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HIGH-ORDER COPOSITIVE TENSORS AND
ITS APPLICATIONS
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Abstract With the coming of the big data era, high-order high-dimensional
structured tensors received much attentions of researchers’ in recent years, and
now they are developed into a new research branch in mathematics named mul-
tilinear algebra. As a special kind of structured tensor, the copositive tensor
receives a special concern due to its wide applications in vacuum stability of
a general scalar potential, polynomial optimization, tensor complementarity
problem and tensor eigenvalue complementarity problem. In this review, we
will give a simple survey on recent advances of high-order copositive tensors
and its applications. Some potential research directions in the future are also
listed in the paper.
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1. Introduction

A tensor is a multidimensional array and a physical quantity which is independen-
t from co-ordinate system changes. A zero order tensor is a scalar, a first order
tensor is a vector and a second-order tensor is a matrix, and tensors of order three
or higher are called higher-order tensors. Normally, an m-order n-dimensional ten-
sor is an element of the tensor product of m n-dimensional vector spaces, each of
which has its own coordinate system. This notion of tensors is not confused with
tensors in physics and engineering (such as stress tensors) [57], which are generally
referred to as tensor fields in mathematics [73]. It should be noted that, in the
very beginning of the 20th century, Ricci, Levi-Civita, etc., developed tensor anal-
ysis as a mathematical discipline. And then, it was Einstein who applied tensor
analysis in his study of general relativity in 1916, which made tensor analysis an
important tool in theoretical physics, continuum mechanics and many other areas
of science and engineering [11,14,21,23–25,52,59,60,69,70,81–87,90,118]. Further-
more, tensor theory has a close connection with matrix equation [53,54], nonlinear
analysis [80, 102–117], and partial differential equation theory [29–34, 56, 91–96].
More details about tensors and its applications can be found in books [27,65].

Recently, high-order high-dimension tensors have attracted much attention of
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researchers’, and this makes it to be a useful tool in data analysis [22,35,89,97,98,
119, 120], Tensor analysis and its computing find applications in such as approxi-
mation algorithms, computational biology, computer graphics, computer vision, da-
ta analysis, graph theory, pattern recognition, phylogenetics, quantum computing,
scientific computing, signal processing, spectroscopy, and wireless communication,
among other areas. Unfortunately, Hillar and Lim [36] proved that most tensor
problems are NP-hard. For example, determining the feasibility of a system of bi-
linear equations, deciding whether a third order tensor possesses a given eigenvalue,
singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular
vector, and determining the rank or best rank-1 approximation of a third order
tensor are all NP-hard problems. However, most tensors from practical problems
have some special structures, and we call it structured tensors. For this special kind
tensors, these problems may be not NP-hard. Hence, many structured tensors such
as nonnegative tensors, M-tensors, Hankel tensors, Hilbert tensors, Cauchy ten-
sors, B-tensors, diagonal dominant tensors, copositive tensors, completely positive
tensors and so on, are concerned in the literature [15–18,42,55,63,67,118].

In the last five years, high-order copositive tensors have received a growing
amount of interest in polynomial optimization problems [61, 77], vacuum stability
of a general scalar potential [39], tensor complementarity problem (TCP) [1, 12,
75,76,88], hypergraph theory [17] and tensor eigenvalue complementarity problems
(TECP) [28,51]. The notion of copositive tensor is a natural extension of copositive
matrix. A symmetric tensor is called copositive if it generates a multivariate form
taking nonnegative values over the nonnegative orthant [63]. Copositive tensors
include nonnegative tensors M -tensors in the even order symmetric case, diagonally
dominant tensors as special cases [15, 19, 38, 42–44, 64, 67, 100]. In this paper, we
will give a simple survey on recent advances of high-order copositive tensors and its
applications. Furthermore, some potential research directions in the future will be
raised.

