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Abstract Our aim in this paper is to study the well-posedness and the ex-
istence of the global attractor of anisotropic Caginalp phase-field type models
with singular nonlinear terms. The main difficulty is to prove, in one and two
space dimensions, that the order parameter remains in the physically relevant
range and this is achieved by deriving proper a priori estimates.
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1. Introduction
The Caginalp phase-field system,

∂u

∂t
−∆u+ f(u) = T, (1.1)

∂T

∂t
−∆T = −∂u

∂t
, (1.2)

was proposed in [6] to model phase transition phenomena, such as melting-solidification
phenomena. Here, u is the order parameter, T is the relative temperature (de-
fined as T = T̃ − TE , where T̃ is the absolute temperature and TE is the equilib-
rium melting temperature) and f is the derivative of a double-well potential F (a
typical choice of potential is F (s) = 1

4 (s2 − 1)2, hence the usual cubic nonlinear
term f(s) = s3 − s). Furthermore, here and below, we set all physical param-
eters equal to one. This system has been much studied; we refer the reader to,
e.g., [3–5,8, 10,12,13,15,16,18–20,25–27,31].

These equations can be derived as follows. One introduces the (total Ginzburg-
Landau) free energy

ΨGL =

∫
Ω

(
1

2
|∇u|2 + F (u)− uT − 1

2
T 2)dx, (1.3)
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where Ω is the domain occupied by the system (we assume here that it is a bounded
and regular domain of Rn, n = 1 or 2, with boundary Γ), and the enthalpy

H = u+ T. (1.4)

As far as the evolution equation for the order parameter is concerned, one postulates
the relaxation dynamics (with relaxation parameter set equal to one)

∂u

∂t
= −DΨGL

Du
, (1.5)

where
D

Du
denotes a variational derivative with respect to u, which yields (1.1).

Then, we have the energy equation

∂H

∂t
= −divq, (1.6)

where q is the heat flux. Assuming finally the usual Fourier law for heat conduction,

q = −∇T, (1.7)

we obtain (1.2).
Now, one essential drawback of the Fourier law is that it predicts that thermal

signals propagate at an infinite speed, which violates causality (the so-called para-
dox of heat conduction). To overcome this drawback, or at least to account for
more realistic features, several alternatives to the Fourier law, based, e.g., on the
Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed
and studied, in the context of the Caginalp phase-field system, in [20,21].

In the late 1960’s, several authors proposed a heat conduction theory based on
two temperatures (see [33–35]). More precisely, one now considers the conductive
temperature T and the thermodynamic temperature θ. In particular, for simple
materials, these two temperatures are shown to coincide. However, for non-simple
materials, they differ and are related as follows:

θ = T −∆T. (1.8)

The Caginalp system, based on this two temperatures theory and the usual
Fourier law, was studied in [3].

Our aim in this paper is to study a variant of the Caginalp phase-field sys-
tem based on the type III thermomechanics theory with two temperatures recently
proposed in [36].

In that case, the free energy reads, in terms of the (relative) thermodynamic
temperature θ,

ΨGL =

∫
Ω

(
1

2
|∇u|2 + F (u)− uθ − 1

2
θ2)dx (1.9)

and (1.5) yields, in view of (1.8), the following evolution equation for the order
parameter:

∂u

∂t
−∆u+ f(u) = T −∆T. (1.10)

Furthermore, the enthalpy now reads

H = u+ θ = u+ T −∆T, (1.11)
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which yields, owing to (1.6), the energy equation

∂T

∂t
−∆

∂T

∂t
+ divq = −∂u

∂t
. (1.12)

Finally, the heat flux is given, in the type III theory with two temperatures, by
(see [36])

q = −∇α−∇T, (1.13)

where

α(t, x) =

∫ t

0

T (τ, x)dτ + α0(x) (1.14)

is the conductive thermal displacement.
In (1.3) (or (1.9)), the term |∇u|2 models short-ranged interactions. It is however

interesting to note that such a term is obtained by truncation of higher-order ones
(see [30]); it can also be seen as a first-order approximation of a nonlocal term
accounting for long-ranged interactions (see [11]).

G. Caginalp and E. Esenturk recently proposed in [7] higher-order phase-field
models in order to account for anisotropic interfaces (see also [29] for other ap-
proaches which, however, do not provide an explicit way to compute the anisotropy).
More precisely, these authors proposed the following modified (total) free energy

ΨHOGL =

∫
Ω

(
1

2

k∑
i=1

∑
|β|=i

aβ |Dβu|2 + F (u)− uT − 1

2
T 2)dx, (1.15)

where, for β = (k1, k2, k3) ∈ (N ∪ {0})3,

|β| = k1 + k2 + k3

and, for β 6= (0, 0, 0),

Dβ =
∂|β|

∂xk1
1 ∂x

k2
2 ∂x

k3
3

(we agree that D(0,0,0)v = v). Noting that T =
∂α

∂t
, this then yields the following

evolution equation for the order parameter u:

∂u

∂t
+

k∑
i=1

(−1)i
∑
|β|=i

aβD2βu+ f(u) =
∂α

∂t
−∆

∂α

∂t
. (1.16)

In particular, for k = 1 (anisotropic Caginalp phase-field system), we have an
equation of the form

∂u

∂t
−

3∑
i=1

ai
∂2u

∂x2
i

+ f(u) =
∂α

∂t
−∆

∂α

∂t
(1.17)

and, for k = 2 (fourth-order anisotropic Caginalp phase-field system), we have an
equation of the form

∂u

∂t
+

3∑
i,j=1

aij
∂4u

∂x2
i ∂x

2
j

−
3∑
i=1

bi
∂2u

∂x2
i

+ f(u) =
∂α

∂t
−∆

∂α

∂t
. (1.18)
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It is however important to note that, in phase transition, regular nonlinear terms
actually are approximations of thermodynamically relevant logarithmic ones of the
form f(s) = −λ1s+ λ2

2 ln 1+s
1−s , s ∈ (−1, 1), 0 < λ2 < λ1, which follow from a mean-

field model (see [12]; in particular, the logarithmic terms correspond to the entropy
of mixing).

Our aim in this paper is to consider the second-order anisotropic equation (1.17)
and the energy equation

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (1.19)

with general singular nonlinear terms (containing the physically relevant logarithmic
ones). In particular, we prove, in one and two space dimensions, the existence and
uniqueness of classical solutions, as well as the existence of the global attractor of
the associated dynamical system.

Here, we do not address the higher-order models. Indeed, when k > 2, we are
not able to prove the existence of classical solutions and have to deal with a different
notion of a solution, based on a variational inequality (see [9, 22]; see also [18]).

2. Setting of the problem
We consider the following initial and boundary value problem:

∂u

∂t
−

3∑
i=1

ai
∂2u

∂x2
i

+ f(u) =
∂α

∂t
−∆

∂α

∂t
, (2.1)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (2.2)

u = α = 0 on Γ, (2.3)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (2.4)

We assume that
ai > 0, i ∈ {1, 2, 3}, (2.5)

and we introduce the elliptic operator A defined by

〈Av,w〉H−1(Ω),H1
0 (Ω) =

3∑
i=1

ai((
∂v

∂xi
,
∂w

∂xi
)), (2.6)

where H−1(Ω) is the topological dual of H1
0 (Ω). Furthermore, ((.,.)) denotes the

usual L2-scalar product, with associated norm ‖.‖; more generally, we denote by
‖.‖X the norm on the Banach space X. We can note that

(v, w) ∈ H1
0 (Ω)2 7→

3∑
i=1

ai((
∂v

∂xi
,
∂w

∂xi
))

is bilinear, symmetric, continuous and coercive, so that

A : H1
0 (Ω)→ H−1(Ω)
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is indeed well defined. It then follows from elliptic regularity results for linear
elliptic operators of order 2 (see [1, 2]) that A is a strictly positive, selfadjoint and
unbounded linear operator with compact inverse, with domain

D(A) = H2(Ω) ∩H1
0 (Ω),

where, for v ∈ D(A),

Av = −
3∑
i=1

ai
∂2v

∂x2
i

.

We further note that D(A
1
2 ) = H1

0 (Ω) and, for v ∈ D(A
1
2 ),

((A
1
2 v,A

1
2 v)) =

3∑
i=1

ai‖
∂v

∂xi
‖2.

We finally note that (see, e.g., [28]) ‖A.‖ (resp., ‖A 1
2 .‖) is equivalent to the usual

H2-norm (resp., H1-norm) on D(A) (resp., D(A
1
2 )).

Remark 2.1. Note that similar properties hold for the operator −∆, with obvious
changes.

Having this, we rewrite (2.1) as

∂u

∂t
+Au+ f(u) =

∂α

∂t
−∆

∂α

∂t
. (2.7)

As far as the nonlinear term f is concerned, we assume that

f ∈ C1(−1, 1), f(0) = 0, (2.8)
lim
s→±1

f(s) = ±∞, lim
s→±1

f ′(s) = +∞, (2.9)

f ′ > −c0, c0 > 0. (2.10)

In particular, it follows from (2.9)–(2.10) that

− c1 6 F (s) 6 f(s)s+ c2, c1, c2 > 0, s ∈ (−1, 1), (2.11)

where F (s) =
∫ s

0
f(τ)dτ . Here, the only difficulty is to prove that F (s) 6 f(s)s +

c, c > 0, s ∈ (−1, 1). To do so, it suffices to study the variations of the function
s 7→ f(s)s− F (s) + c0

2 s
2, whose derivate has, owing to (2.10), the sign of s.

We further assume that

(u0, α0, α1) ∈ (H1
0 (Ω) ∩H3(Ω))3, (2.12)

with
‖u0‖L∞(Ω) < 1, (2.13)

and that the following compatibility conditions hold:

∆u0 = ∆α0 = ∆α1 = 0 on Γ. (2.14)

Throughout the paper, the same letters c, c′ and c′′ denote (generally positive)
constants which may vary from line to line. Similary, the same letter Q denotes
(positive) monotone increasing (with respect to each argument) and continuous
functions which may vary from line to line.
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3. A priori estimates

The estimates derived in this section are formal, but they can easily be justified
within a Galerkin scheme.

