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Abstract An alternative to the stiffened-gas equation of state is proposed
that corrects for unphysical behavior, namely the returning of negative pres-
sure values for densities lower than the reference density. The question of
generalizing a given isentropic equation of state is first addressed. Then, a
regularized stiffened-gas equation of state is derived, which is the main goal of
this work. Finally, the use of the new equation of state is briefly illustrated for
a classical computational fluid dynamics benchmark concerning the evaluation
of liquid impact on a wall.
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1. Introduction

In numerous CFD∗ applications it is necessary to handle slightly compressible fluids
like liquids. Furthermore, some liquid flows with very high pressures (from tens to
thousands of bars) are sometimes of interest. E.g. propagation of shock waves
generated by underwater explosions, where liquids become fully compressible.

For divariant fluids (a substance is divariant when all its thermodynamic prop-
erties can be expressed by two independent parameters e.g. pressure and tempera-
ture), compressible solvers need Equations of State (EoS) that are generally physical
laws of the form (p denotes the pressure and T the temperature):

thermodynamic function = function of (p, T ) , (1.1)

which are either given by analytical expressions or numerical tables, for which the
reader is referred to Labourdette et al. [10] and references therein.

This paper focuses on CFD solvers that use the following thermodynamic vari-
ables: ρ , e and s (respectively density, specific internal energy and specific entropy).
Hence, the following functions are needed:

ρ = R(p, T ) , e = E(p, T ) , s = S(p, T ) . (1.2)

In CFD, the classical EoS is:
p = (γ − 1) ρ e , (1.3)
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1 CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235, Cachan, France
∗A glossary of abbreviations used is provided for the reader before the References.

http://dx.doi.org/10.11948/2018.675


676 J. M. Ghidaglia, A. A. Mrabet

where γ > 1 is a constant. This law, known as the polytropic gas EoS, is used to
close the usual conservative compressible Euler Equations, for example. In the CFD
literature (1.3) was extended in the early seventies (Harlow and A. Amsden [9]) in
order to represent the behavior of liquids (Water, liquefied Methane, ...) at pressure
values near to 1 Bar, as follows:

p = (γ − 1) ρ e − π0 , (1.4)

where π0 is a constant that depends on the liquid. Since, it has been used by many
authors, see e.g. Saurel and Abgrall [14] and Bernard et al. [2], in CFD solvers.

In this paper an alternative to the SG EoS (1.4) is proposed that revises its
unphysical behavior (see the numerical example at the beginning of Section 2.2). In
the next Section we focus on the isentropic version of (1.4), the ISG EoS, and we
first correct its unphysical behavior: production of negative pressures for densities
lower than the reference density. This modification of the ISG EoS does not affect
its values for densities greater than the reference density. Then, in the next Section,
the general question of extending a given isentropic EoS to a general one (Theorem
3.1) is addressed. Section 4 applies this result to the IRSG EoS in order to produce
the RSG EoS, which is the main goal of this work. Finally, the use of this new EoS
is briefly illustrated for a classical benchmark in CFD that concerns the evaluation
of liquid impacts against a wall.

2. On the classical Stiffened-Gas EoS

The usual method used to determine π0 in (1.4) is based on the following result:

Lemma 2.1. For an EoS of the form p = P(ρ , e) , the speed of sound (SoS) is
given by:

c =

√(
∂p

∂ρ

)
e

+
p

ρ2

(
∂p

∂e

)
ρ

. (2.1)

Proof. The SoS is given by:

c =

√(
∂p

∂ρ

)
s

. (2.2)

Hence, we can write:

dp = c2 dρ+

(
∂p

∂s

)
ρ

ds . (2.3)

Now according to Gibbs relation:

Tds = de− p

ρ2
dρ , (2.4)

so that we have:

dp = c2 dρ+
de− p

ρ2 dρ

T

(
∂p

∂s

)
ρ

. (2.5)

It is deduced that
1

T

(
∂p

∂s

)
ρ

=

(
∂p

∂e

)
ρ

, c2 =

(
∂p

∂ρ

)
e

+
p

T ρ2

(
∂p

∂s

)
ρ

and (2.1)

follows.
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For the EoS (1.4), formula (2.1) leads to:

c2 =
γ p+ π0

ρ
, (2.6)

so that knowing, given a pressure p0 and temperature T0 , the values of density ρ0
and SoS c0, we can find:

π0 = ρ0 c
2
0 − γ p0 . (2.7)