To end this section, we briefly mention the notations to be used in the paper. Let
Rn denote the n dimensional real Euclidean space and the set of all nonnegative
(positive) vectors be denoted by Rn+ (Rn++). The set of all positive integers is
denoted by N. For positive integers m,n, we use [n] to denote set {1, 2, · · · , n}.
Vectors are denoted by bold lowercase letters such as x, y, · · · , matrices are denoted
by capital letters such as A,B, · · · , and tensors are written as calligraphic capitals
such as A, T , · · · . The i-th unit coordinate vector in Rn is denoted by ei. All one
tensor and all one vector are denoted by E and e respectively. If the symbol | · |
is used on a tensor A = (ai1···im)1≤ij≤n, j = 1, · · · ,m, it denotes another tensor
|A| = (|ai1···im |)1≤ij≤n, j ∈ [m]. If B = (bi1···im)1≤ij≤n, j ∈ [m] is another tensor,
then A ≤ B means ai1···im ≤ bi1···im for all i1, · · · , im ∈ [n].

2. Preliminaries

In this section, we recall some symbols and basic facts about tensors and the cor-
responding homogeneous polynomials. Here, we use the notations given in [62]
and [66].
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2.1. Tensors and basic multiplications

A real m-th order n-dimensional tensor A = (ai1i2···im) is a multi-array of real
entries ai1i2···im , where ij ∈ [n] for j ∈ [m]. Let Tm,n denote the set of all m-
order n-dimensional real tensors. A tensor is said to be nonnegative if its all entries
are nonnegative. If the entries ai1i2···im are invariant under any permutation of
their indices, then tensor A is called symmetric. We use Sm,n to denote the set
of all m-order n-dimensional symmetric tensors. Clearly, Sm,n ⊆ Tm,n is a vector
space under the addition and multiplication defined as below: for any t ∈ R, A =
(ai1···im)1≤i1,··· ,im≤n and B = (bi1···im)1≤i1,··· ,im≤n,

A+ B = (ai1···im + bi1···im)1≤i1,··· ,im≤n and tA = (tai1···im)1≤i1,··· ,im≤n.

In this review, we always consider real symmetric tensors [58]. All one tensor E (all
one vector e) is a tensor (vector) with all entries equal one, and the identity tensor
I = (Ii1···im) ∈ Sm,n is given by

Ii1···im =

1 i1 = · · · = im,

0 otherwise.

Suppose A,B ∈ Sm,n, the inner product of A and B is defined as

〈A,B〉 :=

n∑
i1,··· ,im=1

ai1···imbi1···im ,

and the norm of tensor A is given by

‖A‖ = 〈A,A〉1/2 =
( n∑
i1,··· ,im=1

a2i1···im

)1/2
.

Let xi denote the ith component of a given vector x ∈ Rn and use ‖x‖p =( n∑
i=1

|xi|p
) 1

p

to denote the p-norm of x. For m vectors x,y, · · · , z ∈ Rn, we use

x ◦ y ◦ · · · ◦ z to denote the m-th order n-dimensional rank one tensor with

(x ◦ y ◦ · · · ◦ z)i1i2···im = xi1yi2 · · · zim , ∀ i1, · · · , im ∈ [n].

Then the inner product of a symmetric tensor and the rank one tensor is defined as

〈A,x ◦ y ◦ · · · ◦ z〉 :=

n∑
i1,··· ,im=1

ai1···imxi1yi2 · · · zim .

Particularly, if x = y = · · · = z, then xm = x ◦ x ◦ · · · ◦ x is a symmetric rank one
tensor.

Based on this, we may denote

Axkym−k = 〈A,x ◦ · · ·x︸ ︷︷ ︸
k

◦y ◦ · · · ◦ y︸ ︷︷ ︸
m−k

〉 and Axm = 〈A,x ◦ · · ·x︸ ︷︷ ︸
m

〉,

for m ∈ N and k ∈ [m]. For any A = (ai1i2···im) ∈ Sm,n and x ∈ Rn, we define
Axm−1 as a vector in Rn with

(Axm−1)i =
∑

i2,i3,··· ,im∈[n]

aii2···imxi2 · · ·xim , ∀ i ∈ [n].

Another useful multiplication between tensors is given by Shao et al. [72].
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Definition 2.1 ( [72]). Let A (B) be an order m ≥ 2 (an order k ≥ 1) dimension
n tensor. The product AB is the following tensor C of order (m−1)(k−1) + 1 with
entries:

ciα1α2···αm−1 =
∑

i2,··· ,im∈[n2]

aii2···imbi2α1 · · · bimαm−1 ,

where i ∈ [n], α1, α2, · · · , αm−1 ∈ [n]k−1.

