed on the coefficients of the associated elliptic
operator (see also [6] for the vector-valued case). As a matter of fact, the measure y
is not explicit in general. In any case, both local and global regularity results for its
density p with respect to the Lebesgue measure are known in many cases (see e.g.,
Bogachev etc [7], Lorenzi [16] and Metafune etc [21]). The typical way to study
the regularity of p is to see it as a distributional solution of the adjoint equation
A*p=0.

The relevance of the invariant measure p lies also on the fact that it allows to
characterize the asymptotic behaviour, as ¢ tends to 4oco, of the semigroup they
are associated to. Indeed, for any f € LP(R%, ), T(t)f converges in LP(R?, 1) to
the average of f with respect to the measure p, as t tends to 400 (see e.g., Da
Prato etc [8] and Lorenzi [16]). The convergence is also local uniform in R? if f is
bounded and continuous (see e.g., Lorenzi etc [18]).

For semigroups associated to systems of elliptic equations, as the case that we
are considering here, the situation is much more complicated and the picture is still
far to be completely clear. One of the most typical feature of the scalar case is the
positivity of the semigroup T'(¢), which follows from a variant of the classical maxi-
mum principle. This property and the ergodicity of T'(t) imply in a straightforward
way that, whenever it exists, y is a positive measure since

t—+oo t

[ fau= i 5 [ @enods  5ec®).
R4 0

As it is well known, already in the case of bounded and smooth enough coefficients,
in general the semigroups associated to systems of elliptic operators do not pre-
serve the cone of functions f with all nonnegative components. Indeed, Otsuka [24]
shows that the semigroup associated to the operator Ag (with smooth and bounded
coefficients), defined on smooth functions ¢ by

d
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for any € R? and j = 1,...,m, is positive if and only if the drift terms of A are
diagonal, i.e., (Bg) = bil,, for any k = 1,...,d, and the potential matrix C has
nonnegative elements outside the main diagonal (see also Maz'’ia etc [15]).

To the best of our knowledge, the first paper which deals with systems of invari-
ant measures for systems of Kolmogorov equations is Addona etc [2], where the case
of weakly coupled systems with a potential term is considered, i.e., in that situation
the operator A is defined, on smooth enough functions ¢, by

d 2. T d . m
(A0 = 3 an@) T 43 ()2 ) + 3Ol 6i(0)
h,k=1 k=1 i=1

for any j =1,...,m, x € R%. Under suitable conditions on C' which, in particular,
imply that the associated semigroup T(¢) is bounded, in Addona etc [2] we prove
that the semigroup T(t) also preserves the cone of nonnegative functions and this
makes the analysis easier. In particular, we are able to characterize all the systems
of invariant measures in terms of the invariant measure of the scalar semigroup
T(t) associated to the operator A = Tr(QD?) + (b, V) in the space of bounded and
continuous functions over RY.

This paper represents the second step in a better understanding of systems of
invariant measures, its analogies and differences with the invariant measure of the
scalar case. Motivated by the scalar case and also by the results in Addona etc [2]
we would like to define a system of invariant measure through the limit (in a suitable
sense)

t—0 ¢

1
hmf/O (T(s)f)ds, (1.3)

when f : RY — R™ is an arbitrary bounded and continuous function. The first
problem that we have to face is that, in the scalar case, T'(¢) is a bounded semigroup.
In general, this is no more true for semigroups associated to systems of Kolmogorov
equations coupled up to the first-order (see Remark 2.1). As it is shown in Addona
etc [1] the semigroup T(t) admits the integral representation

(T =Y [ Hwpsltnd),  £e BEERT, i=1.m,
j=17/R

for any z € RY, where each p;;(t,x,dy) is a signed measure. In Proposition 2.1
we show that the boundedness of T(t) is equivalent to the boundedness of the
family of measures {|p;;|(t,z,dy) : t > 0,z € R%} for any 4,5 = 1,...,m, where
Ipij|(t, x,dy) denotes the total variation of the measure p;;(t,x,dy). Nevertheless,
even if this condition is not satisfied, under suitable conditions and using the point-
wise gradient estimate in Proposition 2.4 we prove that, for each zq € R? and each
f € By(R%R™), the function (T(-)f)(z) is bounded in (0, +00) (see Theorem 2.4).
This fundamental result allows us to prove that the limit in (1.3) exists in the sense
that the function  — } fot (T(s)f)(x)ds converges locally uniformly in R? as ¢ tends
to +00. The limit g¢, which is a continuous, but a priori an unbounded function, has
a controlled growth at infinity, and this property allows us to apply the semigroup
T(t) to such a function g¢. It turns out that T(t)gs = g for any ¢ > 0, i.e., g¢ is
a fixed point of the semigroup T(¢). Using again the pointwise gradient estimates,
we can then conclude that g¢ is a constant function. This allows us to define m
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systems of invariant measures for the semigroup T(t) (say, {N; i =1,...,m},
1=1,...,m).

We then exploit some properties of the above systems of invariant measures. We
show that each measure ,ué» is absolutely continuous with respect to the Lebesgue
measure and prove some regularity and integrability properties of the density of
their total variations with respect to the Lebesgue measure (see Proposition 3.2
and Theorem 3.3). We also prove that a suitable unbounded function ¢ (which is
a power of the Lyapunov function of the scalar operator A = Tr(QD?) + (b, V),
see Hypothesis 2.1(iii)) is summable with respect to all the measures || This
gives a first partial information on the structure of the spaces LP(R9, |/¢§|) and,
combined with Theorem 2.4(i), shows that |T(t)f| is in LP(R?,|ut|) for any f €
By(R?,R™) and p < p, for a suitable exponent p, (explicitly computable). Then,
in Theorem 3.2 we characterize all the systems of invariant measures {p; : j =
1,...,m} such that the above function ¢ belongs to L*(R?, |u;]) for any j: they are
linear combinations of the measures “3‘ in the sense that there exist real constants

Cl,.-.,Cm such that p; = 2211 ci,ué» for any 7 = 1,...,m. This result shows, in
particular, that systems of invariant measures are infinitely many. Among all the
systems of invariant measures, the m systems {,u; :j = 1,...,m} have a very

relevant peculiarity: as the invariant measure of the scalar case, they are related
to the long-time behaviour of the function T(¢)f. More precisely, in Theorem 3.5
we show that (T(t)f); converges to >7", [pu fidp} for any @ = 1,...,m and any
bounded and continuous function f, locally uniformly in R? as ¢ tends to +oc.

Finally, we confine to a particular case where the invariant measure of the scalar
operator A is explicit and provide a sufficient condition for a system of measures,
absolutely continuous with respect to the Lebesgue measure, to be a system of in-
variant measures for T(¢). Based on this result, we provide some concrete examples
of systems of invariant measures, which consist of signed measures.

The paper is organized as follows. In Section 2 we first introduce the main
assumptions on the coefficients of the operator A that we use in the paper. In
particular, these assumptions guarantee the existence of both the semigroups 7'(t)
and T(t) and the invariant measure p of the semigroup T'(t). We also provide a
class of elliptic systems which satisfies our assumptions. Then, we prove that the
so-called weak generator can be applied to the semigroup T(t) and characterize its
domain. Subsection 2.3 is devoted to pointwise gradient estimates, which relate the
jacobian matrix of T'(¢)f to the scalar semigroup 7'(¢) applied to the jacobian matrix
of f or to f itself. This kind of estimates have been already proved in [6] when the
semigroup T(t) is associated to an elliptic operator with a nontrivial potential term.
In that case the presence of the potential term was crucial to deduce the estimates.
To conclude, in Subsection 2.4, we prove some further relevant properties of the
semigroup T(¢) that we need in the paper. In Section 3, the main body of the
paper, we prove the existence of systems of invariant measures for the semigroup
T(t), study their main properties as well as the asymptotic behaviour of the function
T(t)f when ¢ tends to +oo and f is bounded and continuous over R%. Finally, in
Appendix A we collect elliptic and parabolic a priori estimates which we use in the

paper.

Notation. Vector-valued functions are displayed in bold style. Given a function
f (resp. a sequence (f,)) as above, we denote by f; (resp. fy ;) its i-th component
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(resp. the i-th component of the function f,,). By By(R%R™) we denote the
set of all the bounded Borel measurable functions f : R? — R™, where ||f||2, =
S supgepa | fx(x)[2. For any k > 0, CF(RYR™) is the space of all £ : RT — R™
whose components belong to C’f (R%;R) (throughout the paper simply denoted by
CF(RY)), where “b” stays for bounded. Similarly, the subscripts “c”, 70" and “loc”
stands for compactly supported, vanishing at infinity and locally, respectively. The
symbols D.f, D;f and D;;f, respectively, denote the time derivative, the first-
order spatial derivative with respect to the i-th variable and the second-order spatial
derivative with respect to the i-th and j-th variables. We write J,u for the Jacobian
matrix of u with respect to the spatial variables, omitting the subscript  when no
confusion may arise. By e; we denote the j-th vector of the Euclidean basis of R™.
Finally, throughout the paper we denote by ¢ a positive constant, which may vary
from line to line and, if not otherwise specified, may depend at most on d, m. We
write ¢s when we want to stress that the constant depends on 4.

2. Assumptions, preliminary results and gradient
estimates

2.1. Assumptions and preliminary results

We consider the following standing assumptions on the coefficients of the operator A
defined in (1.2) which we split into the sum of two differential operators as follows:

d m
(AQ)j(z) =: (AG) (@) + > Y (Br(x));iDrGi(z),  j=1,...,m,

k=1 i=1

for any € R? and any smooth enough function ¢ : R — R™.

Hypotheses 2.1. (i) The coefficients ¢;; = ¢;; belong to Cllo"ga(Rd) for any

i, = 1,...,d and some a € (0,1). Moreover, Ay := inf cga Ag(z) > 0
where A\g(z) denotes the minimum eigenvalue of the matrix Q(z);

(ii) the coefficients b; and the entries of the matrices B; (i = 1,...,d) belong

to C\Lt*(R?). Moreover, there exists a nonnegative function v such that

|(Bi) k] < YinR? forany j,k=1,...,m,i=1,...,dand £ := supga /\52%1/) <
~+00;

(iii) there exist a, € R, ¢, > 0 and a (Lyapunov) function 1 < ¢ € C?(R?), blowing
up as |z| tends to +o0, such that Ap < a, —c.p, where A = Tr(QD?)+ (b, V),
and b = (by,...,bq);

(iv) there exists py € (1,2] such that

: 2 m X x —-3)2
0> op, := sup |:Abe($)+( Z |DJBl(.’I,‘)|2> +d( £+dk( )()‘Q( )) )

weRd 5 4min{1,pg — 1} ’

where Ay, p(z) is any function which bounds from above the quadratic form
associated to (J,b)(z) and k(z) =  Joax |Dpqij(z)| for any x € R
<i,j,

(v) there exist two constants v > 2 and ¢, > 0 such that ¢ < ¢, in R%.
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Example 2.1. Let A be the second order elliptic differential operator defined in
(1.2) with

Qz) = (1+[a)PQ"x), blz) = —box(1+ |2*)",  Bi(x) = (1+ [2[*)* B(x),

for any x € R?, where Q°(x) is a positive definite d x d-matrix for any z € R%,
bo > 0, BY(z) are m x m-matrices for any x € R, the entries of the matrix-valued
functions Q° and B? (i = 1,...,d) belong to C}t*(R%) for some a € (0,1), and
p, 7, 8; > 0 satisfy the conditions spyax := max{si,...,sq} < p/2 and r > p. Clearly,
Hypothesis 2.1(i) and (ii) are satisfied. In particular, Ag(z) > A\ (1 + |z|?)? for
any € R and € < & = )\;1/2 max;—1, 4| BY|lc, where A1 denotes the infimum
over R? of the minimum eigenvalue of the matrix Q°(x). Moreover, for any choice
of h € N the function ¢(z) = (1 + |2|?)" is a Lyapunov function for the operator
A = Tr(QD?) + (b, V), so that Hypotheses 2.1(iii) and (v) are trivially satisfied,
this latter one for any choice of v > 2. Finally, since k(z) < co(1 + |z|?)P for any
x € R% and some positive constant ¢y, we obtain that, if there exists py € (1,2] such
that

d % _12
d(m& + deoAq ?)

25;(| BY||so + | D; BY[|0)? ! b 2.1

(X e+ 10;5000) 4 T EION E g,

4,J=1

then Hypothesis 2.1(iv) is fulfilled. Indeed,

- : m X x -3)2
o) 2 2t

i,j=1

d 1
r s —r -1 2
(1 [ oo (3 a4 B0 DB )
ij=1
_1 »
d(mgo + deohy * (1 + |2]*) 7% )?
4min{l,po — 1}

(1+ oy

for any x € R% Due to our choice of the parameters p, » and s, the function in
square brackets assume its maximum value at = 0, which is negative when (2.1)
is satisfied.