In this formula γ (the analogue of the adiabatic index in (1.3)) has still to be
determined. As we shall see, the value of γ does not play a role. Let us consider
water in normal ambient conditions, where ρ0 ≈ 1 000 kgm−3 , c0 ≈ 1 500ms−1 at
p0 = 105 Pa and T0 = 300K . We have ρ0 c

2
0 ≈ 2.25 109 Pa , hence ρ0 c

2
0 ≫ p0 and

since γ = O(1) , ρ0 c
2
0 ≫ γ p0 . Therefore, it can be concluded that π0 ≈ ρ0 c

2
0 and

that the numerical value of γ should not play an important role. Later, we will
return to this point with a more rigorous proof, see Proposition 2.1.

2.1. The isentropic case

By assuming that the heat capacity at constant volume CV is constant, that is:

CV ≡
(
∂e

∂T

)
ρ

> 0 is constant , (2.8)

it is shown in the Appendix (Section 6) that combining (1.4) and (2.4) with (2.8)
leads to the following expression for the specific entropy function s , as a function
of p and ρ :

(γ − 1)T0 ρ0 CV

(
exp

(
s− s0
CV

)
− 1

)
=

(
ρ

ρ0

)−γ [
p+

π0

γ

]
−
[
p0 +

π0

γ

]
, (2.9)

so that the isentropic version of (1.4) is:

p =

(
p0 +

π0

γ

)(
ρ

ρ0

)γ

− π0

γ
. (2.10)

This law is mostly known as the Isentropic Stiffened-Gas Equation (ISG), but some-
times in the literature it is referred to as Tait’s law (see e.g. Oger et al. [12]).

Introducing the following non-dimensional number that quantifies the compress-
ibility of the fluid:

χ0 ≡ p0
ρ0c20

, (2.11)

it is observed that (2.10) can also be written as:

ρ = ρ0

(
1 + γ χ0

p− p0
p0

)1/γ

. (2.12)

χ0 is very small for liquids, e.g. for water in ambient conditions χ0 ∼ 1/22500 ∼
4.44× 10−5 , so that (2.12) can be expanded as:

ρ = ρ0

(
1 + χ0

p− p0
p0

− γ − 1

2

(
χ0

p− p0
p0

)2

+O

((
χ0

p− p0
p0

)3
))

. (2.13)
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Hence, over a wide range of pressure (2.10) is well approximated by the linear law:

ρ = ρ0

(
1 + χ0

p− p0
p0

)
, χ0 ≡ p0

ρ0c20
, (2.14)

which is independent of γ and is in fact equivalent to (2.10) for γ = 1. So it has
been shown:

Proposition 2.1. For χ0 ≪ 1 the ISG (2.10) is negligibly dependent on γ and is
well approximated by (2.14).

2.2. Study of the ISG EoS (2.10)

However, although the ISG is used extensively in the CFD literature, it has a major
drawback: it produces (non-physical) negative pressures, as is now shown in the
most used case, namely water in ambient conditions.

Numerical example As already discussed, for liquids with γ > 1 the value of γ
does not play a role as long as it is of order 1. Hence, γ = 2 is taken to fit (2.10) for
water in conditions close to ambient. Taking ρ0 = 1000 kgm−3 , c0 = 1500ms−1

at p0 = 105 Pa we find π0 = 2.2498 109 Pa.
Now, if this numerical value is used to compute the pressure corresponding to the
density 999.9 kgm−3, a negative value is found: − 349 958Pa!

Discussion One might reply that, in the case of a compression, which is impor-
tant when dealing with underwater explosions, the density will increase and the law
(2.10) will not return negative pressures. In fact the situation is more subtle, espe-
cially in the case of compressions found when using CFD. Indeed, behind a shock
wave compression there is always a depression (this is the classical solution to Rie-
mann’s Problem, Courant and Friedrichs [7]), and negative pressures are therefore
produced by the law (2.10). In such a situation some code developers use so-called
clipping techniques which consists of fixing a minimal value to the density, ρmin

for which the pressure given by the law (2.10) is positive. This technique is not
acceptable in the context of Finite Volume CFD Codes (which are now the Sate
of the Art techniques in CFD see e.g. the ANSYS Fluent User Guide [1] and the
OpenFOAM User Guide [13]) because mass conservation is violated when clipping
techniques are used.

Conclusion Law (2.10) must be modified for densities smaller than ρ0, e.g. for
ρ ≤ ρ0/2 , so that the pressure remains positive for all density values.