We first assume that u is regular and a priori satisfies

‖u‖L∞((0,T )×Ω) < 1, (3.1)

where T > 0 is an arbitrary final time.

We multiply (2.7) by
∂u

∂t
and (2.2) by

∂α

∂t
−∆

∂α

∂t
, sum the two resulting equalities

and integrate over Ω and by parts. This gives

d

dt
(‖A 1

2u‖2 + 2

∫
Ω

F (u)dx+ ‖∇α‖2 + ‖∆α‖2 + ‖∂α
∂t
−∆

∂α

∂t
‖2)

+ 2‖∂u
∂t
‖2 + 2‖∇∂α

∂t
‖2 + 2‖∆∂α

∂t
‖2 = 0 (3.2)

(note that ‖∂α
∂t
‖2 + 2‖∇∂α

∂t
‖2 + ‖∆∂α

∂t
‖2 = ‖∂α

∂t
−∆

∂α

∂t
‖2).

We then multiply (2.7) by u and have, owing to (2.11),

d

dt
‖u‖2 + c(‖u‖2H1(Ω) +

∫
Ω

F (u)dx) 6 c′(‖∂α
∂t
‖2 + ‖∆∂α

∂t
‖2) + c′′, c > 0. (3.3)

Multipling (2.2) by −∆α, we then obtain

d

dt
(‖∆α‖2 − 2((

∂α

∂t
,∆α)) + 2((∆

∂α

∂t
,∆α))) + ‖∆α‖2

6‖∂u
∂t
‖2 + 2‖∇∂α

∂t
‖2 + 2‖∆∂α

∂t
‖2. (3.4)

Summing finaly (3.2), δ1 times (3.3) and δ2 times (3.4), where δ1, δ2 > 0 are
chosen small enough, we have a differential inequality of the form

dE1

dt
+ c(E1 + ‖∂u

∂t
‖2) 6 c′, c > 0, (3.5)

where

E1 =‖A 1
2u‖2 + 2

∫
Ω

F (u)dx+ ‖∇α‖2 + ‖∆α‖2 + ‖∂α
∂t
−∆

∂α

∂t
‖2

+ δ1‖u‖2 + δ2(‖∆α‖2 − 2((
∂α

∂t
,∆α)) + 2((∆

∂α

∂t
,∆α))),

satisfies

E1 > c(‖u‖2H1(Ω) +

∫
Ω

F (u)dx+ ‖α‖2H2(Ω) + ‖∂α
∂t
‖2H2(Ω))− c

′, c > 0. (3.6)

Next, we multiply (2.7) by Au and find, employing (2.10),

d

dt
‖A 1

2u‖2 + c‖u‖2H2(Ω) 6 c′(‖u‖2H1(Ω) + ‖∂α
∂t
‖2 + ‖∆∂α

∂t
‖2), c > 0. (3.7)
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Summing (3.5) and δ3 times (3.7), where δ3 > 0 is chosen small enough, we have
a differential inequality of the form

dE2

dt
+ c(E2 + ‖u‖2H2(Ω) + ‖∂u

∂t
‖2) 6 c′, c > 0, (3.8)

where
E2 = E1 + δ3‖A

1
2u‖2

satisfies

E2 > c(‖u‖2H1(Ω) +

∫
Ω

F (u)dx+ ‖α‖2H2(Ω) + ‖∂α
∂t
‖2H2(Ω))− c

′, c > 0. (3.9)

We now differentiate (2.7) with respect to time to have, owing to (2.2),

∂

∂t

∂u

∂t
+A

∂u

∂t
+ f ′(u)

∂u

∂t
= ∆

∂α

∂t
+ ∆α− ∂u

∂t
, (3.10)

∂u

∂t
= 0 on Γ, (3.11)

∂u

∂t
|t=0 = −Au0 − f(u0) + α1 −∆α1. (3.12)

In particular, if u0 ∈ H2(Ω) ∩ H1
0 (Ω) (=D(A)) and α1 ∈ H2(Ω) ∩ H1

0 (Ω), then
∂u

∂t
(0) ∈ L2(Ω) and

‖∂u
∂t

(0)‖ 6 Q(‖u0‖H2(Ω), ‖α1‖H2(Ω)). (3.13)

Indeed, if follows from the continuity of f and the continuous embedding H2(Ω) ⊂
C(Ω) that

‖f(u0)‖ 6 Q(‖u0‖H2(Ω)). (3.14)

Multiplying (3.10) by
∂u

∂t
, we obtain, owing to (2.10),

d

dt
‖∂u
∂t
‖2 + c‖∂u

∂t
‖2H1(Ω) 6 c′(‖∂u

∂t
‖2 + ‖α‖2H2(Ω) + ‖∂α

∂t
‖2H2(Ω)), c > 0. (3.15)