Under (a part of) Hypotheses 2.1 the following result holds true.

Theorem 2.2 (Section 4, Metafune etc [23]). Assume that Hypotheses 2.1(4)-(ii7)
are satisfied. Then, for any f € Cy(R?) the Cauchy problem

Dyu(t,z) = Au(t,z), t¢€ (0,+00), z € RY,
U(O,:L’) = f(x)a T e Rda

admits a unique classical solution uy € Cy([0, +00) X]Rd)ﬂC'llota/ZHa((O, +00) xR%)
satisfying ||ug(t, ) loo < |flloo for any t > 0. Moreover, if we set T'(t)f := us(t,-)
for anyt >0 and f € Cy(RY), and T(0) = Id, then T(t)g, converges to T(t)g locally
uniformly as n tends to +oo, for anyt > 0 and any bounded sequence (g,) C Cp(R?)

converging pointwise in R? to g € Cy(R?).
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The semigroup T'(t) admits the following integral representation:
(T ) = | flypt,z,dy), t>0, z€R?, feCyRY), (2.2)
R

where the p(t, z, dy)’s are probability Borel measures, each of them equivalent to
the Lebesgue measure. In addition, Hypothesis 2.1(4i4) implies that T'(t) admits a
unique invariant measure u, that is a Borel probability measure which satisfies the
condition

/Rd T(t) fdp = /R fdp, >0,

for any f € Cy(R?). This result is due to Has'minskii (see Has'minskii [13, Chapter
3, Theorem 5.1]). Hypothesis 2.1(iii) and the result in Kunze etc [14], (see Lemma
5.3), imply that ¢ € L*(R%, 1), that one can apply the scalar semigroup T'(t) to the
function ¢ and

(TH)p)(z) < ¢ las + (z),  t>0, 2 €RY, (2.3)

where the constants a, and c, are the same as in the quoted hypothesis.

Hypotheses 2.1(i)-(iii) ensure that also the vector-valued Cauchy problem asso-
ciated to the operator A admits a unique classical solution.

Theorem 2.3 (Theorem 2.9, Addona etc [1]). Let Hypotheses 2.1 be satisfied.
Then, for any f € Cy(R%R™) the Cauchy problem

Duu(t,z) = Au(t,z), t€ (0,+0), r € RY, (2.4)
u(0,z) = f(x), r € RY, .
admits a unique locally in time bounded classical solution u. Moreover, u belongs
to C’llota/2’2—"‘%((O7 +00) x RGR™) and
[u(t, o) < TR ), (4a) € [0,400) x RY, (2.5)
where 8 = 47 m2d&? and £ is defined in Hypothesis 2.1(ii). As a byproduct,
lu(t,z)| < e!||f]|s0, (t,x) € [0, +00) x RY £ € Cy(REGR™). (2.6)

Remark 2.1. In the scalar case, the semigroup associated to an elliptic operator
A with zero potential term is always contractive as a straightforward consequence
of the maximum principle. In the vector-valued case, the maximum principle does
not hold if the elliptic operator is coupled at the first-order as our operator is. This
shows why we cannot expect (2.5) with 8 = 0. On the other hand, we can expect
neither the semigroup T(t¢) to be bounded. Indeed, consider the two-dimensional
elliptic operator A defined on smooth functions ¢ = (¢1,(2) by

AC = (D:mcCI - DzCl + DICQu D:z:xC? - 5DIC1 + Dx<2)

A straightforward computation shows that, if f(x) = (cos(z), 2sin(x) + cos(x)) for
any z € R, then (T(¢)f)(z) = (e’ cos(z),e!(2sin(z) + cos(z)) for any ¢ > 0 and
x € R. As a consequence, || T(t)f||« > € for any ¢t > 0.
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Theorem 2.3 allows to introduce the vector-valued semigroup T(¢) of bounded
linear operators in C,(R?%; R™) by setting (T(t)f)(z) := u(t,z), for any ¢ > 0 and
x € R, where u is the classical solution to the Cauchy problem (2.4). By Addona
etc [1, Theorem 3.3], the following integral representation formula

T =3 [ Hpstad) fECERIRY, i1 m, (1)

holds true for any ¢ > 0, where {p;;(t,z,dy) : t >0,z € R i,j =1,...,m} isa
family of finite signed Borel measures, which are absolutely continuous with respect
to the Lebesgue measure. Formula (2.7) allows to extend easily the semigroup T(t)
to By(R%; R™), by approximating any f € By(R% R™) by a bounded sequence (f,,) C
Cy(R%; R™), which converges to f almost everywhere (with respect to each measure
pij(t,z,dy)) in R%. We can also use this formula to characterize the boundedness of
the semigroup T(t) in terms of the boundedness of the total variations |p;;|(t, x, dy)
of the measures p;;(t, z,dy) (t > 0,z € R?).

Proposition 2.1. The semigroup T(t) is bounded in Cy(RYR™) if and only if the
family of measures {|pi;|(t,x,dy) : t > 0,2 € R} is bounded for anyi,j =1,...,m

Proof. Suppose that the semigroup T(t) is bounded and fix ¢ > 0, € R% and
i, € {1,...,m}. By the Hahn decomposition theorem, there exist two disjoint
Borel sets P and N/, whose union is R, which are, respectively, the supports of
the positive part pjj (t,z,dy) and of the negative part p;;(t,z,dy) of the measure
Pij (t7 €, dy)

Since each measure p;;(t,z,dy) is absolutely continuous with respect to the
Lebesgue measure, we can determine two bounded sequences (f,,), (gn) C Cyp(R?)
converging to x pi; and x i, respectively, almost everywhere in R? (with respect
to the measure p;; (¢, dy)) We set £, = fr,e; and g, = gne; and observe that

Pt 2, RY) = pij(t, @, PY) = /d X pii ()pij (t, 2, dy)
R

=hm/h@Mwwbhmm%Mﬂ
Rd

n—-+oo n—-+o0o

From the boundedness of each operator T(¢) and the previous formula we deduce
that sup(; ;) (0,4.00)x R4 pzrj(t,z,Rd) < +o00. Replacing (f,) with the sequence (g,)
and arguing similarly, we conclude that sup(; ,)e (0, +00)xr Py (t: T RY) < +o0 Thus,
the family {|p;;|(t, z,dy) : t > 0,2 € R?} is bounded for any 4,5 =1,...,m

The other part of the statement follows trivially from the representation formula
(2.7). Indeed, let M > 0 be any constant such that |p;;|(¢,z,R?) < M for any ¢ > 0,
ze€R? 4,5=1,...,m. Then, we can estimate

(( |ﬂz/b mwMA Z/m VIpss (6,2, dy)

SMZ 1filloo < Mvm||f]l

Jj=1

forany t >0, x € R4, i =1,...,m, f € Cp(R%R™) and we are done. O
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2.2. The weak generator of T(t)

As it is known, (in general) semigroups associated with scalar elliptic operators
with unbounded coefficients are not strongly continuous in Cy(R%). However, it is
possible to associate the so called weak generator to them, in two different ways (see,
e.g., Lorenzi [16] and Metafune etc [23]). This approach has been already extended
to vector-valued weakly coupled elliptic operators with unbounded coefficients in
Delmonte etc [10]. We show that it works also in our case.

The first approach considered leads to the definition of the resolvent of the
generator by means of the Laplace transform. Indeed, thanks to estimate (2.6),
the function ¢ — e~ (T(¢)f)(x) is continuous and belongs to L*((0,+00)) for any
A > B and z € R, Hence, we can define bounded operators R()) in Cy(R%; R™)
for A > 3 through the formula

(RN (z) = /0 - e M(T()F) (2)dt, z € RY f € Cy(REGR™). (2.8)

The family {R(}) : A > 3} satisfies the resolvent identity and every operator R(})
is injective in Cj(RY; R™), so that there exists a unique closed operator (A, D)
such that R(A\) = (A — A)~! for any A > 8, i.e., A — A is bijective from D onto
Cp(R4GR™) for any A > 3 (see e.g., Yosida [28, Section 8.4]).

On the other hand, we can define the weak generator of T(¢) mimicking the
classical definition of infinitesimal generator of a strongly continuous semigroup, by
setting

e

=g(x) Vo € Rd},

< 400 and 3g € Cy (R4 R™)

D= {u € Cy(R%GR™) : sup
>0

such that lim (T(t)u)(z) — u(z)
t—0t t

Au=g, ueD.

The same arguments used in the scalar case (see Metafune etc [23 Section 5])
show that A and A actually coincide. Thus, we can set A := A= A D:=D=D
and prove the following characterization for the weak generator (A, D).

Proposition 2.2. The weak generator (A, D) of the semigroup T(t) coincides with
the operator (A, Dyax(A)), where Dpax(A) denotes the domain of the mazimal
realization of the operator A in Cy(R%:R™), ie.,

Dinax(A) = {u € G,RER™ N () WEPRLR™) :Aue Cb(Rd;Rm)}.

1<p<©

Moreover, for any £ € Dpax(A) and t > 0 the function T(t)f belongs to Dax(A)
and T(t)Af = AT(t)f for any t > 0. Finally, for any f € Dpax(A) and x € RY,
the function (T(-)f)(x) is continuously differentiable in [0, 400) with

d

S(TON() = (THAD(), 0. (2.9)
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Proof. Fix u € D, A > 8 and let f € C,(R%R™) be such that u = R(\, A)f.
For any n € N let the function u,, be defined by

n

u,(z) = / e M(T(t)f)(z)dt, r € R%.
1/n

Taking estimate (2.6) into account we deduce that sup,cy || un|lcc < +00 and u,

converges to u uniformly in R? as n tends to 4+00. Moreover,

n

Au, () :/n ef’\t(.AT(t)f)(x)dt:/ e M(D,T(t)f) (x)dt

1/n 1/n
e_’\"(T(n)f)(x) - e_’\/"(T(n_l)f)(:c) + Au,, (2.10)

whence sup,,cy ||V, || < +00 as well. Estimate (A.1) yields that ||tk |lw2r(B(0,r)

<e¢py foranyneN, k=1,...,m,r>0and p € (1,+00). By compactness, there

exist @y, ..., Um € Wy, ’p(Rd) such that w,, , converges to 4y (k=1,...,m) strongly

in WhP(B ( r)) and Weakly in W2P(B (O r)) for any r > 0. Thus we infer that
Uy, = uy, whence up € Wy, ’p(Rd) forany k=1,...,mand p € [1,+oo).

Since u,, converges to u weakly in W,>” (Rd Rm) Au,, converges to Au weakly
in L (R%R™). On the other hand formula (2.10) implies that Au,, converges to
Au — f locally uniformly in R? as n tends to +00. As a byproduct, we conclude
that Au = Au — f € Cp(R%GR™), ie., Au = Au € Cp(R%R™). This yields that
D C Dyax(A) and Au = Au for any u € D.

From the definition of D and the inclusion D C Dyax(A), it follows that D =
Dyax(A) if and only if A — A is injective on Dy, (A). To prove the injectivity
of A — A on Dpyax(A) we show that u = 0 is the unique solution to the equation
Au— Au = 0 in Dpax(AA). To this aim, let u € Dyax(A) solve such an equation.
A straightforward computation reveals that |u|?

d m d m
1
Auf? ~ 5«4|11|2 =- E E ¢ij Diug Djuy + E g B;)kjurDiu;. (2.11)
ij=1k=1 i=1 jk=1

Using Hypotheses 2.1(i)-(ii) we can estimate the term in the right-hand side of
(2.11) as follows

d m d m
- Z ZQijDiuijuk+Z Z DrjurDivg < —XolJeul? + myVdy|u||J.ul

ij=1k=1 i1 k=1

< (e — M)l eu® + S5 Luf?

4e
2 2 2d 2
< Ag(e€? = 1)l puf? + 2 jul.

Choosing ¢ = £~2 we obtain that Aju|> — Aglul> < 0 where Ay = A+ #.
Hypothesis 2.1(iii) and the maximum principle in Lorenzi [16, Theorem 3.1.6] yield
that u = 0.

To complete the proof, let us fix £ € Dyax(A) and ¢ > 0. Estimate (2.5) and
the semigroup law show that

T(h) — I

2
() — T(t)Af
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< ¥t (t) (’T(h})LIf — Af 2). (2.12)

Since f € Dmax(A) = D it holds that supy,c 1 [[(T(h)f — f)h | < 400 and
(T(h)f — f)h~=! converges pointwise to Af as h tends to 07. Thanks to Theorem
2.2, the right-hand side of (2.12) vanishes locally uniformly as h tends to 07. Thus,
(T(h)T(t)f — T(t)f)h~! converges to T(t).Af locally uniformly as h tends to 0F.
Moreover, the semigroup law, estimate (2.6) and the fact that sup;,¢ (g 1) [|(T(R)f —
£)h ™o < +00 imply that sup,c g 1) [|(T(R)T(t)f — T(£)f)h!||o < +00; whence
we deduce that T(¢)f € D = Dyax(A) and AT (¢)f = T(t).Af.