2.3. Regularizing the isentropic Stiffened-Gas EoS

Two simple principles are relied upon in order to build the IRSG (Isentropic Regu-
larized Stiffened-Gas) EoS and use it for CFD simulations (see Section 5). Firstly,
for vanishing pressure, according to physical considerations, all fluids behave like a
perfect gas, hence we shall take:

p proportional to ργ , as ρ → 0 , (2.15)

with γ = 2 , (again the value of γ > 1 has very little effect).
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Secondly, it is undesirable to introduce artificial discontinuities in the SoS (as
these induce numerical artifacts, such as reflexions of waves, etc.), so it is imposed
that the IRSG, written as:

p = PIRSG(ρ) ≡ p0φ

(
ρ

ρ0

)
, (2.16)

is a smooth function (at least C1) of ρ .

As already seen, it is only necessary to modify the original ISG EoS (2.10) for
densities lower than ρ0 , which leads us to propose the following expression for φ in
(2.16) (r0 = 1/2 in what follows):

φ : r 7→ φ0(r) = 1 +
rγ − 1

γ χ0
, for r ≥ r0 ,

φ1(r) =
χ0

2r0

r2

(α0 + χ0) r0 − α0 r
, for r ≤ r0 ,

(2.17)

where:
χ0 =

p0
ρ0c20

, and α0 ≡ 2− (γ + 2)χ0 . (2.18)

Figures 1 and 2 compare both ISG and IRSG with data for liquid methane at 1 bar
and with a saturation temperature ≈ 111K.

Figure 1. Isentropic Stiffened-Gas EoS compared with Isentropic Regularized Stiffened-Gas EoS.

3. The lift problem for a general EoS

3.1. Problem specification

Starting with an arbitrary isentropic EoS

p = Q(ρ) , ρ ≥ 0 , (3.1)

with the goal to find a lift P (ρ , s) > 0 that is a law, such that:

P (ρ , s0) = Q(ρ) , ∀ρ > 0 , (3.2)



680 J. M. Ghidaglia, A. A. Mrabet

Figure 2. Isentropic Stiffened-Gas EoS compared with Isentropic Regularized Stiffened-Gas EoS
(Zoom).

where s0 denotes the reference value of the specific entropy corresponding to (3.1).

This problem has an infinite number of solutions, but some constraints apply
because P (ρ , s) must be a physical law, as will now discussed. Since (3.1) is a
physical law, we have:

Q′(ρ) > 0 , ρ > 0 , (3.3)

and for the same reason (existence of the SoS given by (2.2)) it must be the case
that: (

∂P

∂ρ

)
s

(ρ , s) > 0 , ∀ρ > 0 , ∀s > 0 . (3.4)

We also have (recall that e denotes the specific internal energy):

P (ρ , e) > 0 , ∀e > 0 , ∀ρ > 0 . (3.5)

3.2. A general result

The goal of this Section is to prove the following result.

Theorem 3.1. Let Q be a given isentropic EoS (Q is a C1 positive and strictly
increasing function) that corresponds to the reference state s = s0, e = e0 > 0,
T = T0 > 0. For the two hypotheses:(

∂e

∂T

)
ρ

(ρ, T ) is constant, P (ρ, e = 0) = 0, ∀ρ > 0 , (3.6)

one and only one law P (ρ, s) exists that is a lift of (3.1), such that:

P (ρ, s0) = Q(ρ), ∀ρ > 0 . (3.7)
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This is given by:

P (ρ, s) = Q(ρ) exp

(
s− s0
CV

)
, (3.8)

P (ρ, e) =
Q(ρ)e

e0 +
∫ ρ

ρ0

Q(r)
r2 dr

, (3.9)

exp

(
s(ρ, e)− s0

CV

)
=

e

e0 +
∫ ρ

ρ0

Q(r)
r2 dr

, (3.10)

T (ρ, e) =
e

CV
, where CV =

e0
T0

. (3.11)

The proof of this result arises from the following two propositions whose proofs
are postponed until later.