Summing finally (3.8) and δ4 times (3.15), where δ4 > 0 is chosen small enough,
we obtain an inequality of the form

dE3

dt
+ c(E3 + ‖u‖2H2(Ω) + ‖∂u

∂t
‖2H1(Ω)) 6 c′, c > 0, (3.16)

where
E3 = E2 + δ4‖

∂u

∂t
‖2

satisfies

E3 > c(‖u‖2H1(Ω)+

∫
Ω

F (u)dx+‖∂u
∂t
‖2+‖α‖2H2(Ω)+‖

∂α

∂t
‖2H2(Ω))−c

′, c > 0, (3.17)

hence
u ∈ L∞(0, T ;H1

0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)),
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∂u

∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))

and

α,
∂α

∂t
∈ L∞(0, T ;H2(Ω) ∩H1

0 (Ω)).

Rewriting then (2.7) as an elliptic equation, for t > 0 fixed,

Au+ f(u) = −∂u
∂t

+
∂α

∂t
−∆

∂α

∂t
, (3.18)

we find, multiplying (3.18) by Au and employing (2.10),

‖u‖2H2(Ω) 6 c(‖u‖2H1(Ω) + ‖∂u
∂t
‖2 + ‖∂α

∂t
‖2 + ‖∂α

∂t
‖2H2(Ω)),

hence
u ∈ L∞(0, T ;H2(Ω) ∩H1

0 (Ω)).

We rewrite (2.7) as
∂u

∂t
+Au+ f(u) = g, (3.19)

where

g = g(t, x) =
∂α

∂t
−∆

∂α

∂t
∈ L2((0, T )× Ω).

We multiply (3.19) by f(u). Integrating over Ω, we have

d

dt

∫
Ω

F (u)dx+ ‖f(u)‖2 6 c‖A 1
2u‖2 + ((g, f(u))).

As a consequence, we find

d

dt

∫
Ω

F (u)dx+
1

2
‖f(u)‖2 6 c(‖A 1

2u‖2 + ‖g‖2), (3.20)

hence
f(u) ∈ L2((0, T )× Ω).

We finally multiply (2.2) by ∆2 ∂α

∂t
and easily find

d

dt
(‖∇∆α‖2 + ‖∇∆

∂α

∂t
‖2 + ‖∆∂α

∂t
‖2) + ‖∇∆

∂α

∂t
‖2 6 ‖∇∂u

∂t
‖2, (3.21)

hence
α ∈ L∞(0, T ;H1

0 (Ω) ∩H3(Ω)),

∂α

∂t
∈ L∞(0, T ;H1

0 (Ω) ∩H3(Ω)) ∩ L2(0, T ;H1
0 (Ω) ∩H3(Ω)),

and

g =
∂α

∂t
−∆

∂α

∂t
∈ L∞(0, T ;H1(Ω)).
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4. Separation property
Our aim now is to prove that u a priori satisfies

‖u(t)‖L∞(Ω) 6 1− δ, t ∈ [0, T ] , (4.1)

where δ ∈ (0, 1) depends only on the initial data and the final time T .
In one space dimension, we have the

Proposition 4.1. Let dim Ω = 1 and let the nonlinearity f satisfy assumtions
(2.9). Then any solution u(t) of equation (2.7) satisfies (4.1).

Proof. In one space dimension, we have, owing to the embeddingH1(Ω)⊂L∞(Ω),

∂α

∂t
−∆

∂α

∂t
∈ L∞((0, T )× Ω).

It is then not difficult to prove the separation property (4.1) for solutions to the
parabolic equation

∂u

∂t
+Au+ f(u) = g

with right-hand side g ∈ L∞((0, T )× Ω).
Indeed, let δ ∈ (0, 1) be such that

‖u0‖L∞(Ω) 6 δ, ‖g‖L∞((0,T )×(Ω)) − f(δ) 6 0 (4.2)

(note that lim
s→1−

f(s) =∞).

We set v = u− δ and have

∂v

∂t
+Av + f(u)− f(δ) = g − f(δ). (4.3)

We multiply (4.3) by v+ = max(v, 0) and obtain, owing to (2.10) and (4.2),

d

dt
‖v+‖2 6 c‖v+‖2, (4.4)

which yields, owing to Growall’s lemma and noting that v+(0) = 0, that

‖v+(t)‖2 6 0, ∀t ∈ [0, T ] ,

hence
u(t, x) 6 δ, ∀t ∈ [0, T ] , a.e. x ∈ Ω.

Proceeding as above and noting that f is odd, we also prove that

u(t, x) > −δ, ∀t ∈ [0, T ] , a.e. x ∈ Ω,

hence, finally,
‖u‖L∞((0,T )×Ω) 6 δ(< 1). (4.5)

We now consider the case dim Ω = 2. In that case, we do not have the embedding
H1(Ω) ⊂ L∞(Ω) and, consequently, we are not able to obtain estimate (4.1) for all
the nonlinearities satisfying (2.9). Nevertheless, using the embedding of H1(Ω) into
an appropriate Orlicz space, we obtain this result for a wide class of nonlinearities,
which includes the thermodynamically relevant logarithmic nonlinearities.
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Theorem 4.1. We assume that dim Ω = 2 and that the nonlinearity f satisfies
assumptions (2.9) and the following additional condition:

|f ′(u)| 6 ec|f(u)|+c′ , (4.6)

with some positive constants c and c′. Then every solution u(t) of equation (2.7)
satisfies estimate (4.1).