When tensor B reduces to a 1-order tensor, i.e., vector of Rn, then

Ax =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1xi2 · · ·xim ,

which coincides with the usual notation Axm discussed above. Moreover, when
k = 2, tensor B reduces to a matrix B = (bij). By Definition 2.1, one has

(B>AB)i1i2···im =
∑

j1,··· ,jm∈[n]

bj1i1aj1j2···jmbj2i2 · · · bjmim .

2.2. Tensor eigenvalues and eigenvectors

With different ways of extention from the matrix case, several types of tensor eigen-
values were defined and their properties and applications were discussed [66]. The
definition of tensor eigenvalue was first introduced for higher order symmetric ten-
sors by Qi [62].

Let C and Cn denote the set of all complex numbers and n dimensional complex
vectors respectively. Suppose A = (ai1i2···im) ∈ Tm,n is a given tensor. Then
λ ∈ C is called an eigenvalue of A if there is a nonzero vector x ∈ Cn satisfying the
following system

(Axm−1)i = λxm−1i , ∀ i = 1, 2, · · · , n, (2.1)

and the vector x is called an eigenvector of A associated with the eigenvalue λ. For
the sake of simplicity, denote x[m−1] = (xm−11 , xm−12 , · · · , xm−1n ), then (2.1) can be
simply expressed as

Axm−1 = λx[m−1].

In [62], Qi gave the definition of H-eigenvalue and H-eigenvector. Eigenvalue λ of
A is called an H-eigenvalue of A if it has real eigenvector x. In this case, x is called
an H-eigenvector associated with λ. Similarly, Qi [62] also gave the definitions of
E-eigenvalue and Z-eigenvalue for tensors. If λ ∈ C (λ ∈ R) is called an E-eigenvalue
(Z-eigenvalue) of A if there is a vector x ∈ Cn (x ∈ Rn) such that{

Axm−1 = λx,

x>x = 1.

In this case, x is called an E-eigenvector (Z-eigenvector) of A accordingly.
Furthermore, based on the notions of H-eigenvalue and Z-eigenvalues for ten-

sors, Qi [64] and Song et al. [74] gave the definitions of H+-eigenvalue, H++-
eigenvalue, Z+-eigenvalue and Z++-eigenvalue. An H-eigenvalue λ of A is called
an H+-eigenvalue (H++-eigenvalue) of A, if the associated H-eigenvector x ∈ Rn+
(x ∈ Rn++); A Z-eigenvalue µ of A is called a Z+-eigenvalue (Z++-eigenvalue) of A,
if the associated Z-eigenvector x ∈ Rn+ (x ∈ Rn++).
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2.3. Corresponding polynomials and copositive tensors

It is known that an m-th order n-dimensional symmetric tensor defines uniquely an
m-th degree homogeneous polynomial fA(x) on Rn: for all x = (x1, · · · , xn)T ∈ Rn,

fA(x) = Axm =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1xi2 · · ·xim ; (2.2)

and conversely, any m-th degree homogeneous polynomial function f(x) on Rn
also corresponds uniquely a symmetric tensor. Based on this, we can define the
positive semi-definite (positive definite) tensor. Tensor A ∈ Sm,n is called positive
semi-definite (positive definite) if and only if

fA(x) ≥ 0 (fA(x) > 0), ∀ x ∈ Rn (x ∈ Rn\{0}).

However, except for the trivial case, positive semi-definite tensors always have an
even order (details see references [62]). From this point of view, copositive tensors
may be seen as generalization of positive semi-definite tensors.

To end this section, we list the definition of copositive tensor defined by Qi
in [63].

Definition 2.2 ( [63]). Let A ∈ Sm,n be given. If Axm ≥ 0 (Axm > 0) for any
x ∈ Rn+ (x ∈ Rn+\{0}), then A is called a copositive (strictly copositive) tensor. All
copositive tensors in Sm,n constitute the copositive tensor cone COPm,n.