Proposition 3.1. Condition (2.8) is equivalent to: a function θ : R+ → R+ exists
such that:

T (ρ, s) = θ(ρ) exp

(
s− s0
CV

)
. (3.12)

Proposition 3.2. For condition (2.8) and having (3.7), then:

e(ρ, s) = CV θ(ρ)

[
exp

(
s− s0
CV

)
− 1

]
+ e0 +

∫ ρ

ρ0

Q(r)

r2
dr , (3.13)

P (ρ, s) = CV ρ2 θ′(ρ)

[
exp

(
s− s0
CV

)
− 1

]
+Q(ρ) . (3.14)

Proof of Theorem 3.1. According to (3.6) we have (3.12), (3.13) and (3.14).
Denoting s∗(ρ) := s(ρ, e = 0) in view of (3.13), we can write:

1− exp

(
s∗(ρ)− s0

CV

)
=

e0 +

∫ ρ

ρ0

Q(r)

r2
dr

CV θ(ρ)
, (3.15)

so that according to (3.14):

P (ρ, e = 0) = Q(ρ)− ρ2 θ′(ρ)

θ(ρ)

(
e0 +

∫ ρ

ρ0

Q(r)

r2
dr
)
, (3.16)

and now P (ρ, e = 0) = 0 becomes:

θ′(ρ)

θ(ρ)
=

Q(ρ)

ρ2

e0 +

∫ ρ

ρ0

Q(r)

r2
dr

. (3.17)

This differential equation has a unique solution (θ(ρ0) = T0) :

θ(ρ) = T0

(
1 +

1

e0

∫ ρ

ρ0

Q(r)

r2
dr
)
. (3.18)
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It is deduced from (3.13) that

exp

(
s(ρ, e)− s0

CV

)
= 1 +

e0
CV T0

e− e0 +
∫ ρ

ρ0

Q(r)
r2 dr

e0 +
∫ ρ

ρ0

Q(r)
r2 dr

, (3.19)

so, returning to (3.13) and (3.14), it is found that:

P (ρ, e) =
Q(ρ)e

e0 +
∫ ρ

ρ0

Q(r)
r2 dr

, (3.20)

and
T (ρ , e) = T (e) =

e

CV
. (3.21)

Hence:
e0 = CV T0, (3.22)

so that (3.19) yields:

exp

(
s(ρ, e)− s0

CV

)
=

e

e0 +
∫ ρ

ρ0

Q(r)
r2 dr

, (3.23)

and Theorem 3.1 is proved.

Proof of Proposition 3.1. By observing that according to Gibbs relation (2.4),
we have: (

∂e

∂s

)
ρ

= T ,

(
∂e

∂ρ

)
s

=
P (ρ, s)

ρ2
, (3.24)

(i) Assuming that (2.8) is true, according to (2.4):(
∂T

∂s

)
ρ

=

(
∂T

∂e

)
ρ

(
∂e

∂s

)
ρ

= T

(
∂T

∂e

)
ρ

=
T

Cv
,

hence (3.12) follows.
(ii) Conversely, if (3.12) is true, then

(
∂e

∂T

)
ρ

=

(
∂e

∂s

)
ρ(

∂T

∂s

)
ρ

=
T(

∂T

∂s

)
ρ

= Cv .

Proof of Proposition 3.2. Taking ρ0 as an arbitrary reference value and denoting
the values of e(ρ0, s0) and T (ρ0, s0) by:

e0 = e(ρ0, s0) , T0 = T (ρ0, s0) . (3.25)

According to (3.12) and (3.24) we have:(
∂e

∂s

)
ρ

= T = θ(ρ) exp

(
s− s0
Cv

)
. (3.26)
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It follows that:

e(ρ, s) = Cv θ(ρ) exp

(
s− s0
Cv

)
+ E(ρ) , (3.27)

where E is an arbitrary function which, according to (3.25), satisfies:

E(ρ0) = −CvT0 + e0 . (3.28)

It is deduced from (3.24) that,

P (ρ, s) = ρ2
(
∂e

∂ρ

)
s

= Cv ρ
2 θ′(ρ) exp

(
s− s0
Cv

)
+ ρ2 E′(ρ) , (3.29)

so that with (3.7):
Cvρ

2θ′(ρ) + ρ2E′(ρ) = Q(ρ) . (3.30)

It then follows from (3.28) that

E(ρ) = e0 − Cv θ(ρ) +

∫ ρ

ρ0

Q(r)

r2
dr . (3.31)

Hence, returning to (3.27):

e(ρ, s) = Cv θ(ρ)

[
exp

(
s− s0
Cv

)
− 1

]
+ e0 +

∫ ρ

ρ0

Q(r)

r2
dr . (3.32)

Then according to (3.29), it is found that:

P (ρ, s) = Cv ρ
2 θ′(ρ)