The proof of this result is based on the the following lemma.

Lemma 4.1. We assume that dim Ω = 2 and that the nonlinearity f satisfies as-
sumptions (2.9). Then, for every L > 0, the following estimate holds:∫

(0,T )×Ω

eL|f(u(x,t))|dxdt 6 c, (4.7)

where c = c(L) depends only on the initial data and the final time T .

Proof. We proceed as in [17] (see also [24]).
We rewrite (2.7) in the form

∂u

∂t
+Au+ f(u) = g, (4.8)

where
‖g(t)‖H1

0 (Ω) 6 c, t ∈ [0, T ] , (4.9)

where c depends only on the initial data and T . We can also assume, without loss
of generality, that

f ′(s) > 0, s ∈ (−1, 1) (4.10)

(i.e., λ1 = 0 in f ; indeed, f + 2λ1I satisfes (4.10) and u ∈ L∞(0, T ;H1
0 (Ω))).

We fix L > 0 and multiply (4.8) by f(u)eL|f(u)| to have

d

dt

∫
Ω

FL(u)dx+

∫
Ω

|A 1
2u|2f ′(u)(1 + L|f(u)|)eL|f(u)|dx+

∫
Ω

|f(u)|2eL|f(u)|dx

=

∫
Ω

gf(u)eL|f(u)|dx, (4.11)

where
FL(s) =

∫ s

0

τeL|τ |dτ,

which yields, by integrating (4.11) between 0 and T ,∫
Ω

FL(u(T ))dx+

∫
(0,T )×Ω

|A 1
2u|2f ′(u)(1 + L|f(u)|)eL|f(u)|dxdt

+

∫
(0,T )×Ω

|f(u)|2eL|f(u)|dxdt

=

∫
Ω

FL(u0)dx+

∫
(0,T )×Ω

gf(u)eL|f(u)|dxdt. (4.12)

We thus deduce from (2.13), (4.10) and (4.12) that∫
(0,T )×Ω

|f(u)|2eL|f(u)|dxdt 6 c+

∫
(0,T )×Ω

|g||f(u)|eL|f(u)|dxdt, (4.13)
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where c depends on the initial data.
In order to estimate the second term on the right-hand side of (4.13), we use

the following Young’s inequality (see [32]):

ab 6 ϕ(a) + ψ(b), a, b > 0, (4.14)

where
ϕ(s) = es − s− 1, ψ(s) = (1 + s) ln(1 + s)− s, s > 0. (4.15)

Taking a = N |g| and b = N−1|f(u)|eL|f(u)|, where N > 0 is to be fixed later, in
(4.14), we obtain

|g||f(u)|eL|f(u)| 6 eN |g| + (1 +N−1|f(u)|eL|f(u)|) ln(1 +N−1|f(u)|eL|f(u)|).

Now, if |f(u)| 6 1, then

|g||f(u)|eL|f(u)| 6 eN |g| + (1 +N−1eL) ln(1 +N−1eL).

Furthermore, if |f(u)| > 1, then |f(u)|eL|f(u)| > 1 and

|g||f(u)|eL|f(u)| 6 eN |g| + (1 +N−1|f(u)|eL|f(u)|) ln((1 +N−1)|f(u)|eL|f(u)|)

= eN |g| + LN−1|f(u)|2eL|f(u)| +N−1(1 +N−1)|f(u)|eL|f(u)|

+N−1|f(u)| ln(|f(u)|)eL|f(u)|+L|f(u)|+ln(|f(u)|) + ln(1 +N−1)

6 eN |g| +N−1(L+ 1 + ln(1 +N−1))|f(u)|2eL|f(u)|

+ (1 + L)|f(u)|+ ln(1 +N−1)

6 eN |g|+N−1(L+1+ln(1+N−1))|f(u)|2eL|f(u)|+
1

4
|f(u)|2eL|f(u)|+c,

because (1 + L)|f(u)| 6 1
4 |f(u)|2 + (1 + L)2 6 1

4 |f(u)|2eL|f(u)| + (1 + L)2, where c
depends on N and L. Choosing finally N = N(L) large enough, we find, in both
cases,

|g||f(u)|eL|f(u)| 6 eN |g| +
1

2
|f(u)|2eL|f(u)| + c, (4.16)

where c depens only on L. We thus deduce from (4.13) and (4.16) the following
inequality: ∫

(0,T )×Ω

|f(u)|2eL|f(u)|dxdt 6 c+ 2

∫
(0,T )×Ω

eN |g|dxdt, (4.17)

where c depends only on the initial data, T and L.
To conclude, we use the following Orlicz’s embedding inequality ( [32]):∫