3. Basic properties of copositive tensors

By the definitions of copositive tensors, it is easy to know that nonnegative tensors
and positive semi-definite tensors are all copositive tensors. Thus, all properties for
those two kinds of tensors are valid for copositive tensors. Here, we mainly describe
some intrinsic basic properties of copositive tensors such as sufficient or necessary
conditions for copositive tensors, spectral properties and so on.

3.1. Necessary or sufficient conditions for copositive tensors

Although copositive tensors have many practical applications, it is generally difficult
to know whether the given tensor is strictly copositive or not. So, it is meaningful
if one can find some equivalent conditions or some checkable numerical methods for
copositivity detection of a given symmetric tensor. For this, we have the following
conclusions [63,74].

Theorem 3.1 ( [63]). Let A = (ai1i2···im) ∈ Sm,n be a given symmetric tensor.
Then
(1) A is copositive if and only if

min
{
Axm |

n∑
i=1

xi = 1, xi ≥ 0, i ∈ [n]
}
≥ 0.

(2) A is strictly copositive if and only if

min{Axm |
n∑
i=1

xi = 1, xi ≥ 0, i ∈ [n]} ≥ 0.
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Based on this conclusion, Song and Qi [74] established several sufficient and
necessary conditions for copositive tensors or strictly copositive tensors by two new
nonnegative vectors x+ and x−, where

x+ = (x+1 , x
+
2 , · · · , x+n ), x− = (x−1 , x

−
2 , · · · , x−n ), x+i = max{xi, 0}, x−i = max{−xi, 0}

for all i ∈ [n] and for any x = (x1, x2, · · · , xn) ∈ Rn.

Theorem 3.2 ( [74]). Let A = (ai1i2···im) ∈ Sm,n be a given symmetric tensor.
Then, the followings hold.

(1) A is copositive if and only if Axm ≥ 0 for all x ∈ Rn+ with ‖x‖ = 1;

(2) A is strictly copositive if and only if Axm > 0 for all x ∈ Rn+ with ‖x‖ = 1;

(3) A is strictly copositive if and only if A is copositive and

Axm = 0 for x ∈ Rn+ ⇒ x = 0;

(4) A is strictly copositive if and only if there is a real number γ ≥ 0 such that

Axm + γ‖x−‖m > 0, for all x ∈ Rn\{0};

(5) If m is even, then A is strictly copositive if and only if there is a real number
γ ≥ 0 such that

Axm + γ‖x+‖m > 0, for all x ∈ Rn\{0}.

Next, we recall some necessary or sufficient conditions with the help of principal
sub-tensor of tensors introduced by Qi [62].

For A ∈ Sm,n, by the homogeneous polynomial (2.2), if we let some xi be
zero, then we have a less variable homogeneous polynomial, which defines a lower
dimensional tensor. Such a lower dimensional tensor is called a principal sub-tensor
of A i.e. an mth-order r-dimensional principal sub-tensor B of an mth-order n-
dimensional tensor A consists of rm elements in A = (ai1···im) such that, for any
set N that composed of r elements in [n],

B = (ai1···im), i1, i2, · · · , im ∈ N.

For copositive tensors, Song and Qi [74] presented the following conclusions.

Theorem 3.3. Let A = (ai1i2···im) ∈ Sm,n be a given symmetric tensor. Then the
following conditions are equivalent each other.

(1) A is a copositive tensor;

(2) Every principal sub-tensor of A has no negative H++-eigenvalue;

(3) Every principal sub-tensor of A has no eigenvector v > 0 with associated H-
eigenvalue λ < 0;

(4) Every principal sub-tensor of A has no negative Z++-eigenvalue;

(5) Every principal sub-tensor of A has no eigenvector v > 0 with associated Z-
eigenvalue λ < 0;

(6) For every principal sub-tensor B of A, the fact that λ is H++ (or Z++)-
eigenvalue of B implies λ ≥ 0.

For strictly copositive tensors, Song and Qi [74] gave the following results.
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Theorem 3.4 ( [74]). Let A = (ai1i2···im) ∈ Sm,n be a given symmetric tensor.
Then the following conditions are equivalent each other.