[
exp

(
s− s0
Cv

)
− 1

]
+Q(ρ) . (3.33)

3.3. On the key functions appearing in Finite Volumes Codes

In Finite Volumes Codes, that include the total energy conservation equation, the
thermodynamic relation p = P (ρ, e) is commonly used. Then, the two thermody-
namic functions: (

∂p

∂ρ

)
s

(ρ, e) and
1

ρT (ρ, e)

(
∂p

∂s

)
ρ

, (3.34)

appear to be useful. The first of these is the SoS squared:

c2 =

(
∂p

∂ρ

)
s

(ρ, e), (3.35)

while the second is Grüneisen’s coefficient:

k =
1

ρ T (ρ, e)

(
∂p

∂s

)
ρ

. (3.36)

For the hypotheses given in Theorem 3.1, we then have:

c2(ρ, e) = Q′(ρ)
e

e0 +
∫ ρ

ρ0

Q(r)
r2 dr

, k(ρ, e) = k(ρ) =
Q(ρ)

ρ
(
e0 +

∫ ρ

ρ0

Q(r)
r2 dr

) . (3.37)
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4. Application to the Stiffened-Gas EoS

In this Section the objective is to build a generalization of the SG EoS (1.4) that
ensures a positive pressure. In Section 2.3 a regularized version of the ISG EoS was
constructed, as given by (2.16)-(2.17), which is the IRSG. Now we are going to use
Theorem 3.1 to find a lift of the IRSG.

Let then Q be given by (2.16)-(2.17). In view of (3.9)-(3.10), we need to compute
the integral:

I(ρ) =

∫ ρ

ρ0

Q(s)

s2
ds =

p0
ρ0

∫ r

1

φ(s)

s2
ds︸ ︷︷ ︸

≡J(r)

, r =
ρ

ρ0
. (4.1)

It can be seen that the computations need to be done in two steps by observing
that r0 < 1 and that φ has two different expressions according to the position of r
with respect to r0.

For r ≥ r0 . An easy computation shows that (for γ > 1):

J(r) =

(
1− 1

χ0γ

)(
1− 1

r

)
+

rγ−1 − 1

χ0γ(γ − 1)
, ∀r ≥ r0 . (4.2)

For r ≤ r0 . In this case we write:

J(r) =

∫ r0

1

φ0(s)

s2
ds+

∫ r

r0

φ1(s)

s2
ds . (4.3)

The first integral has already been computed, while for the second:

∫ r

r0

φ1(s)

s2
ds =

χ0

2r0
ln

(
χ0r0

(α0 + χ0)r0 − α0r

)
. (4.4)

Finally the function I(ρ) , (4.1), appearing in (3.9)-(3.10) is:

I(ρ)=


p0
ρ0

[(
1− 1

χ0γ

)(
1− 1

r

)
+

rγ−1 − 1

χ0γ(γ − 1)

]
, for r ≤ r0 ,

p0
ρ0

[(
1− 1

χ0γ

)(
1− 1

r0

)
+

rγ−10 −1

χ0γ(γ−1)
+

χ0

2r0
ln

(
χ0r0

(α0+χ0)r0−α0r

)]
, for r≥r0 .

Figures 3 and 4 show the SG and RSG laws.
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Figure 3. Comparison of SG and RSG laws.

In Figure 4 it is observed that the regularized law always has a positive pressure,
in contrast to the original law (1.4). It is also seen that the RSG is an extension of
the IRSG law.

Figure 4. Comparison of SG and RSG laws (Zoom).

5. An illustration: patch of liquid in free fall

As discussed in the Introduction, the derivation of the RSG EoS was motivated
by simulations of wave impacts, for example sloshing of liquid methane in tanks of
liquefied natural gas carriers, see e.g. the recent review by Dias and Ghidaglia [8].
Here, the added value of this law over the usual SG EoS is illustrated for a classical
benchmark in the field (see Braeunig et al. [3]). This 2D benchmark studies the free
fall of a patch of liquid methane surrounded by gaseous methane in a closed rigid
tank. The initial geometry is given in Figure 5. The code used is FLUX-IC, which
is based on the inviscid Euler equation with interface capturing, see [4].
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Figure 5. Initial geometry of the liquid patch surrounded by the gas.

Figure 6 shows the plot of the pressure history along the vertical symmetry
axis, Oz, of the patch for the computation performed with the classical SG EoS,
where negative pressures are observed. Now, using the RSG EoS described in this
article, it can be seen in Figure 7 that this unphysical behavior has been corrected.
For more details on these results, the reader is referred to Costes et al. [6] and
Mrabet [11].