To show formula (2.9), we fix z € R%, f € Dyax(AA) and observe that estimate
(2.12) implies that the right-derivative of the function (T(-)f)(z) exists in [0, +00)
and coincide with the function (T(:).Af)(x). Since this function is continuous in
[0, +00), formula (2.9) follows at once. O

2.3. Pointwise gradient estimates

In this subsection we provide sufficient conditions which ensure pointwise gradient
estimates for the vector-valued semigroup T(¢). As a by product, under additional
assumptions we show that the function T(-)f is uniformly bounded in [0, +00) x
B(0,r) for any f € Cp(R%R™) and r > 0.

Proposition 2.3. Under Hypotheses 2.1(i)-(iv), for any p > po and any f €
CHRER™) it holds that

[(J.T()F) ()P < ePorol (T (1) JE|P) (z), t>0, reRY (2.13)

where oy, is defined in Hypothesis 2.1(iv).
Proof. Let f and p be as in the statement. We claim that

eta(t,2)P < P (TN ()] JEP) @), >0, ze BOm),  (2.14)

where u,, is the unique classical solution to the homogeneous Neumann-Cauchy
problem associated to the equation Dju = Au in B(0,n) and T2 () denotes the
semigroup associated to the realization of the operator A in Cy(B(0,n)) with ho-
mogeneous Neumann boundary conditions. Once (2.14) is proved, (2.13) will fol-
low simply observing that wu, converges to T(-)f in C1'?(K) for any compact set
K C (0,+00) x R? (see Addona etc [1, Remark 2.10]) and T2 (-)|Jf|P converges to
T(-)|JEP for any K as above.

So, let us prove (2.14). Fix e > 0 and for any n € N set v, := (|J,u,|? +¢,)7/2,
where e, = ¢ > 0 if p € (po,2) and py < 2 and €, = 0 otherwise (i.e., p > 2). By
classical results, v, belongs to C*2((0,T) x B(0,n)) N Cy([0,T] x B(0,n)) for any
T >0 and

_2 _4
Dtvn = Avn +pv?11 ’ (wl + wQ) +pv71L P¢3a iIl (Oa +OO) X B(O,’I’L),
%L;(t,x) <0, in (0, +00) x B(0,n),
un(0,7) = (|JE* +&p) %, in B(0, n),
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where
m d m
Y1 = (L) Vattn i, Vatin k) = Y Y [V/QVaDitty 1|,
k=1 =1 k=1
d d d
Yo =Y (DiB;Djuy, Diuy)+ Y (B;jDijun, Divtn)+ Y Dpgij{Dijun, Dyuy),
i,j=1 i,j=1 i,4,h=1

Y3 =(2-p) > [V QD2 Vi .
k=1

We can estimate 11 and 1o as follows:

d m
’l/)l SAJb|Jazun‘2 - Z Z |\/§v1D1un,k|2

i=1 k=1
SAJ6|Jzun‘2 - )\Q|Diun|2 (215)

and

1

d 2
12| S( Z D'Bi2> | Jou,|* + (\/gmf VAQ + d2 k)| Jou,||Diuy,|

1 : _1
K Z |D;B; 2) E(\/&mud%m@%f | Jotn|? + ado|D2u,|? (2.16)
1,7=1

for any a > 0. Note that if p > 2 then 13 < 0. In this case, the second part of
estimate (2.15) and estimate (2.16) with a = 1 yield that D,v,, — Av, < pop,vn.
Otherwise if pg < 2 and p € (pg, 2) then the function 3 is nonnegative and can be
estimated as follows:

i

1k

M=

(2 —p) "

N
&,
Il

=1
d 2
3 W@vxDiun,knDiun,k)

1 1=1

d
Z | \/@vxDiun,kF ‘vxun,k |2

=1

m d
< Teun* DD V@V Dy k[ (2.17)
k=11:=1

Summing up, from (the first part of) (2.15), (2.16) and (2.17), we obtain that

p"q;

>
Il

-

>
Il
=

d 1
1-3 2 2\* 1 34542
Dyv, — Avy, <pvn, 7| Jpuy] |:Ajb + (”zzzl |D; B;| ) + @(ﬁmg +d2 k)\Q2)
1_2 m d 12 ) )
+p(1=p)on * > > (QVDitiy 1, VDitn k) + apvn * Ag|D2u|
k=1i=1
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d 1
1-2 2 1 : 1
<pun, meun|2{AJb + ( > |DjBi|2) i E(\/gm§+d%k)\Q2)2

Q=1
1-2 2. 12
+pun 7[(1 —p+a))\Q\D$un\ .

Thus, choosing a = p — 1, the coefficient in front of |D?u,|* vanishes and the
estimate becomes Dyv,, — Av,, < pop,vy, — papospovrll_z/ P < DOpoUn — papoeg/ 2
Now, the procedure is the same in the two cases considered: we set w,,(¢,-) :=

vp(t, ") — 5£/2 — ePTrot TN (1) ((|V£]? + £,)P/?) for any t > 0 and observe that

Dyw,, — (A + pop,)w, <0, in (0,+00) x B(0,n),
owy, .
Un o 0, in (0,400) x 9B(0,n),

ov )
wn(0,-) = —€2, in B(0,n).

The classical maximum principle yields that w, < 0 in (0,400) x B(0,n), i.e.,
vn(t, ) < ePTrot TN (1) ((|VE[? 4 ,)P/?) + 65/2 for any ¢ > 0 and this concludes the
proof if p > 2. Otherwise, we let ¢, tend to 07 and again we conclude the proof.

O

Proposition 2.4. Under Hypotheses 2.1(i)-(iv), for any p > po there exists a
positive constant C, such that

[(JLT()E) ()P < CpePorol(1V 7 2)(T(1)|fP)(z), t>0, zeRY  (2.18)

for any f € Cy,(R4R™).,

Proof. Here, we take advantage of the notation and the results in the proof of
Proposition 2.3. We actually reduce ourselves to proving that for any p > pg there
exists a positive constant k, such that

[ Jotn(t, )P < kot~ 5 (TN (0)[F]P)(z),  te (0,1, z € BO,n),  (2.19)

for any n € N and f € C,(R% R™). Once (2.19) is proved, letting n tend to +oo we
obtain

(LT (@) < kypt™ 5 (T()E7) (), t€(0,1], z e B(0,n). (2.20)

Finally, estimate (2.18) will follow using the semigroup rule, estimates (2.13),
(2.20) and the positivity of the scalar semigroup 7T'(t). Indeed, if ¢ > 1 then

(o TF) ()7 =|(LT(t = DT()f) (@) [P < P D(T(t — 1) JT(LEP) ()
Skye?7ro D (T(t)[£]7) ()

for any 2 € R?, and (2.18) follows with C), = k,e?l7»ol.
So, let us prove estimate (2.19). First, we set

P
2

vn(t, x) = (|un(t,x)|2 + ’yt\J,;un(t,x)\Q + Ep)

for any ¢ € (0,1], € R? and n € N, where ¢, is as in the proof of Proposition 2.3
and 7y is a positive constant which will be fixed later. For any n € N, the function
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vy, belongs to C12((0, +00) x B(0,n)) N C([0, +00) x B(0,n)), is bounded in each
strip [0, 7] x B(0,n) and

_2 ~ ~ _4
Dyvn = Av, + pon " (1 + G2 +3) + pom “0a, in (0,1] x B(0,n),

a;y” (t,z) <0, in (0,1] x dB(0, n),
vn(0,7) = (If]* +&,)%, in B(0,n),
with
Z|\FV Un g (t, ) * + vt (L),
%u»=ww<»
{/;3( )= |J u, (t |2 +Z u,(t,-), BjDju,(t,-)),
{/;4( Z QCh )>7
h,k=1
where (; = u; Vouy, ; + 'ytDﬁumijumj for 5 =1,...,m and the functions ¥; and

1o are defined in the proof of Proposition 2.3. _
Using Hypothesis 2.1(i)-(ii) and the Young inequality we estimate v;, i = 1,2,3
in the following way:

d m
'(Z; (t )<’ytAJb‘J un Z|\/>v unk _7t22|\/§vwl)zun,k(ta)|2

1=1 k=1
=: A gy | Joun(t, )] *Il( ) = Ia(t, )
YA | Joun (t, )P — Ag|Jeun(t, )| — vtAq| Diun(t, )%, (2.21)

(VAmeE+d3 kAS?)?

Ua(t, ) gw[( zd: |DjBi|2>é+ o a’) }'qun(t,~)|2

+ ayiigpiun(u I3 (2.22)
Galt.) <T 1ot (Zw?)mlnu%«»
IJmA)F+/%&Iw(MUuM ]
sdfigﬂ anlt. )2+ (3 -+ 2h ) ot (223

for any ¢ € (0,1] and a,e > 0, where ¢ is defined in Hypothesis 2.1(ii). We distin-
guish two cases. If p > pg V 2 then ¢4 < 0. Thus, using the previous estimates
with a = 1, e = 27! and v = A\ and Hypothesis 2.1(iv) we obtain immediately that

1—2
Dyv, — Av,, < 27 pdm?E2v, 7 |u,|? < hyvy,, where hy, = 27 pdm?€%. On the other
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hand, if pp < 2 and p € (po, 2) then we need to estimate &4 too. We obtain

2
(Zunh H\/>vunh )
+2wt2|unh NVQVun it Z\fD tn (b ) Vesttn (8, )
2
e ( S WQD2una(t )Vttt ->|)
h=1

<[t (ilf Vot (i 2)éﬂtumua(}iM@Dzuh(t,-n?)2}

=[lun(t, Vi) + 3t Teun(t, )|V (E )]
<(Jun(t, - )I2+vtlJ u,(t, )] )(Il( ,) o (t, )
<(vn(t, )) (Zu(t, ) + 1Ia(t, ) (2.24)

for any ¢ € (0,1], where Z; and Z have been defined in (2.21). Thus, choosing
a=p—1,y=(p—1)N\" and ¢ = (p — 1)/2, from (2.21)-(2.24) we obtain that

pdm?*¢? 5 1 pdm?*&? =
Dy, — Av, < —————u, (¢, )|*vn * < ——v, =: h,v,.
t 20—y () 20—

Now, the procedure is the same in the two cases and, arguing as in the last part of
Proposition 2.3, we conclude that

t5 | Toun ()17 < kT (O ((F1° + &)%)

in RY, for any t € (0,1], where k, = 271 (p A2 —1)"1pdm?¢2. Thus, (letting &, tend
to 0T if p € (po,2) and py < 2), we deduce (2.19) and the proof is so completed.
L]

2.4. Further properties of the semigroup

As we have already stressed, for each f € C,(R%; R™) and t > 0, the function T(¢)f
is bounded on R¢ and estimate (2.5) holds true. For our purpose, we need to slightly
improve Theorem 2.3, showing the global in time and local in space boundedness
of the function T(-)f.

For notational convenience, for each ¢ > 0 we denote by B,(R% R™) (resp.
C,(R%;R™)) the set of all measurable (resp. continuous) vector-valued functions f :
R?% — R™ such that fo =7 is bounded in R¢, where ¢ is the Lyapunov function in Hy-
pothesis 2.1(iii). It is a Banach space when endowed with the norm ||f|| 5 (ga;zm) =
essUp, s (p()) 7 E(@)] (xesp. €], ez = $up, ezl ((2)*E(w)]).

Theorem 2.4. Let Hypotheses 2.1 hold true. Then,

(i) there exists a positive constant Coy > 1 such that
(TOH@)] < Collfllc(e(@), >0, zeR!,  (2:25)

for any £ € By(RYR™), where 7y is defined in Hypothesis 2.1(v);
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(ii) for any o € (0,1/2], T(t) can be extended to Cy(R%;R™) with a semigroup.
More precisely, there exists a positive constant C1 > 1 such that

IT®)f|lc, megm) < Cre!||fllc, garm), t>0, reR% (2.26)

for any f € Cy (R R™), where 3 is the constant in Theorem 2.3. Finally, for
any 0 < § <79 :=min{l—1/7,1/po} there exists a constant Co = C5(d,7v) > 1
such that

(TON@)] < Callfll gy @ezm (@), t>0, zeRL (2.27)
for any f € Bs(R%R™).

Proof. (i) Since it is rather long, we split the proof into some steps.
Step 1. As a starting point, we prove that, if v € CL2((0,+c0) x R%) N
C([0, +00) x R?) is bounded in each strip [0, 7] x R? and solves the Cauchy problem

Dy(t,z) = Av(t,z) + g(t,z), t>0,z€R?,

(2.28)
v(0,z) = fo(x), r € RY,
for some functions fo € Cp(R?) and g such that the function (s, ) + /sg(s,z) is
bounded and continuous in [0, 7] x R%, then

oft,2) = (T(t, ) fo) () + / (T(t - $)g(s,))(@)ds,  t>0, z € RY.