Ω

eN |v|dx 6 e
c(‖v‖

2

H1(Ω)
+1)

, ∀v ∈ H1(Ω), (4.18)

where c depends only on Ω and N . It then follows from (4.9), (4.17) and (4.18) that∫
(0,T )×Ω

|f(u)|2eL|f(u)|dxdt 6 c, (4.19)

where c depends only on the initial data, T and L. Noting finally that∫
(0,T )×Ω

eL|f(u)|dx 6
∫
|f(u)|61

eL|f(u)|dx+

∫
|f(u)|>1

eL|f(u)|dx
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6 c+

∫
|f(u)|>1

|f(u)|2eL|f(u)|dx

6 c+

∫
(0,T )×Ω

|f(u)|2eL|f(u)|dx,

where c depends on T and L, (4.19) yields the desired inequality (4.7).
It is not difficult to show, by comparing growths, that the logarithmic function

f satisfies:
|f ′(s)| 6 ec|f(s)|+c′ , s ∈ (−1, 1), c, c′ > 0. (4.20)

Therefore, ∫
(0,T )×Ω

|f ′(u)|pdxdt 6
∫

(0,T )×Ω

ecp|f(u)|+c′pdxdt,

whence, owing to (4.7),

‖f ′(u)‖Lp((0,T )×Ω) 6 c, ∀p > 1, (4.21)

where c depends only on the initial data and T (and p).
We then rewrite (2.7) in the form

∂u

∂t
+Au =

∂α

∂t
−∆

∂α

∂t
− f(u) (4.22)

and have, differentiating with respect to time,

∂

∂t
(
∂u

∂t
) +A

∂u

∂t
= h, (4.23)

where
h = ∆

∂α

∂t
+ ∆α− ∂u

∂t
− f ′(u)

∂u

∂t
(4.24)

satisfies, owing to (4.21) (for p = 4) and the above a priori estimates (which imply
that

∂u

∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ⊂ L4(0, T ;H
1
2 (Ω)) ⊂ L4((0, T )× Ω))),

‖h‖L2((0,T )×Ω) 6 c,
(4.25)

where c depends only on the initial data and T .

Multipling (4.23) by A
∂u

∂t
, we find, owing to (4.25),

‖A 1
2
∂u

∂t
(t)‖2 +

∫
(0,T )×Ω

‖A∂u
∂t
‖2dxdt 6 c, t ∈ [0, T ] , (4.26)

where c depends only on the initial data and T (recall that u0 ∈ H3(Ω)), hence

∂u

∂t
∈ L∞(0, T ;H1

0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

We finally rewrite (2.2) in the (functional) form

d2α

dt2
+B

d2α

dt2
+B

dα

dt
+Bα = −du

dt
in L2(Ω), (4.27)
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where B denotes the minus Laplace operator with Dirichlet boundary conditions.

Taking the scalar product (in L2(Ω)) of (4.27) by B3 dα

dt
, we have

d

dt
(‖B2α‖2 + ‖B 3

2
dα

dt
‖2 + ‖B2 dα

dt
‖2) + ‖B2 dα

dt
‖2 6 ‖Bdu

dt
‖2, (4.28)

and we deduce from (4.26) and (4.28) that

∂α

∂t
−∆

∂α

∂t
∈ L∞(0, T ;H2(Ω)).

Rewriting again (2.7) in the form

∂u

∂t
+Au+ f(u) = g, (4.29)

we have, owing to the above estimates,

g ∈ L∞((0, T )× Ω) (4.30)

and the separation property follows as in the one-dimensional case.

Remark 4.1. In three space dimensions, one can also prove the strict separation
property, but under growth assumptions on the singular nonlinear term which are
not satisfied by the thermodynamically relevant ones, see, e.g., [17, 22].

5. Existence and uniqueness of solutions
We restrict ourselves to the one- and two-dimensional cases (note however that one
can prove an existence result also in three space dimensions, but without the strict
separation property, see, e.g., [14]). We have the following result.

Theorem 5.1. We assume that (2.12)–(2.14) hold. Then, (2.1)–(2.4) possesses a

unique solution (u, α,
∂α

∂t
) with the above regularity, such that, ∀ T > 0,

u, α,
∂α

∂t
∈ L∞(0, T ;H3(Ω) ∩H1

0 (Ω)),

∂u

∂t
∈ L∞(0, T ;H1

0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω))

and
‖u(t)‖L∞(Ω) 6 δ, t ∈ [0, T ] ,

where
δ = δ(T, u0) ∈ (0, 1), T > 0.

Proof. a)Existence:
The proof of existence is standard, once we have the separation property (4.1),

since the problem then reduces to one with a regular nonlinearity.
Indeed, we define the approximated function fδ by

fδ(s) =


s+ δ + f(−δ), s < −δ,

f(s), |s| 6 δ,

s− δ + f(δ), s > δ,
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where δ is the same constant as in (4.1) (note that fδ is not C1, but we can make
a further regularization, see [10]). We choose δ such that

f(δ) > δ (resp., f(−δ) 6 −δ).