Figure 6. Pressure history along the vertical symmetry axis, Oz, with SG EoS.

6. Appendix: Specific entropy function for the SG
EoS

The objective of this Section is to prove the expression (2.9) of the specific entropy
function for the SG EoS. Considering a fluid that satisfies EoS (1.4) and property
(2.8). According to Proposition 3.1, we can write:

T (ρ, s) = θ(ρ) exp

(
s− s0
CV

)
, θ(ρ0) = T0 , (6.1)
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Figure 7. Pressure history along the vertical symmetry axis, Oz, with RSG EoS. Note that the ther-

modynamic pressure is obtained by adding 1 bar ≈ 105 Pa to the dynamic pressure. Hence the thermo-
dynamic pressure is positive.

so that Gibbs relation (2.4) together with (1.4) yields:

θ(ρ) exp

(
s− s0
CV

)
ds = de− (γ − 1) ρ e − π0

ρ2
dρ . (6.2)

Hence, introducing the function S ≡ CV exp

(
s− s0
CV

)
, it transpires that

dS =
de

θ(ρ)
− (γ − 1) ρ e − π0

ρ2 θ(ρ)
dρ . (6.3)

This means that:(
∂S

∂e

)
ρ

=
1

θ(ρ)
,

(
∂S

∂ρ

)
e

= − (γ − 1) ρ e − π0

ρ2 θ(ρ)
, (6.4)

and using
(

∂2S
∂e ∂ρ

)
=
(

∂2S
∂ρ ∂e

)
, it is easily found that:

θ(ρ) = T0

(
ρ

ρ0

)γ−1

. (6.5)

Now, returning to (6.4), we have:(
∂S

∂e

)
ρ

=
1

T0

(
ρ

ρ0

)1−γ

, (6.6)

(
∂S

∂ρ

)
e

=
π0

ρ2 T0

(
ρ

ρ0

)1−γ

− (γ − 1) e

T0 ρ

(
ρ

ρ0

)1−γ

. (6.7)

Equation (6.6) immediately yields:

S =
e

T0

(
ρ

ρ0

)1−γ

+ F (ρ) , (6.8)
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where F is arbitrary function. Now, due to (6.7), we find:

F ′(ρ) =
π0

ρ2 T0

(
ρ

ρ0

)1−γ

, F (ρ) = − π0

γ ρ0 T0

(
ρ

ρ0

)−γ

+ F0 . (6.9)

Finally returning to (6.8) we can write:

CV exp

(
s− s0
CV

)
=

e

T0

(
ρ

ρ0

)1−γ

− π0

γ ρ0 T0

(
ρ

ρ0

)−γ

+ F0 , (6.10)

or in the pressure and density variables:

CV exp

(
s− s0
CV

)
=

1

(γ − 1)T0 ρ0

(
ρ

ρ0

)−γ [
p+

π0

γ

]
+ F0 , (6.11)

that is:

(γ − 1)T0 ρ0 CV

(
exp

(
s− s0
CV

)
− 1

)
=

(
ρ

ρ0

)−γ [
p+

π0

γ

]
−
[
p0 +

π0

γ

]
. (6.12)

Hence, the following result has been demonstrated.

Proposition 6.1. The entropy specific function of a fluid that satisfies EoS (1.4)
and property (2.8) is explicitly given by the relation (6.12).

Remark 6.1. In the literature (see e.g. Oger et al. [12]), the ISG EoS (2.10) can
be found. Indeed, relation (6.12) is not necessary to find the ISG EoS (2.10) from
the SG EoS (1.4), and it will be briefly explained how below. However, Proposition
6.1 seems to be new.

Deriving the ISG EoS from the SG EoS. According to Gibbs relation (2.4)
for isentropic transformation of the fluid, we have:

de =
p

ρ2
dρ , that is d

(
p+ π0

(γ − 1) ρ

)
=

p

ρ2
dρ , or

dp

γ p+ π0
=

dρ

ρ
, (6.13)

and (2.10) follows immediately.

Glossary

Abbreviation Fully spelled out

CFD Computational Fluid Dynamics
EoS Equation of State
SoS Speed of Sound
SG Stiffened-Gas
ISG Isentropic Stiffened-Gas
IRSG Isentropic Regularized Stiffened-Gas
RSG Regularized Stiffened-Gas
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