For this purpose, we observe that Hypothesis 2.1(iii) yields a maximum principle
for solutions to the Cauchy problem (2.28) which belong to C'*2((0,4+00) x R%) N
C([0, +00) x R%) and are bounded in each strip [0, 7] x RY. Hence, v is the unique
solution to problem (2.28). Up to splitting g into its positive and negative part, we
can assume that g is nonnegative on (0,7] x R?. By classical results, the Cauchy-
Dirichlet problem

Dw(t,xz) = Av(t,z) + g(t,z), ¢>0,z¢€ B(0,n),

u(t,z) =0, t>0,z€0B(0,n),

v(0,z) = fo(z), z € B(0,n),
admits, for any n € N, a unique solution v,, € C12((0,+00) x B(0,n)) which is
bounded and continuous in ([0,4+00) x B(0,n)) \ ({0} x dB(0,n)). In particular,
each function v,, is nonnegative in (0,400) x B(0,n). Hence, applying the classical

maximum principle to the function v, 41 — v,, we easily deduce that the sequence
(vy) is pointwise increasing in B(0,n). Moreover, since

v (t, ) = (Tn(t, ) fo)(x) +/0 (Th(t — 8)g(s, ) (x)ds, t>0, z € B(0,n),

where T, (t) is the analytic semigroup of contractions in C,(B(0, n)) associated with
the realization of the operator A with homogeneous Dirichlet boundary conditions,
we can estimate

o (t, @) = (Tu(t) fo) (2)| < 2V s Vsllg(s, )l

s€(0,t
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for any t > 0 and n € N. Clearly, the function vy, which is the pointwise limit of
the sequence (v,,), fulfills the same estimate, so that

[vo(t,2)| < [ folloe +2VT sup V/3slg(s, )l

s€(0,T
for any (t,z) € [0,7] x R? and T' > 0, and
oo (t, ) — (T(t) fo)(2)| < 2V sup Vsllg(s, )l
se(0,

for any (t,z) € [0,1] x R%. Since the function T'(+)fo is continuous in [0, +00) x R4,
the above estimate shows that vy can be extended by continuity in {0} x R?, where
it equals function fy. To identify vy with v we use the interior Schauder estimates
in Theorem A.2 and the uniform L°°-boundedness of v,, to infer that the sequence
(vy) is bounded in C'**+/2.2+e(K) for any compact set K C (0, +00) x R%. Arzela-
Ascoli theorem and the pointwise convergence of v,, to vy show that v, converges to
vp in C12(K) for any K as above, so that, in particular, vg € C12((0, +00) x R9)
and solves the Cauchy problem (2.28). Thus, v = vg.
Step 2. Here, based on Step 1, we show that

(T(®)f)i(z) = (T(t)fi)($)+/0 (Tt = s)wi(s, ) (x)ds, (2.29)

with w; = Z?Zl S (Bj)inDjuy, for any (t,z) € [0,+00) x R4, i =1,...,m. For
this purpose, we fix a sequence (9,,) of odd and smooth enough functions such that,
forany n e N, 9,(t) =t if 0 <t <n,¥,(t) =n+1/2ift>n+1,0<9, <1lin
R and ¢/ <0 in [0, +00). Then, we consider the Cauchy problem (2.4), where now
the operator A is replaced by the operator A,, defined as A, with the matrices B;
being replaced by the matrices B, ,,, with entries (B; » )t = ¥, 0 (B n)ni - Clearly,
|(Bi)nk| < 1(Bi)nk| < €/Ag inRY, foranyn € N,i=1,...,dand h,k =1,...,m,
so that Theorem 2.9 in Addona etc [1] applies and shows that, for any n € N, there
exists a unique function u, € C([0,4+00) x RGR™) N CH2((0, +00) x REGR™),
which is bounded in each strip [0, 7] x R¢, solves the equation D;u,, = A,u, on
(0, +00) x R? and agrees with the function f on {0} x R, As a first step, we observe
that, up to a subsequence, u,, converges to a function v in C' 1’Q(K' ) for any compact
set K C (0,+00) x R%. Indeed, by Theorem 2.3, the sequence (u,) is bounded in
[0,7] x RY for any T > 0 and, thus, the interior Schauder estimates in Theorem
A.2 show that it is bounded in C*+*/2:2+%(K) for any K as above. Hence, we can
argue as in the last part of Step 1. In particular, it turns out that the function v
solves the differential equation D;v = Av in (0,400) x R? and is bounded in each
strip [0, 7] x R%.

Next, we observe that, by Proposition 2.4, which can be applied also in this
situation since |D;B; | < |9, |lc0|DjBi| < |D;B;| for any i,j =1,...,d and n € N,
we deduce that

[Tt (1, 2)[2 < et (T ()[£1) (2)) 7

for any t € (0,7, z € R?, T > 0 and some positive constant ¢ depending also on

Po-
In view of the previous estimate and Step 1, we can write

tni(t,2) = (T(t, ) f3) () + / (T(t — 8w (s, ))(@)ds



Invariant measures for systems of Kolmogorov equations 781

forany t > 0, x € R4, n € Nand i = 1,...,m, where w,; (i = 1,...,d) is

defined as w;, with u; and the matrices B; being replaced, respectively, by uy

and Bj, (n € N). Clearly, the function (r,s,x) — (T(r)wy,;(s,-))(x) is continuous
n (0,4+00) x (0, +00) x R? and, in view of Hypothesis 2.1(ii), we can estimate

wn.i(s,2)] <ers 2 [|f]|ooth(2), s€(0,T), z€RY, (2.30)

for some positive constant cr depending also on py. Hypothesis 2.1(v), the Holder
inequality, formula (2.2) and estimate (2.3) show that

/ Yp(t,z, dy) < </ Yp(t, @ dy))l <cy (/Wsop(tmdy)y
—l (Tt < (% + so(ac>)i (231)

for any ¢ > 0 and 2 € R?. Taking into account that ¢ > 1 in R%, we conclude that
T()Y < cp'/7 in (0, +00) x R?. In particular, T(-)4 is bounded in (0, +00) x B(0,7)
for any r» > 0. Hence, taking also Theorem 2.2 into account, we can apply twice the
dominated convergence theorem to show, first, that T'(t —-)w,, ; pointwise converges
to T'(t — -)w; (where w; is defined as w; (i = 1,...,m) with u being replaced by v)
and then that

lim [ (T(t = $)wns(s, ))(x)ds = /O (T(t — 5)@;(s, ) (x)ds

n—-+o0o 0

for any ¢ > 0 and x € R%. It thus follows that

vi(t,z) = (T(t)fl)(x)Jr/O (T(t — s)w;(s,-))(x)ds, t>0, z€RY i=1,...,m.

Using estimates (2.30) and (2.31) we conclude that

ilt, ) — filx)] <|(TE)f)(@) — filz)] + cllfllo / sTH(T(t — 5)¢)(x)ds
<(T (W) f:)(x) — fil@)] + elElloo(o(2))7 VE

for any t € (0,1], x € R%, i = 1,...,m and some positive constant ¢ depending on
d,m and pg. From this chain of inequalities we easily deduce that v is continuous
on {0} x R?, where it equals the function f. Summing up, we have shown that
v € C12((0, +00) x R:L R™) N C([0, +00) x R R™), solves the differential equation
Dyv = Av in (0,+00) x R? and v(0,-) = f. By Theorem 2.3, we conclude that
v = u and formula (2.29) follows.

Step 3. Using (2.13) and (2.29), we can estimate

wis, @) <VAm(@)|(LT(s)E) ()] < ea(s™F v 1)er ] o)

for any s >0,z € R% i=1,...,m. Hence, for t >0,z € R and i = 1,...,m we
get

fu(t, 2)| <|[(T() ) (@ |+/| (t — s)wi(s, )()|ds
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< filloo + eliflloo (@) /0 (s72 V1) ds
<||filloo + ellflloo (¢(2))

Estimate (2.25) follows at once for functions in Cj(R%; R™).

Suppose now that f € By(R%R™) and let (f,) C Cy(R%R™) be a bounded
sequence converging to f almost everywhere in R?, with respect to the Lebesgue
measure, and such that ||f,]cc < ||f[lcc for any n € N. Then, Addona etc [1,
Corollary 3.4] shows that T(-)f,, converges to T(-)f pointwise in (0, +oc0) x R, as
n tends to +o0o. Writing (2.25) with f being replaced by f,, and letting n tend to
+00, we complete the proof of (2.25).

(ii) Fix o € (0,1/2]. Without loss of generality, we can assume that all the
components of f € Cy(R% R™) are nonnegative since the general case then will
follow splitting f = £+ — =, where the i-th component of f* (resp. f7) is the
positive part of f; (resp. —f;).

For any n € N, we set f,, := 9,f, where (¥,,) is a sequence of smooth enough
functions satisfying xp(o.n) < ¥n < XB(0,2n)- We also fix i,5 € {1,...,m}, t >0,

2=

z € R? and denote by P = Pitjfz the positive set of the Hahn decomposition of
pi;(t,z,dy). Since each sequence (f, ;) is weakly increasing, by monotone conver-
gence we can infer that

n—-+oo

lim /Rd TniW)xpy)pi;(t, z,dy) = /Rd FiW)xe(y)pi;(t, =, dy).

Moreover, as it has been noticed in Section 2, the semigroup T(t) can be extended
to By(R% R™) through formula (2.7) and |T(¢t)f| < e (T(t)|f|>)'/2, pointwise in
R? for any f € By(R?%; R™), where f3 is the constant in Theorem 2.3. In particular,
since

/Rd FusW)XP(W)Pis (8,2, dy) =|(T(@)(fagxre;)i(@)] < e (T(@)0 /5] (x))?

1

<[ (ro("225) ™ ] T rwne)r

@20
<e|fllc, @amm) (T(H9) ()7

A 7
<l o ( 2+ 6(2))

*

<ce”|fllc, @amm) (0(2))7,

we conclude that [, fjxppi;(t, x,dy) is real and

| 50y, dy) < e, o (o). (232
The same arguments can be applied to show that
/]Rd Fixnpij(t, 2, dy) < ce’||f]|c, gagm (0(2)), (2.33)

where N = fo is the negative set of the Hahn decomposition of the measure
pi;(t,,dy). In particular, the interior Schauder estimates in Theorem A.2 can be
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used to prove that the function T(-)f is continuous in (0, +o00) x R? and, together
with (2.32) and (2.33), they allow to conclude that each operator is bounded from
C,(R%;R™) into itself and estimate (2.26) holds true. To prove the semigroup rule,
we observe that T(t)f, = T(t — s)T(s)f, in R? for any n € N and 0 < s < t.
Moreover, since |f,| + |T(s)f,| < cp” in RY, for any n € N, s > 0, by the dominated
convergence theorem we conclude that T(¢)f = T(t — s)T(s)f.

Finally, estimate (2.27) can be obtained adapting the arguments used in the
proof of (i), taking the positivity of T'(t) into account. More precisely, using (2.18)
we can estimate

lun,i(t, )| <|T(t) fil +/O (T(t = s)|wn,i(s,)])(-)ds
§||f||ca(Rd;Rm)T(t)<P6
e [ (57HV DT T )ds
0

in R for any f € C5(R?;R™). Observe that for any s > 0

T(s)IE[P < [IE] T(s)’ < c|flley

P dpo
Cs Rtsmm) P

Po
Cs(RE;R™) )

where in the last inequality we used the fact that dpg < 1 and T'(¢)p" < (T'(t)p)" <
(c;tas + )" < " for any t > 0 and n < 1. Hence, using the previous estimates,
Hypothesis 2.1(v), again the positivity of T'(¢) and estimate (2.3), we can infer that

[ni(t, )| <IEll oy raem) T ()

t
+ Cp ||f||cé(Rd;Rm) / (s_% V 1)e7ro T (t — s)ap‘ﬂ'%ds
0

¢
SCPOHfHCS(Rd;Rm,) (@5 + go‘”% / (s_% Vv 1)ef’p05ds>
0
for any ¢t > 0. Letting n tend to +oo, estimate (2.27) follows for functions f €
Cs (Rd; Rm).

If f € Bs(RY;R™) is not continuous, then it suffices to approximate? it with a
sequence (f,,) of continuous functions, converging to f almost everywhere in R¢ and
such that sup,cga |£,(2)(¢(2))~°| < [|f]|p;(rarm), and use the dominated conver-
gence together with the above result which shows that [p, 901/7|P¢j (t,x,dy)| < +o0
for any t > 0, z € R? 4,5 = 1,...,m, to infer that T(-)f, converges to T(-)f as
n tends to +oo pointwise in (0, 4+o00) x RZ. Writing (2.27) with f,, replacing f and
letting n tend to +oo, (2.27) follows in its full generality. O

Proposition 2.5. Let (f,) be a bounded sequence in C- (R R™) which converges
to a function f € C(R%R™), locally uniformly in RY. Then, (T(-)f,) converges
uniformly in (0,4+00) x B(0, R) to T()f, for any R > 0.