We then consider the following approximated problem (Pδ) defined by

(Pδ)



∂uδ

∂t
+Auδ + f(uδ) =

∂αδ

∂t
−∆

∂αδ

∂t
,

∂2αδ

∂t2
−∆

∂2αδ

∂t2
−∆

∂αδ

∂t
−∆αδ = −∂u

δ

∂t
,

uδ = αδ = 0 on ∂Ω,

uδ|t=0 = u0, αδ|t=0 = α0,
∂αδ

∂t
|t=0 = α1.

We know that (Pδ) possesses one solution (uδ, αδ,
∂αδ

∂t
) if the functions fδ and Fδ

satisfie the same properties as those satisfied by f and F (see [17]). We have the

Lemma 5.1. We set

Fδ(s) =

∫ s

0

fδ(τ)dτ.

The functions fδ and Fδ possess the following properties:

f ′δ(s) > −c0, s ∈ R (5.1)

and
− c1 6 Fδ(s) 6 fδ(s)s+ c1, s ∈ R, (5.2)

where c0 and c1 are the same constants as those in (2.10) and (2.11).

Proof. We only detail the case:

fδ(s) = s− δ + f(δ), s > δ.

The other are very similar and are omitted.
It follows from the definition of fδ that

f ′δ(s) = 1 > −c0, s > δ. (5.3)

Moreover, since f satisfie (2.11) and f(δ) > δ, we obtain

Fδ(s) =

∫ s

0

fδ(τ)dτ

=

∫ δ

0

fδ(τ)dτ +

∫ s

δ

fδ(τ)dτ

=

∫ δ

0

f(τ)dτ +

∫ s

δ

(τ − δ + f(δ))dτ

= F (δ) +
s2 − δ2

2
+ (f(δ)− δ)(s− δ) > −c1.
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Then, since f(δ) = fδ(s)− s+ δ for s > δ, (2.11) also leads to

Fδ(s) = F (δ) + (s− δ)(s− δ
2

+ f(δ))

6 f(δ)δ + c1 + (s− δ)(s− δ
2

+ f(δ))

6 f(δ)s+ c1 +
(s− δ)2

2

6 fδ(s)s+ c1 + (δ − s)(s− δ
2

) 6 fδ(s)s+ c1.

Hence,
− c1 6 Fδ(s) 6 fδ(s)s+ c1. (5.4)

Consequently, we know that problem Pδ possesses at least one solution (uδ, αδ,
∂αδ

∂t
)

such that the estimates derived above are valid here. In particular,

‖uδ(t)‖L∞(Ω) 6 1− δ, ∀t ∈ [0, T ] ,

as a result,
fδ(u

δ) = f(uδ).

Hence, (uδ, αδ,
∂αδ

∂t
) is also a solution to the original problem.

b)Uniqueness:
We actually prove a more general result, namely, the uniqueness of solutions

such that |u(t, x)| < 1 almost everywhere in (0, T )×Ω and which do not necessarily
satisfy the separation property (4.5) (when this property is satisfied, the proof of
uniqueness is straightforward).

Let (u(1), α(1),
∂α(1)

∂t
) and (u(2), α(2),

∂α(2)

∂t
) be two solutions to (2.1)–(2.3) with

initial data (u
(1)
0 , α

(1)
0 , α

(1)
1 ) and (u

(2)
0 , α

(2)
0 , α

(2)
1 ), respectively. We set

(u, α,
∂α

∂t
) = (u(1), α(1),

∂α(1)

∂t
)− (u(2), α(2),

∂α(2)

∂t
)

and
(u0, α0, α1) = (u

(1)
0 , α

(1)
0 , α

(1)
1 )− (u

(2)
0 , α

(2)
0 , α

(2)
1 ).

Then, (u, α) satisfies

∂u

∂t
+Au+ (f(u(1))− f(u(2))) =

∂α

∂t
−∆

∂α

∂t
, (5.5)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (5.6)

u = α = 0 on ∂Ω, (5.7)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (5.8)

We multiply (5.5) by u and have, owing to (2.10),

d

dt
‖u‖2 + c‖u‖2H1(Ω) 6 c′(‖u‖2 + ‖∂α

∂t
‖2H2(Ω)), c > 0. (5.9)
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Next, we integrate (5.6) between 0 and t to obtain, taking, for simplicity, (u0,α0,α1)=
(0, 0, 0),

∂α

∂t
−∆

∂α

∂t
−∆α−∆

∫ t

0

α(τ)dτ = −u. (5.10)

Multiplying (5.10) by −∆α, we find

d

dt
(‖∇α‖2 + ‖∆α‖2 + ‖∆

∫ t

0

α(τ)dτ‖2) + c‖α‖H2(Ω) 6 ‖u‖2, c > 0. (5.11)

Multiplying then (5.10) by −∆
∂α

∂t
, we have

d

dt
(‖∆α‖2 + 2((∆

∫ t

0

α(τ)dτ,∆α))) + c‖∂α
∂t
‖H2(Ω) 6 c′(‖u‖2 + ‖α‖2H2(Ω)), c > 0.