(1) A is a strictly copositive tensor;

(2) Every principal sub-tensor of A has no non-positive H++-eigenvalue;

(3) Every principal sub-tensor of A has no eigenvector v > 0 with associated H-
eigenvalue λ ≤ 0;

(4) Every principal sub-tensor of A has no non-positive Z++-eigenvalue;

(5) Every principal sub-tensor of A has no eigenvector v > 0 with associated Z-
eigenvalue λ ≤ 0;

(6) For every principal sub-tensor B of A, the fact that λ is H++ (or Z++)-
eigenvalue of B implies λ > 0.

Recently, Chen, Huang and Qi [16, 17] studied the copositivity detection for
symmetric tensors, and several necessary conditions are established given below.

Theorem 3.5 ( [16,17]). Let A ∈ Sm,n be a copositive tensor. Then the followings
hold.

(1) If there is x ∈ Rn+ such that Axm = 0, then Axm−1 ≥ 0.

(2) For any principal sub-tensor B of A with dimension r, Bxm−1 ≥ 0 admits a
nonzero solution x ∈ Rn+.

(3) For any symmetric tensor D, if there exists t ∈ [0, 1] such that (1− t)A+ tD is
copositive, then max{Aum +Avm,Dum +Dvm} ≥ 0 for all u,v ∈ Rn+.

3.2. Pareto H(Z)-eigenvalues of copositive tensors

Following the definitions of H-eigenvalue, Z-eigenvalue in [62] and the Pareto eigen-
value for matrix [71], Song and Qi [77] gave the concepts of Pareto H-eigenvalue
(Pareto Z-eigenvalue) for symmetric tensors and proved that the minimum Pareto
H-eigenvalue (Pareto Z-eigenvalue) is equivalent to the optimal value of a polynomi-
al optimization problem. It is proved that symmetric tensor A is strictly copositive
if and only if every Pareto H-eigenvalue (Z-eigenvalue) of A is positive, and A is
copositive if and only if every Pareto H-eigenvalue (Z-eigenvalue) of A is nonneg-
ative [77]. Note that, it is NP-hard to compute the minimum Pareto H-eigenvalue
or Pareto Z-eigenvalue of a general symmetric tensor.

Suppose A ∈ Tm,n, a real number λ is called Pareto H-eigenvalue of A if there
exists a non-zero vector x ∈ Rn satisfying the system

Axm = λx>x[m−1]

Axm−1 − λx[m−1] ≥ 0

x ≥ 0,

and the non-zero vector x is called a Pareto H-eigenvector of A associated to λ.
Similarly, a real number µ is said to be Pareto Z-eigenvalue of the tensor A if there
is a non-zero vector x ∈ Rn such that

Axm = µ(x>x)
m
2

Axm−1 − µ(x>x)
m
2 −1x ≥ 0

x ≥ 0,
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and the non-zero vector x is called a Pareto Z-eigenvector of A associated to µ.
By the notions above, necessary and sufficient condition for copositive tensors and
strictly copositive tensors are listed below.

Theorem 3.6 ( [77]). Let A ∈ Sm,n be a given symmetric tensor. Then the fol-
lowing conclusions hold.
(1) A always have Pareto H-eigenvalue;
(2) A always have Pareto Z-eigenvalue;
(3) A is copositive if and only if all of its Pareto H-eigenvalues are nonnegative.
(4) A is strictly copositive if and only if all of its Pareto H-eigenvalues are positive.
(5) A is copositive if and only if all of its Pareto Z-eigenvalues are nonnegative.
(6) A is strictly copositive if and only if all of its Pareto Z-eigenvalues are positive.

4. Copositive tensors in TCP and TEiCP

The tensor complementarity problem [12, 20, 75, 76], denoted by TCP(q, A) such
that

x ≥ 0, Axm−1 + q ≥ 0, xT (Axm−1 + q) = 0, (4.1)

is a special case of nonlinear complementarity problem [13, 101], which is also a
generalization of linear complementarity problem.