Proof. We set g, := f,, — f and notice that f, g, € C,Yfl(Rd;R’m‘) for any n € N.
By Theorem 2.4, the functions T'(¢)f and T(t)g,, are well defined for any ¢ > 0 and

8This can be easily done, approximating the bounded function f/¢® with a bounded sequence
(fn) C Cp(R4;R™) converging to f/¢® almost everywhere in R? with respect to the Lebesgue

measure and, hence, with respect to each measure p(t,z,dy). Setting f, = ?‘mp‘s we obtain the
sought for sequence.



784 D. Addona, L. Angiuli & L. Lorenzi

n € N. Moreover, the arguments in Step 2 of the proof of Theorem 2.4 can be easily
adapted to prove, by an approximation argument, that

t d m
(T(t)g)i(z) = (T(t)gi)() + /0 (T(t =) Z(Bj>ij<T<s>g)h) (x)ds,

j=1 h=1

forany ¢t >0,i=1,...,m, 2z € R and g € C',yﬂ(Rd;Rm). Applying this formula
with g = g,, and using (2.18) withY p = 2, we can infer that

[(T(®)fn)i(z) — (T@)F):(2)|
T @)gn.i)(2)| + C/O (572 V1) [T(t — 8)((T(s)|gnl*)?)] (x)ds

<|(T(t)gni) ()] + c|(T(t) gn|*) (x)|2 / (72 V 1)e”2*|(T(t — 5)p)(2)| 2 ds
“+oo
<|(T(t)gni) ()| + c|(T(8)|gnl?) ()| /io(2) / (s7% V1)em22ds

for any t > 0 and x € R?. Now, we fix R > 0, 2 € B(0, R) and for any r > 0 we
split (see (2.2))

(T(1) gl () = / g Pl 2, dy) + / gl 7, dy)

0,7) RA\B(0,r)

2
<llgnllZ, 5. +Slé§g”HQCwl(Rd*Rm)/Rd\B(O )gmp(t,x,dy)
n ,T

SUPpeN ”gnHQC _1 (R4;R™)
<lgnll? (50,0 + — B [ enttady)
infra\ po,ry 7 R4\ B(0,r)

5 c Qs
<llgnlle, B0y + nfrrmon <C + BS(EI;) 60>
R4\ B(0,r v * )

for any ¢ > 0 and n € N. Letting first n and then r tend to +oco in the first-
and last-side of the previous chain of inequalities, taking into account that ¢ blows
up as |x| tends to +oo, we easily conclude that T'(t)|g,|?> vanishes uniformly in
(0, +00) x B(0, R) for any R > 0.

Finally, since

(T(09)@)] <T@ = [ lealplt.a.d

<</ 'g”'zp“’x’d”) (ot B = [(T(0) | ) )]

foranyt > 0,2 € RY, n € Nandi = 1,...,m, where we have taken into account that
the p(t,z,dy)’s are probability measures, we also conclude that T(-)|g,| vanishes
uniformly in (0, 4+00) x B(0, R) for any R > 0. O

9Note that such an inequality can be extended to functions in C,— (R4, R™) by a density ar-
gument, approximating any such function h with a sequence of bounded and continuous functions,
which is bounded in C_ -1 (R?; R™) and converges to h locally uniformly in R%.
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3. Systems of invariant measures

Definition 3.1. A family of signed finite Borel measures on R? {pj:j=1,...,m}
is a system of invariant measures for T(¢) if for any f € C,(R%R™) and ¢ > 0 it
holds that

Z / £);du; = Z / fidn;. (3.1)

The following proposition gives an equivalent characterization of systems of in-
variant measures.

Proposition 3.1. A family {u; : j = 1,...,m} of (signed) finite measures is a
system of invariant measures for T(t) if and only if

> / (Af)idp; =0, £ € Dyax(A). (3.2)
i—1 /R?
Proof. First, we suppose that {u; : ¢ = 1,...,m} is a system of invariant measures

for T(t) and fix f € Dpax(\A). The invariance property of the system {u; : j =
1,...,m} implies that

Z/ TOD; = f; ~ gy, = o, t>0. (3.3)

By Proposition 2.2 we know that, for any j = 1,...,m, t ' ((T(t)f); — f;) converges
to (Af); pointwise in R? as ¢ tends to 0F. Moreover, supye (0,11t (T ()F); — f;l
is a bounded function in RY, thanks to Proposition 2.2. Since each yu; is a finite
measure, we can let ¢ tend to 01 in both sides of (3.3) and obtain (3.2).

Let us now assume that (3.2) holds true in Dyax(A) and fix f in such a space.
Then,

(T (2) — fi(x) :/O (T(s)Af)i(x)ds,  t>0, scRL i=1,....m.

Therefore, integrating again in R? with respect to the measure j;, summing over i
from 1 to m and applying the Fubini’s theorem, we deduce that

> [Lwonsyin =3 [ an [ cxe
:/0 (Z/Rd(AT( ) )de)ds:o,

i=1
and this completes the proof. O

Under Hypotheses 2.1 we prove that there exist m-systems of invariant measures
for T(t).

The following result shows that the average in (0,t¢) of any component of the
function T(¢)f converges as t tends to +00. As in the scalar case, this convergence
allows us to define the systems of invariant measures associated to T(t) (see Lorenzi
[16, Prop. 8.1.13]).
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Theorem 3.1. Assume that Hypotheses 2.1 hold true. Then, there exist at least m
systems {M; cj=1,...,m}, i =1,...,m, of invariant measures associated to the
semigroup T(t) in Cyp(RY;R™).

Proof. We split the proof into several steps.

Step 1. Here, we introduce the sequence (R,) of bounded linear operators in
Cp(R%;R™) defined by

(Ruf)(z) = (T(k)f)(), z e R?, f € Cy(REGR™),

0

1n
n

~
Il

and prove that, for any f € C,(R%; R™), R,f converges locally uniformly in R as
n tends to 400 to a constant function. We fix any such function f and we first show
that a suitable subsequence of (R,f) converges locally uniformly in R?. For this
purpose, we observe that R,,f =n~1f+T(1)((1-n"1)R,_1f) in R4 By Theorem
2.4(i), the sequence (R,,_1f) is bounded in C, -1 (R%R™). Hence, we can determine
a subsequence (T(1)((1 — nj')Ryp,—1f)), which converges locally uniformly in R?
to a function g € C.,-1(R%R™). Indeed, Theorem 2.4(i) and the interior Schauder
estimates in Theorem A.2 show that

IT(1)((1—n Y Ru1f)|c2+a B0, Ryrm) <crll(1—n" YR aflle, B0, re1)mm)

1
<cg|flls sup o7
B(0,R+1)

for any R > 0. Thus, the Arzela-Ascoli theorem and a compactness argument
allow us to extract a subsequence of (R ,f) converging locally uniformly in R? to a
function g € C,-1 (R4 R™).

To prove that all the sequence (R, f) converges to g locally uniformly in R%, we
observe thatll

1nk—l )
_ —f 1 — 1 - _ J — j _
f-g=f— lim R,f kETMk;(I (T)))f = lim (I =T(1))¢,

where ¢, = n; " Z;’i;l Zi;é T(h)f (k € N) is a bounded and continuous function
and the sequence ((I — T(1))¢) is bounded in C.-1 (R% R™). Moreover, R, (I —
T(1))¢ = n (¢ — T(n)¢x) for any k,n € N. Combining the last two formulas,

we can estimate

R (f — 8)llo,(B(0.r)rm)
<IRulf —g— (I —TQ))Ckllc,B0.r)rm) + R = T(1)Ckllc,(B(0,r)mm)

1
<ITO)If —g— (I —T(1))Cklllcy ((0,400) x BO,r):R™) + EHCk —T(n)Ckll ey (B(0,r)R™)

for any k,n € N and r > 0. Now, letting first n and then k tend to 4oc0, taking
Proposition 2.5 into account, from the above chain of inequalities we can infer that
R, (f — g) vanishes locally uniformly in R? as n tends to 4+o00. The convergence
of R,g is easier to prove since R,g = g in R? for any n € N. Indeed, since
R f — TR, £ = n ' (f — T(ng)f) in R, letting k tend to +oo, the last side

IThe below limits are all local uniform in R<.
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of the previous equality vanishes locally uniformly in R?. Moreover, since R, f
converges to g locally uniformly in R?, by Proposition 2.5 T(1)R.,, f converges to
T(1)g, locally uniformly in R?. Thus, we conclude that g = T(1)g in R?. Using
the semigroup rule in Theorem 2.4(ii), we deduce that T(k)g = g in R? for any
k € N, which implies the claim.

Finally, we prove that g is a constant function. For this purpose, we approximate
g locally uniformly on R? by a sequence (g,,) of bounded and continuous functions
such that |g,| < |g| in R? for any n € N. Thanks to the interior Schauder estimates
in Theorem A.2 and Theorem 2.4(i) we conclude that the sequence (T()g,) is
bounded in C*+/2:2+e(K) for any compact set K C (0,400) x R%. Hence, up
to a subsequence, T(-)g, converges in C1?(K), for any K as above, to a function
¢ € C’1+a/2’2+a((0,+oo) x RY). On the other hand, by Proposition 2.5, T(-)g,

loc
converges to T(-)g uniformly in (0, +o00) x B(0, R), for any R > 0. We conclude,
in particular, that .J,T(k)g, converges to J,T(k)g locally uniformly in R?, for any

k € N. We are almost done. Indeed, using Proposition 2.4 we can now estimate

|Jg|2 :|JxT(k)g‘2 = ngrfoo |JxT(k)gn‘2 < 66202k(1 \ kil)T(k)‘gn‘Q

<ce® (1 kT (k) |gf? < ee®o2k (“* + go),
Cx

where the convergence is local uniform in R? and we have used (2.3) in the last step
of the previous chain of inequalities. We have so shown that |||.J g||\0(m_Rm) <
cre®?F. Since 0y < 0, letting k tend to 400, we conclude that Jg = 0 on B(0, R)
and, hence, on R?. This shows that g is a constant function as claimed.

Step 2. Here, we prove that there exist m systems {yé ci,y=1,...,m} (i =
1,...,m) of Radon measures such that

. 1t UL ;
lim (P:f); := lim 7/0 (T(s)f)ids:;/w fidu, (3.4)

t——+oo t—+oo t

locally uniformly in R? for any f € C,(R%; R™) and i = 1,...,m. For this purpose,
we note that Pif = t 1 [t]RyP1f + " {t} P T([t))f in R?, for any ¢ > 1 and
f € Cp(R% R™), where [t] and {t} denote respectively the integer and the fractional
part of t. Since [P T([t])f| < c[|f]lp?/” in RY, for any ¢ > 0, due to Theorem
2.4(i), letting t tend to +oo in the above estimate we obtain that P.f converges
locally uniformly on R? for every f € Cy(R%;R™) and, in view of Step 1, the limit
P.f is a constant function in R?. Thus, it follows that P.f = >""" (M,f)e; for any
f € Cy(R%4GR™) and some linear operators M; : Cp(R%GR™) — R, j = 1,...,m.
Note that these operators are bounded. Indeed, using (2.25), we can estimate

(POO] <7 [ N0 < cltlale)?. t>0
0

Since (P.f)(0) converges to Y .- (M;f)e; as t tends to +oo0, we conclude that
|IMGE| < e(p(0)7]|f||o for any £ € C,(R%R™) and i = 1,...,m. In particular,
each operator M; is an element of (Co(R%R™)) and the Riesz representation
theorem shows that there exists a family {H; 24,5 = 1,...,m} of finite Radon
measures on R? such that

Mf = Z/ fidus, f € Cy(RGR™). (3.5)
j=1 /R
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To complete the proof of (3.4), we begin by observing that each operator M,
is well defined and bounded in Cy(R% R™). Moreover, if f € Cy(R% R™) then we
can fix a bounded sequence (f,) C Co(R% R™), converging to f locally uniformly in
R? as n — +oo, and (taking into account that |Py(f, — f)| < sup,~ |T(#)(f, —f)|)
estimate -

‘Ptf—Zwif)ei

i=1

<P =P+ 3 [ s Fld sup (D), —6)

ij=1

in R%, for any t > 0 and n € N, letting first ¢ and then n tend to +o0, we conclude
that (3.5) holds true also for any f € Cy,(R%;R™).