(5.12)
Summing finally δ5 times (5.9), (5.11) and δ6 times (5.12), we obtain a differential

inequality of the form, taking δ5, δ6 > 0 small enough,

dE4

dt
6 cE4, (5.13)

where

E4 =δ6‖u‖2 + ‖∇α‖2 + ‖∆α‖2 + ‖∆
∫ t

0

α(τ)dτ‖2

+ δ7(‖∆α‖2 + 2((∆

∫ t

0

α(τ)dτ,∆α)))

satisfies
E4 > c(‖u‖2 + ‖α‖2H2(Ω)), c > 0. (5.14)

Gronwall’s lemma, together with (5.14), then yields the uniqueness. We can note
that this would not give a continuity result (with respect to the initial data) for
∂α

∂t
, but such a continuity would then follow from (5.10).
Owing to these results, we can define the semigroup

S(t) : Φ→ Φ, S(t)(u0, α0, α1) = (u(t), α(t),
∂α

∂t
(t)),

where (u, α,
∂α

∂t
) is the unique solution to the problem (2.1)− (2.4) with initial data

(u0, α0, α1) and

Φ = {(u, α, ∂α
∂t

) ∈ (H3(Ω) ∩H1
0 (Ω))3, ‖u‖L∞ < 1}.

6. Existence of global attractor

We saw in Section 4 that the key estimate, in view of the well-posedness, is a
separation property of the form

‖u‖L∞((0,T )×Ω) 6 δ(< 1). (6.1)
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However, here, δ depends on u0; more precisely, one has

δ > ‖u0‖L∞ ,

meaning, in particular, that (6.1) cannot be a dissipative estimate, i.e., independent
of the initial data for large times and for initial data belonging to some bounded
set (thus, (6.1) cannot be used to prove the existence of a bounded absorbing set).
Actually, in order to have a dissipative estimate, one has to be more accurate. To
do so, we fix R > 0 and assume that the initial data satisty

1

1− ‖u0‖L∞
+ ‖u0‖H3 + ‖α0‖H3 + ‖α1 −∆α1‖H1 6 R.

Then, one can prove that there exists t0 = t0(R) such that

‖(∂α
∂t
−∆

∂α

∂t
)(t)‖H1 6 c, ∀t > t0,

where c is independent of R, hence, for dim Ω = 1, owing to the continuous embed-
ding H1(Ω) ⊂ L∞(Ω),

‖(∂α
∂t
−∆

∂α

∂t
)(t)‖L∞ 6 c0, ∀t > t0, (6.2)

where c0 is independent of R. Furthemore, one has

‖(∂α
∂t
−∆

∂α

∂t
)(t)‖L∞ 6 c1, ∀t > 0, (6.3)

where c1 = c1(R) (we can assume, without loss of generality, that c0 6 c1). We
now choose δ0 (independent of R) and t1 > t0 such that
? f(δ0) > c0 + 1,
? δ0 ∈ [γ, 1), where γ > 0 is such that f ′ > 0 on [γ, 1),
? λ(= λ(R)) = 1−δ0

t1
is such that

0 < λ 6 1, f(1− λt0) > c1 + 1.

We set

y+(t) = max(δ0, 1− λt) =

1− λt if 0 6 t 6 t1,

δ0 if t > t1.

Note in particular that

δ0 6 y+(t) < 1, ∀t > 0, y+(0) = 1.

Consider now the equation

∂u

∂t
+Au+ f(u) =

∂α

∂t
−∆

∂α

∂t
,

u = 0, on Γ.

We set θ = u− y+. We then have

∂θ

∂t
+Aθ + f(u)− f(y+) = G, (6.4)
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where
G =

∂α

∂t
−∆

∂α

∂t
− f(y+)− ∂y+

∂t
, t > 0, t 6= t1.

It follows from the above assumptions that

G(t) 6

 c1 + 1− f(1− λt0) if 0 < t 6 t0,

c0 + 1− f(δ0) if t > t0, t 6= t1,

hence
G(t) 6 0, ∀t > 0, t 6= t1.

Then, proceeding as in Section 4, i.e., multiplying (6.4) by θ+ = max(θ, 0), we have,
noting that y+(0) = 1, so that

θ(0) 6 0

and
θ 6 0 on Γ,

u(t) 6 y+(t), ∀t > 0.

Noting that y+(t) = δ0 for t > t1, where δ0 is independent of R, and proceeding
similarly for a lower bound (note that f is odd), we obtain

‖u(t)‖L∞ 6 δ0, ∀t > t1,

hence a dissipative estimate.

Corollary 6.1. The semigroup S(t) possesses the compact global attractor A on Φ.

Remark 6.1. It is now not difficult to prove, in view of the strict separation
property of u, that A has finite dimension (in the sens of the Hausdorff or the
fractal dimension, see, e.g., [23, 28]); to do so, we essentially proceed as in the case
of regular potentials (see, e.g., [25]).

Remark 6.2. When dim Ω = 2, the situation is more involved and will be studied
elsewhere.
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