Step 3. Now, we can complete the proof showing that, for any i = 1,...,m,
the family {% :j=1,...,m} is a system of invariant measures for T(¢). For this
purpose, we fix f € C,(R%:R™), 7> 0, » € R%, i € {1,...,m} and observe that

t

(P T(r)f) () = / (T(s)T()f) (a)ds = ~ / (T(s + 7)f)(2)ds

t+7 T
z(’Ptf)(J;)—i—% /t (T(s)f)(a:)ds—% /0 (T(s)f)(x)ds.  (3.6)

By Theorem 2.4(i), the second and third terms in the right-hand side of (3.6) can
be estimated from above by ¢t~ ¢||f||oo (¢(2))*/77. Hence, letting ¢ tend to +oco in
both sides of (3.6), we deduce that (P.T(7)f)(x) = (P.f)(z) or, equivalently, that

(T(7)f) -dui->ei = (/ f-d;ﬁ)ei
”2:1 (/Rd T 121 e
and the assertion follows at once. O

3.1. Properties of systems of invariant measures

To begin with, we observe that ué (R?) = §;; for any i,j = 1,...,m, where &;; is
the Kronecker delta. Indeed, fix 4,j € {1,...,m} and set f := e;. Then, using the
invariance property of the system {uf :j =1,...,m} we deduce that

1 1 ¢ 1 : 1 k
@) = [ =3 [ = i 4 [ @0 = o,
) k=1

since T(-)f = e; in [0, +00) x RY.

Next, we prove that the total variation of the measures ué- is absolutely continu-
ous with respect to the Lebesgue measure and that the function ¢ (see Theorem
2.4(ii)) is integrable with respect to the measure |u’| for any i,j =1,...,m.

Proposition 3.2. Fach measure |,u;| is absolutely continuous with respect to the
Lebesgue measure. Moreover, for any i,j = 1,...,m, @7 € Ll(RdJ,u;\) and
H‘P’m”Ll(Rd;W;D < Cyo(infra )0V where vo and Cy are defined in the statement
of Theorem 2.4(ii).
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Proof. We fix i,7 € {1,...,m} and split the proof into two steps. In the first one
we prove the absolutely continuity of | u§| with respect to the Lebesgue measure.

Then, in Step 2, we prove that the function ¢ is in L'(R?, |,u;|)
Step 1. We denote by zo € R? the point where ¢ attains its minimum value and
introduce the family of measures {r;; (¢, zo,dy) : t > 0}, defined by

1 st
ri;(t, o, B) := ;/ pi; (s, x0, B)ds (3.7)
0

for any t > 0, any Borel set B C R% and 4,j = 1,...,m. Note that pij (s, xo, B) =
(T(s)(xmej))i(zo) for any s, ¢, j and B as above. Since the semigroup T(t) is
strong Feller, the function p;;(-, z¢, B) is continuous in (0, 4+00) and bounded, due
to estimate (2.25). Hence, the integral in the right-hand side of (3.7) is well defined.
Moreover, each r;;(t, zo, dy) is a finite measure. Indeed, we can write

(50,8 = sup { [ Cpiovanad) ¢ € OB, 1€l <1

(see e.g., Ambrosio etc [3, Proposition 1.43]) and, again by (2.25), the function
s+ Jpa Cpij (s, 0, dy) = (T(s)(Ce;))i(wo) is bounded in (0,+00). Therefore,

1/ 1
ril(t 0, B < 7 [ IG5, 00,Rds < Colelaa))t, £ 0.
0

In view of Theorem 3.1, for any ¢t > 0 and f € C,(R?) it holds that

1 t
[ rottands) =5 [ (@ fe)an)as

and the right-hand side of the previous formula converges to fRd fd,uz- as t tends to
+oo. Hence, r;;(t, 2o, dy) weakly™ converges to ué as t tends to oo.
Now, we claim that |r;;|(, zo, ) converges to |/¢§|(Q) as t tends to +oo, for any

open set 2 C RZ. For this purpose, we fix a sequence (t,,) diverging to +oc such that
|735](tn, o, Q) admits limit as n tends to +-00. Again by Ambrosio etc [3, Proposition
1.43], we can determine a sequence (¢,) C C(Q) with ||s]lcc < 1 such that

1
roltns20. ) < [ Gars(insrod) + 1 = - [ @) Goos itookds + -
(3.8)

for any n € N. Now, we observe that if ¢, > 1 then we can write

1
= [ @Gt = [ X6 Goitands

7/ n 1)(¢nej))i(xo)ds
_ tn/tnl(T(s+ D(Cues))i(zo)ds.  (3.9)

Since | T(5)(¢ne))|loo < €°[|Cnlloo < € for any s € [0, 1], the first term in the right-
hand side of (3.9) vanishes as n tends to +oco. Similarly, [(T(s+ 1)(¢nej))i(zo)| <
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C/p(xg) for any s > 0, by (2.25). Hence, also the third term in the right-hand side
of (3.9) vanishes as n tends to +00. As far as the second term in the right-hand side
of (3.9) is concerned, we observe that the interior Schauder estimates in Theorem
A.2 show that there exists an increasing sequence (ng) C N such that T(1)(,, ;)
converges locally uniformly in R? to a bounded and continuous function g. This
result and Proposition 2.5 imply that (T(s)(T(1)(¢n,€5) — 8))i(xo) converges to 0
uniformly in (0, 4+00) as k tends to +o0o. Therefore,

i [T Cares) - 8))iads =0
0

k—+oco tnk

and from (3.9) we conclude that

. 1 tny, . 1 tny,
Jim = [ Gueiads = tim [ x))m)as
- d
; /R 95y

We claim that 37" [ra gjduz» < |u4](). For this purpose we use the invariance
property of the family {y} : j = 1,...,m} to write

Z [ TG = [ G

for any k£ € N. Hence, by dominated convergence we obtain

hz_:l/ ghduh—khr_ir_looZ/Rd )(Cni€s) )hd,uh— hm / and,uj

<timsup [ 1o ldlu] < 1119,
k—-+oo JR4
Now, we are almost done. Indeed, writing (3.8) with nj replacing n and letting
k tend to +oo, we deduce that
nkr_‘r_loo |rij|(tm Zo, Q) = kginoo |Tij|(tnk7'r07 Q) < |/‘;|(Q)
The arbitrariness of the sequence (t,) yields that limsup,_, o |ri;|(t, 20, Q) <
[15](Q2). On the other hand, [u4](Q) < liminf; o [75](t, 20,Q). Indeed, since
i (t, zo, dy) weakly™ converges to M; as t tends to +o00, we can write

[ it = i [ (eody) < Bt 6,20,
due to the fact that [, (ri;(t, zo,dy) < |ry|(t, o, ) for any t > 0. We have so
proved that limsup, , . [ri|(t, 20, Q) < [p5](Q) < liminfy o |ri;|(t, 20, Q) ie.,
|7i5](t, w0, ) converges to [u;|(€2) as t — +oc.

It is now straightforward to show that |ri;|(¢,z,C) converges to |u}](C) as t
tends to +o00 also when C'is a closed set.
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Let us prove that each measure ,u§ is absolutely continuous with respect to
the Lebesgue measure. For this purpose, we fix a Borel set B C R? with null
Lebesgue measure and, for any € > 0, we denote by K. C B a compact set such that
lui|(B\K) < € (see e.g., Maggi [20, Theorem 2.8]). Since each measure py;(t, 0, dy)
is absolutely continuous with respect to the Lebesgue measure (see Addona etc [1,
Theorem 3.3]), 7;;(t, o, dy) is absolutely continuous with respect to the Lebesgue
measure, as well, for any ¢ > 0. Hence, |r;;|(¢,20,K:) = 0 for any ¢ > 0 and
|ui|(K.) = 0. Splitting B into the union of K. and B\ K., we thus conclude that
|u5|(B) < e and the arbitrariness of & > 0 shows that |u}]|(B) = 0 and we are done.

Step 2. To begin with, we claim that (3.4) can be extended to any bounded
Borel measurable function f : R — R™. For this purpose, we approximate any
such function f by a bounded sequence (f,) C Cy(R?% R™) which converges to f
almost everywhere in R?. By the proof of Theorem 2.4, (T(-)f,,) converges to T(-)f
pointwise in R%. Since the measures | M;| are absolutely continuous with respect to
the Lebesgue measure, writing (3.1) with f and u; being replaced by f,, and ,u;,
respectively, and letting n tend to +oo (taking (2.6) into account), we get (3.1) in
its full generality. Now, as in (3.9) we write

1 1

E/o (T(s)f);(zo)ds = o(1) + E/o (T(s)T(1)f);(x0)ds

as t tends to +0o. The strong Feller property of the semigroup T(t) and (3.4) yield
that

Jm 1 [ ) xods—z/ £) i = Z/ i

which proves the claim.
By Riesz’s theorem (see e.g., Maggi [20, Theorem 4.7]), there exists a measurable
function g;; such that |g;;| = 1 everywhere in R? such that

[ g = [ rgsal recum.
Rd Rd
Since |/,L;| is absolutely continuous with respect the Lebesgue measure, using the

dominated convergence theorem we can extend the above equality to any f €
By(R?). Equivalently, we can write

duj / fdlub, f € By(R%).
Rd Gij

From all above and (2.27), we deduce that

/ﬁnsﬁ“dlul / In? dy
- lim_ % /Ot <T(s)<ﬂ"gfj%ej>>i(xo)ds
(i)

1 [t
<limsup — /

t—+oo T Jo

where (¥,,) is a standard sequence of cut-off functions. Thus, Fatou lemma yields
the assertion. This concludes the proof. O

ds < Cs(p(wo)) 07,
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Remark 3.1. In view of Proposition (3.2), using the continuity properties of the
semigroup T(¢) proved in Addona etc [1, Corollary 3.4] and the dominated con-
vergence theorem, it can be easily proved that formula (3.1) holds true for any
f € Cy(R% R™) if and only if it is satisfied by any f € B, (R4 R™).

As an important consequence of the previous proposition we can prove the fol-
lowing characterization of the evolution systems of measures {y; : j = 1,...,m}
such that ¢ € LY(RY, |y;|) for any j=1,...,m

Theorem 3.2. Let {p; : j = 1,...,m} be a family of Borel measures such that
o1 € LYRY, |u;|) for any j = 1,...,m. Then {u; : j = 1,...,m} is a system of

invariant measures for T(t) if and only if there exist real constants c1, ...,y such
that
m
pi=> cph,  j=1,...,m. (3.10)
Proof. To begin with, we observe that if the measures p; (j = 1,...,m) are

defined by (3.10) for some real constants ¢; (i =1,...,m), then {u; : j=1,...,m}
is a system of invariant measures of T(t). Indeed, for any f € C;(R% R™) and ¢t > 0

Z/ fidu; = Uzlcz/ fidp; = lecl/ £dpt = Z/ £)dp;.

Let us now suppose that {y; : j =1,...,m} is a system of invariant measures
of T(t). Then,

Z/Rd Fidu; = Z/Rd(T(t)f)jduj, 150, feCRER™). (3.1

Integrating both the sides of (3.11) between 0 and ¢ and then dividing by ¢, we get

;[Rd fjdlu’j :jz_:l,/Rd(,Ptf)jdﬂj7 (312)

where the operator P; has been introduced in (3.4). Since vy > 1/7, by Theorem
2.4(i) we can estimate |(P.f)(x)| < Co(p(z)) for any ¢ > 0 and = € R?, where Cp
is the constant in (2.25). Slnce € LY(RY, |py;]) for any j = 1,...,m and (P.f);
converges to > -, fRd fkd,ui as t tends to +oo, we can let t tend to +oo in both
sides of (3.12) and conclude that

3 /R RITEDS / foty (RY)dp], = / fudAr,
j=1 ) k,j=1

where d\y, := >0, 1 (RY)dpd, for any k = 1,...,m. Fix j € {1,...,m}. Taking
f = fe; in the above formula, we get

/fdejZ/ fidX;,
Rd Rd
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which means that the measures A; and p; coincide in Cj, (R?), for any j =1,...,m
Riesz theorem implies that A; and p; coincide on the Borel sets of R?, for any
j=1,...,m. Hence, formula (3.10) holds true with ¢; = y;(R%). O

Proposition 3.2 and the equivalence between p and the Lebesgue measure yield
immediately that \,u;\ is absolutely continuous with respect to p for any i,j =

1,...,m. Next theorem provides a more refined result on the density of | u;| with
respect to the measure pu.

Theorem 3.3. For any i,j = 1,...,m, let g;; be the density of the measure |,u3\

with respect to the measure j1. Then, g;; € L™ (RE, ) N V[/li’cq(]Rd) for any q < 400,
where 1o = min{y, p(}, v s the constant appearing in Hypothesis 2.1(v) and p{ is
the exponent conjugate to pg.

Proof. To begin with, let us prove that each function g;; belongs to L™ (R, ).
For this purpose, we fix 7,5 € {1,...,m}, f € Cp(R?%;R™) and recall that, up to a
subsequence, T(-)f is the pointwise limit of the sequence (u,), where u,, is implicitly
defined by the equation

un.i(t,x) = (T(t)fi)(x) +/ (T(t = s)wn,i(s, ")) (x)ds (3.13)

0

for any t > 0 and € R, and w,; = Z?Zl Sor (Bj)inDjun,p (see the proof of
Theorem 2.4). In particular, the sequence (u,,) is bounded in each strip [0, 7] x R9.
Integrating both sides of (3.13) in R? with respect to u we get

/Rd Un,i(t,)dp = /Rd T(t) fidp + /Rd du /Ot T(t — s)w,i(s,)ds
- g fidp + /Ot ds /Rd T(t — s)wn.i(s, )dp

:/Rd fidu+/0t ds /Rd Wi (8, -)dp. (3.14)

Here, we have used the continuity of the function (s,z) — (T'(t — s)wn. (s, -))(x),
together with the estimate |(T'(t —s)w,.i(s,))(2)| < cns7 2| ||l for any s € (0,),
x € R? to change the order of integration, and the invariance property of the
measure fi.

Now, we distinguish the cases v > pj, and v < pj. In the first case, we use
Hypothesis 2.1(ii), estimate (2.18) and the invariance property of & to deduce that

/ [wn.i(s,-)|dp gc/ Y| J.T(s)f|dp
R Rd

<l gy 1T T oo
po—1

g S P _l
<ce?r ||| Liga ) (1 V s72)[[T(s )\f|p0\|L1(Rd
s _ 1
=ce70*(1V s 2)|||f]|| Lro (ra ) (3.15)

for any s > 0. On the other hand, if v < p{, arguing similarly, we estimate

[ st )ldie <elllzs ol IR, 21 g
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Opy S -1
<cemS(1V s 2)|||f|||Lﬁ(Rd,M) (3.16)

for any s > 0. From (3.14)-(3.16) we can infer that

+oo
; —1
[ st < [ g cllfll gy, [ emivshis @an
R4 R4 ’ 0

Letting n tend to 400 in (3.17) we conclude that

L ) (3.18)

[ x@tndu< [ g it
Rd R4

Now, we let ¢ tend to +o00 in (3.18). Taking (2.25) and the forthcoming Theorem
3.5 into account, we can apply the dominated convergence theorem and deduce that

> [ = [ (Z /. fjduj>du< [ it el 19

To go further, we extend (3.19) to any f € B,(R%;R™) by approximating any
such function f by a bounded sequence (f,) C Cy(R% R™) which converges to f
almost everywhere (with respect to the Lebesgue measure and, hence, with respect
to the measures ,u;» and y) in R?.  Writing (3.19) with f being replaced by the
function f,, and letting n tend to 400, by dominated convergence we obtain that f
satisfies (3.19) as well.

Now, we are almost done. Indeed, take f € By(R?) and let A;rj be the set where
the positive part of ué- is concentrated. Writing (3.19) with f = fXAjj e; gives

i+
| syt < | S+ g e

< [ 1l iy < 0+ O i

This shows that the operator f — [, fd(p§)+ can be (uniquely) extended to

a bounded linear operator on L"0(R? 1) and the Riesz’s representation theorem
implies that there exists a nonnegative function (;Sj'j € L™ (R?, ;1) such that

/ fa(uiy* = / fétdu,  fe LhRY ).
Rd R

Repeating the same arguments with Aj'j being replaced by the set A;;, where

the negative part of uj. is concentrated, we can show that

i\— __ — r[') d
[orawy = [ regan eri@

for some nonnegative function ¢,; € L™ (R4, 11). Since g;; = (bjj + ¢;;, we immedi-
ately conclude that g;; € L™ (R?, p).

To conclude the proof, let us show that the function g;; belongs to Wé’f(Rd)
for any 4,7 = 1,...,m and any ¢ < 4oo. For this purpose, we use a bootstrap
argument. We fix r > 0, n € C°(B(0,7)) and 4,j € {1,...,m}. Choosing f = ne;
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in (3.2) and observing that duj» = ((bj; — ¢y;)dp = hijdp for any i,j = 1,...,m, we
get

d m
/Rd hijpAndz = — Z Z /Rd(Bh)ijhU(Gb;Z — ¢y pda.

h=1k=1
Let us estimate the right-hand side of the previous formula, which we denote by

Z;j. From the first part of the proof, we know that (bfk € L2(R%, ) for any h,k =
1,...,m. Moreover, [7, Corollary 2.9] implies that p € Wl’p(]Rd) for any p > 1 and

loc
so, in particular, p is locally Holder continuous. Since the entries of the matrices

By, (h=1,...,d) are locally bounded, we get

|Iz‘j| <c hgaffd||(Bh)kjﬁ||L°°(B(o,r))||hik||L2(B(0,r),u)||V77||L2(B(0,r))

k=1,....,m

and, therefore,

< ¢ IVnllL2(so,m)- (3.20)

‘ / Andys]
]Rd

Now, we fix f € C2°(R?) and a smooth function t, such that xp(o,r/2) < ¥ <
XB(0,r)- Since A((1¢2) = (LA + (AG + 2(QV (1, V(y) for any pair of smooth
functions (1, (3, we can estimate

/Rd(v‘lf)wrhmpdx :‘/Rd(flf)l/}rdu;
<‘ /R A(r fdpsss| + ’ /R Ay fpil | + 2’ /R (QV f, Ve, )du’
=N+ T+ Ts.
We claim that
T+ T2+ Tz < ol fllwizray- (3.21)

Estimate (3.20) shows that J1 < ¢.[|V(¥rf)ll2(B0,r) < el fllwi2may. As far as
Jo and J3 are concerned, arguing as above we deduce that

T2 < I(AY:) /Pl Lo (B0, 1 Pisll L2 (B0, 1 f 1| 2 (R4Y
T3 < 2[[|QVYr|\/pll Lo (B(0,r) | Rijll L2 B0,y IV Il L2 (R4 -

Estimate (3.21) is so proved and, from [16, Theorem D.1.4(ii)], we deduce that
hijpb, € W22 (RY) for any 4,5 = 1,...,m. Thus, h;jp belongs to W1H2(B(0,7/2)).
The arbitrariness of r > 0 yields immediately that h;;p € W1’2(Rd). Since p €

loc

Wli’cp(]Rd) for any p > 1 and infga p is positive, we can infer that h;; belongs to

Wh2(RY).

loc
Now, we can make the bootstrap argument work in the case when d > 3, since
the remaining cases are similar and even easier. By the Sobolev embedding theorem,

hi; belongs to LY, (R?) (and, hence, to L (R, 1)), where 1/2* = 1/2—1/d. Thus,
arguing as above, replacing [|h;l[z2(B(0,r).u) PY [hijllL2s (B0 and || fllwr2ra)

by [|fl[w1.2*) (gay in the estimate (3.21) and applying again [16, Theorem D.1.4(ii)]
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we can infer that g;; belongs to VVlif(Rd) Iterating this procedure, in a finite
number of steps we get that h;; € Wi)’cp (R%) for some p > d. We are almost done.
Indeed, again by the Sobolev embedding theorem we deduce that g;; € LfOC(Rd) for
any q < +oo. Hence, we can write estimate (3.21) with || f||y1.2(ge) being replaced
by || fllw.a (ray, for any ¢" < +o0, and [16, Theorem D.1.4(ii)] allows us to conclude
that h;; belongs to W,29(R?) for any ¢ < 4o0.

Finally, we observe that qﬁjj coincides with the positive part of h;; (and, hence,
¢;; coincides with the negative part of hi;) as it is immediately checked recalling
that gbj'j and qﬁi_j are nonnegative functions with disjoint supports. Since the positive
and negative parts of a function in W, (R%) belong to W, (R%), we immediately
conclude that g;; = ¢;; + ¢;; belongs to WLP(RY) as well. O

C

To conclude this subsection, we consider the particular case where the measure
1 is symmetrizing for the scalar semigroup T'(t), i.e.,

[ Atadn=— [ (QV1.Vg)in. (3.22)

for any f € Wi’f(Rd), g€ Wll’Q(Rd) such that f or g has compact support.

ocC
Remark 3.2. Sufficient conditions for (3.22) to hold are provided in Lorenzi etc [17]

under the following additional assumptions on the coefficients ¢;; and b; (4,57 =
1,...,d): there exists a function ® : R? — R such that

(i) Q1(divQ — b) = V& where (divQ); := Y0, Diqi; for any j =1,...,d;
(ii) e=® € LY(RY);
(iii) there exists two positive constants k1 and ko € (0, 1) such that

(Qx)(Jb(2))7¢, §) + (Q(x)€, VIr(Q(x)S)) — Tr((V(Q(2)§))Q(x)S)
<k1[VQ@)EP + kol VQ(2)SVQ() (3.23)

for any x,& € R? and any d x d symmetric matrix S.

Let {p; : j = 1,...,m} be asystem of invariant measures for T'(¢) which consists
of measures absolutely continuous with respect to the Lebesgue measure. Since pu is
equivalent to the Lebesgue measure, there exists a vector valued function p such that
each p; belongs to L'(R?, 1) and du; = p;du (j = 1,...,m). For p smooth enough,
next theorem relates the invariance property of the family {u; : j =1,...,m} to a
first-order differential equation that p has to satisfy.

Theorem 3.4. Under Hypothesis 2.1, assume that |Q(z)| < c(1 + |x|?) for any
x € RY, that the map x — |Q(x)| belongs to L*(RY, 1) and that p is symmetrizing
for the scalar semigroup T(t). Further, let {p; :i=1,...,m} be a family of Borel
finite measures, absolutely continuous with respect to the Lebesque measure. Suppose
that p solves the first-order differential equations (QVp;); — (B;P)i =0 in R? for
anyi,j=1,...,m, with p; € L*(R%, u) N VVé’f(Rd) for some p < 400 and any i as
above. Then, {u; :i=1,...,m} is a system of invariant measures for T(t).

Proof. We split the proof into two steps.
Step 1. Here, we prove that the set

D,(A) :={f € Dpax(A) : [V/QVfi| € 2R, ), i =1,...,m}
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is a core for (A, Dpax(A)) with respect to the mixed topology™* of C,(R%;R™). To
begin with, we prove that R(n) (see (2.8)) preserves D,,(A) for any n € N. For this
purpose, we observe that, in view of Proposition 2.4, we can estimate

Vavwmo=( [ ervonom. [

0 0

+oo
e”tv<T<t>f>i<->dt>
2

+oo
<|Q|\ [ emveon

+oo L 2
SCIQIIIf'IIOOU0 e ™AVt 2)dt) < c|Q||f]|-

Since |Q| € L*(R%, u) we deduce that R(n)f € D,,(A) for any f € C,(R%;R™).

Now, for any g € Cp(R%;R™) and n € N such that™™ n > [3] (see (2.6)), we
consider the function nR(n)g. Note that |R(n)gllc,rerm) < (n— 8)~! for any n
as above. Moreover, nR(n)g converges to g locally uniformly in R as n tends to +o0o.
This is clear if g belongs to Dyax(A). Indeed, we can split nR(n)g = g — R(n).Ag
for any n and, by the above estimate, R(n).Ag vanishes uniformly in R? as n tends
to +o0o. Suppose that g € Cp(R%R™). Since C (R4 R™) C Dpax(A), we can
determine a sequence (g,) C Dmax(A), bounded with respect to the sup-norm,
which converges to g locally uniformly in R¢. We split

[nR(n)g — gllc,(B(0,r)rm) <IINR(MN)(E — 8m)lloyB0,r)rm) + 18m — 8llc, (B0,r)R™)
+ [[nR(n)gm — 8mllcy(B(0,r)Rm)
<[IT()(g — &m)llcy((0,4+00)x B(0,r)R™)
+ llgm — glley(B0,r)rm)
+ [nR(n)gm — 8mllcy(B(0.r):rm)

for any m € N, n > [f] and r > 0. Taking Proposition 2.5 into account, we can let
first n and then m tend to 4+oo in the first and last side of the previous chain of
inequalities and conclude that nR(n)g converges to g locally uniformly in R?.

Given f € Dpax(A), the sequence (f,) we are looking for can be defined by
setting £, = nR(n)f for any n > [5].

Step 2. In view of Proposition 3.1, to prove that the system {p; : i =1,...,m}is
invariant for T(t) we need to show that > " | [..(Af);du; = 0 for any f € Dpax(A).
By Step 1, we can limit ourselves to proving that the previous formula holds true
for any f € D, (A). So, let us fix one such function f and let (9,,) € C=°(R?) be a
sequence of cut-off functions such that xp,n) < ¥ < XB(0,n41) and [V, | < en~!
for any n € N. We set f,, := ¥, f and using (2.3) and (3.22) we obtain that

m m p
2 [REBETESS [ | A pdu+ > / d(BjD,.fn)ipidu}

i=1
- d
:; |:_ /Rd<Qvfn,17VPz>d,U/+]Zl/]Rd(BJD]fn)Zpldlu:|

**ie., for any £ € Dmax(A) there exists a sequence (f,) C D, (A) such that sup,, cy(||fn|loo +
AL, |lo < +00), £, and Af, converge to f and Af, respectively, locally uniformly in R? as n
tends to +oo.

ttHere, [3] denotes the integer part of 3.
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m d
=2 Z/ D; fnil(Bjp)i = (QVpi);ldp = 0 (3.24)
i=1 j=17R?

for n € N. Now we show that the first side of (3.24) converges to >\ | [5.(Af)idu;
as n tends to +oo. For this purpose, we observe that for any n € N it holds that

m d
(Af,)i = In(Af); + fiddn + ) > fu(By)inDjln + 2(QVY,, V ).
k=1 j=1
Integrating this formula over R? with respect to y1;, summing up over i from 1 to m,

using again (3.22), to write [;,(AVy,)fipidp = — [pa(Q@V Iy, V(fipi))dp, and the
assumption on p, we get

;/Rd(u‘lfn)idui Z;/Rd U (AF)idp; +;/Rd<QV19"7vfi>PidM

m d m
+/RdZka(Bj)iij19ndﬂi_I;/Rd FlQVY,0, Vr)dp

k=1 j=1
=3 [ 0l + Y [ (VQVIL QY S (329
i=1 JR? P

By the dominated convergence theorem, the first term in the last side of (3.25)
converges to Y., [ (Af)idp; as n tends to +oo. In addition

Qv VT s <c | WOl /39 fllpld

<eNQY fill 2 / p2du

R\ B(0,n)

A\B(0,n)

which vanishes as n tends to 400, since p; € L?(R?, 11). As a byproduct, we conclude
that > | [oa(Af,)idp,; converges to > | [, (AF);du; as n tends to +-00. We have
so proved that > ;" | [o.(Af);du; = 0. This completes the proof. O

Example 3.1. Here we assume d = 1 and m = 2. In this case (A()(z) =
q(x)¢" (z) +b(z)¢' (x) + B¢ (z) for any = € R, on smooth functions ¢ : R — R?. We
suppose that ¢, b and the entries of the matrix-valued function B satisfy Hypotheses
2.1 and the function z — —log(q(z)) + [y (q¢(s))~'b(s)ds belongs to L*(R). In this
case, Remark 3.2 is satisfied and

u(dx) = Wi)exp (/0 Zigds)dx

for a suitable positive constant ¢. Note that condition (iii) in Remark 3.2 reduces to
q(2)b' (2)€2 < k1q(2)€2% + ka(q(x))%s? for any s,&, 2 € R and some constants ki > 0
and ko € (0,1), which is trivially satisfied since ¥’ < 0 in R due to Hypothesis
2.1(iv).

In order to compute a system of invariant measures associated to the vector-
valued semigroup associated to A we further assume that |g(z)| < ¢(1 + 2?) for
any x € R, and Bji(x) + Bi2(x) = Bai(z) + Baa(z) =: 8(x) for any 2 € R. From
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Hypothesis 2.1(ii) it follows that the functions B;; (4,7 = 1,2) grow at most linearly
as |z| tends to +00. We solve the system ¢p’ = B*p. Due to the above condition
on the sum of the rows of B, we easily see that (p; +p2)’ = ¢~ (B11+ Bi2)(p1 + p2).
Hence,

p1(x) + p2(z) = c1exp < Oz sggdt), z € R,

for some positive constant ¢;. Using this equation to write ps in terms of p; and
replacing in the first equation of the above system, we easily see that

1o ([ ) o o ([ 250 ],

and

pato) =esp ([ Zolar) _cZ+clexp( A0
[ W;&M
—exp(/ozzg))dt> —Cg—i—cleXp( >dt)
exp ( (8) 8) B(f)q&;(t) it
v [Cow ( )d5> Pl dt}

= exp ( /0 : qg; dt> —ta+a /0 exp < / Bls 8)7 (s ds) B;(Qt()t) dt}

for some positive constant ¢, € R, where v = By1; — Bo;.
Now, we consider two concrete cases.
Case 1. Here, we assume ¢(z) =1, b(z) = —z for any x € R and

0 -1
B =
-1 0

This means that the scalar operator is the Ornstein-Uhlenbeck operator and the in-
variant measure of the associated Ornstein-Uhlenbeck operator T'(¢) is the Gaussian
measure p(dz) = (27)"/2e=*"/2dz. Hence, condition (i) in Remark 3.2 is clearly
satisfied.

From the above formulas for p; and p2, we get

p1(x) = ar1€” + aze™ ", p2(x) = —a1€” + aze™™, xR,

for any a1, a2 € R.
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and B;;(x) = b;jz for any 2 € R

Case 2. If g(z) = 1 + 22, b(x) = —boz(1 + 2?)
j =1,2) such that

and some positive constants by and b;; (4,

2

2 3
( Z bfj) + (1g%§2|b”| + 1> < bo,

ij=1

then Hypotheses 2.1 are clearly satisfied. In particular, for any h € N, the function
¢, defined by ¢p(x) = (1 + 22)" satisfies Hypothesis 2.1(iii). Moreover it is quite
easy to show that the density of the invariant measure p associated to the scalar
semigroup 7'() is the function z +— (me/?erfc(2-1/26Y/2))(1+22) " exp(—bz?/2)dx
for any « € R. Again, this implies that condition (ii) in Remark 3.2 holds true. It
turns out that

bi1—b21

p(z)=(1+ x2) 2 (02 + %lbgl log(1 + 1132)),

(3.26)
bi1—b21

pa(r) = (1 +2?) " =2 (01 —co+ %blglog(l + x2)>,

for any x € R and ¢1,c0 € R, if byjo = —boy, and

b11—b21 b21 9\ bi2tboy b21
z) = (1+ 22 2 cot+ci——(1+=x 2z —cq— ),
pr(@) = ) ( ? 15124-521( ) 15124—521

b11—b21 b12 9\ b12tbo1 b21
z) = (1+ 22 2 —ct+c———(1+=x 2 4 c— |,
pal@) = ) ( 2T +b21( ) "By + bay

for any « € R and ¢y, co € R, otherwise. Note that in both cases, the functions p;
and py belongs to H (R) N LY(R, ) for any ¢ < +oo.

Remark 3.3. We stress that, if p; and ps are given by (3.26) and B is not diagonal,
then, for any choice of the constants ¢; and ¢, at least one between pu; = pi1du
and po = podp is not a positive measure. Indeed, suppose to fix the ideas that
b12 < 0. Then, py is positive in a neighborhood of 4oc0 if and only if ¢; < 0. Since
p2(0) = ¢1 — ¢, also ¢y should be non positive and ¢y, ca can not be both zero. If
co < 0, then p1(0) < 0, otherwise, if co = 0, then ¢; < 0 and p3(0) =¢; < 0.

3.2. Asymptotic behaviour of the semigroup in C,(R% R™)

As in the scalar case, the systems of invariant measures {u; g =1,...,m}
(i = 1,...,m) provided by Theorem 3.1 allow us to characterize the asymptotic
behaviour of T(t) in Cy(R%;R™) as t tends to +oo.

Theorem 3.5. For any f € C,(R%:R™) and i =1,...,m, it holds that

i (P00 =3 |, v

locally uniformly in R?.

Proof. Fixt >0,z € R?and f € C,(R%; R™). Using the invariance property (3.1)
and taking into account that u;(Rd) = §;; for any i,j = 1,...,m (see Subsection
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3.1), we can write

m

= Z/}Rd ((T(t)f)](aj) — (T(t)f)j(y))d‘u;(y)

(T =Y [ 1)

for any i = 1,...,m. Now, for any t > 1 set B' := B(0,e~2!/2?). Thus, using
estimate (2.18), recalling that v~! < 49, ¢ > 1 in R? and taking Proposition 3.2
into account, we deduce that

/Rd ((T()F);(x) — (T(t)F);(y))dps’ ()

= / (7)) (x) = (T®)F);(y))| ds(y)
R?\ Bt
[ (@D, - @n,w)] 45w
Bt
<c|fll /Rd\Bt @7 d|pl| + ce”! /Bt & — yld| k| (y)
SCHflOO/]Rd\Bt ‘P’Yod|/¢§| te (emt\x| +e§agt>

for any 4,7 = 1,...,m. Letting ¢t tend to +0o we obtain that the right-hand side
tends to 0 locally uniformly with respect to 2 € R? and this yields the assertion.
O

A. A priori estimates

Theorem A.1l. Let u belong to Wi’f(Rd;Rm) for some 1 < p < +o0. Then, for
any pair of open bounded sets 21 and Qs, 0y being compactly contained in s, there
ezists a positive constant c, depending on d,p,$d1, Qo the ellipticity constant of the
operator A and the Hélder norm of its coefficients over Qq, but independent of u,

such that
[allwzrmm) < clllullor@ymmy + AU Leymm) )- (A1)

Proof. We divide the proof into two steps. In the first step we prove the claim
when Q; = B(0,7) and Q2 = B(0,2r), » > 0. In the second one, we complete the
proof.

Step 1. For any n € N, we set r, = (2 —27")r. Clearly, ro = r and ro = 2r.
We also set

ﬁn(x)=19<1+x|_”), zeRY, neN,

T'n+l — Tn

where ¥ € C%°(R) satisfies X(—00,1) < ¥ < X(—c0,2)- Clearly, each function ¥,
belongs to C2°(RY), is such that 0 < 9,, <1, ¥, = 1 in B(0,r,) and supp (9,,) C
B(0,7p41). Moreover ||Uy g ray < 2hme, for h = 1,2.

Applying classical global LP-estimates to the functions v, := ¥,u, which be-
long to W2P(R%R™) as well as the interpolative estimate [||Jx Vot |l Lo @agm) <
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(el D*Vips1llLogagmy + € Vit || o (agmy)), which holds true for any e > 0, we
deduce that

[Vallwzs@army < cr([[VallLe®arm) + [AVal| Lo gagm))
S CT(HAu”LP(B(O-,?T);R"‘) + 4n||u||LP(B(O,2r);R7")
+ 2n|||JIVTL+1|HLP(Rd;Rm))
< e ([ A Lo (B0.2r)mm) + (271 + 4™ [l Lo (B(0.20):Em)

+2"¢||Vng1 HW2vP(Rd;RM))

for any ¢ € (0,1), where the constant ¢ depends also on d, m, p, the ellipticity
constant of the operator A and the Holder norm of its coeflicients over B(0,2r).
Choosing € = ¢~ 127"~ the previous inequality becomes

[Vallw2e ®amm) — 274||Vn+1|||W27P(]Rd;]RM)

<cr ||Au||LP(B(072T);Rm) =+ 4n+2crHu”Lp(B(O,QT);Rm) .

Multiplying both the terms by 24" and summing over n from 0 to & € N we get

Ivollwer@emm) =27 v 2. (R sRm)

<c (Ml e (B0,2r)rm) + [0l L (B(0,27)R™))-

Since ||Vx+1llozray < 4Fc,, for any k € N, the second term in the left-hand side of
the previous inequality vanishes as k tends to +oo and this allows us to conclude
the proof in this particular case, recalling that vo = u on B(0,r).

Step 2. Here, we complete the proof using a covering argument. Let €2; and
Q5 be as in the statement of the theorem. Further, fix 0 < r < dist(Q;, 9825). By
compactness we can cover {2y by a finite number of balls of radius r, i.e., there
exist x1,...,7) in € such that Q; C Ule(B(xi,r)). Due to the choice of r,
Ule (B(zi,7)) C Qs. By a translation, we can easily extend estimate (A.1) to balls
centered at any point zo € R?. Hence, we can write

k

[allwzr @, mmy < D lulwze (s rmm)
=1
k
< CZ(||UHL1’(B(11,2’I‘);RM) + [l Al Lo (B (2, 2r) )

i=1

< c(lull e (@,irm) + (A Lo 0y mm))
and the claim is so proved. O]
Theorem A.2 (Theorem A.2, Addona etc [1]). Letu € C’llota/Q’Ha((O, T]xR4;R™)

satisfy the differential equation Dyu = Au + g in (0,T] x R?, for some g €
Ca/Q’a((O,T] x RLGR™) and T > 0. Then, for any 7 € (0,T) and any pair of

loc
bounded open sets Q1 and o, with 0y being compactly contained in o, there exists

a positive constant c, independent of u, such that

[ull grvarz2ta ()00 mm)

SC(HUHCb((T/z,T)xﬂz;nw) + Hg||CO‘/2=°‘((T/2,T)><Qg;]Rm))'
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