For this problem, Che, Qi and Wei [12] showed that the tensor complementarity
problem with a strictly copositive tensor has a nonempty and compact solution set.
Song and Qi [76] proved that a real symmetric tensor is a (strictly) semi-positive if
and only if it is (strictly) copositive. Song and Qi [75,76] obtained several results for
the tensor complementarity problem with a (strictly) semi-positive tensor. Huang
and Qi [37] formulated an n-person noncooperative game as a tensor complemen-
tarity problem with the involved tensor being nonnegative. Thus, copositive tensors
play an important role in the tensor complementarity problem. The existence of
the solution to TCP is addressed in the following theorem.

Theorem 4.1 ( [12,75,76]). Let A ∈ Sm,n be a given symmetric tensor. Then the
following results hold.
(1) If A is strictly copositive, then the TCP(q,A ) has a nonempty, compact solution
set;
(2) A is copositive if and only if the TCP(q,A) has a unique solution for every
q > 0;
(3) A is strictly copositive if and only if the TCP(q,A) has a unique solution for
every q ≥ 0;
(4) A is (strictly) copositive if and only if it is (strictly) semi-positive.

Besides, Ling and Fan et al. [28,51] discussed the solution existence of the tensor
generalized eigenvalue complementarity problem, especially in strictly copositive
case.

Mathematically, the TEiCP is to find scalar λ ∈ R and vector x ∈ Rn\{0} such
that

x ≥ 0, λBxm−1 −Axm−1 ≥ 0, x>(λBxm−1 −Axm−1) = 0, (4.2)

where A,B ∈ Tm,n. To present the related result in [51], we denote

λmax
A,B = max{λ | ∃ x ∈ Rn+\{0} suct that (λ,x) is a solution of (1.4)} (4.3)
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and

ρ(A,B) = max
x
{λ(x) | x ∈ Rn+,

n∑
i=1

xi = 1}, (4.4)

where λ(x) = Axm

Bxm , Bxm 6= 0.

Theorem 4.2 ( [51]). Let A = (ai1i2···im),B = (bi1i2···im) ∈ Tm,n.
(1) If B is strictly copositive, then (4.2) has at least one solution;
(2) If A and B are symmetric and B is strictly copositive. Let x̄ be a stationary
point of (4.4). Then (λ(x̄), x̄) is a solution of TEiCP;
(3) If A and B are symmetric tensors and B is strictly copositive, then

λmax
A,B = ρ(A,B).

More recently, Ling et al. [51] established the bounds of the number of eigenval-
ues of tensor generalized eigenvalue complementarity problem, which further enrich
the theory of TEiCP. They also developed an implementable projection algorithm
for TEiCP and some preliminary computational results were reported.

In [28], Fan et al. gave an solution method for computing all Pareto-eigenvalues
in which they formulated TEiCPs (4.2) equivalently as polynomial optimization
problems. Then the related polynomial problem can be solved by Lasserre type
semi-definite relaxations. It should be noted that one of a algorithm is proposed
under assumption that B is strictly copositive.

5. Copositive tensors in polynomial optimization

A polynomial optimization problem (POP) is an optimization problem that has
both polynomial objective and constraints. It can be viewed as a generalization of
a quadratically constrained quadratic program to higher order polynomials. There
is a well established body of research on polynomial optimization problems based
on reformulations of the original problem as a conic program over the cone of com-
pletely positive tensors, or the cone of copositive tensors [41, 61, 99]. As a result,
novel solution schemes for polynomial optimization problems have been designed by
drawing on conic programming tools. To show the copositive tensors in polynomial
optimization problems, we first define the completely positive tensor cone, which is
the dual cone of copositive tensor cone [55,68].

A tensor A ∈ Sm,n is called a completely positive tensor if there are finite vectors
u1, · · · ,ur ∈ Rn+ such that

A = um1 + um2 + · · ·+ umr .

Let CPm,n denote the cone of all complete positive tensors with order m dimension
n.

In [61], Peña et al. provided a general characterization of polynomial optimiza-
tion problems that can be formulated as a conic program over the cone of completely
positive tensors. By the dual relationship between CPm,n and COPm,n, we know
that any completely positive program stated in [61] has a natural dual conic pro-
gram over the cone of copositive tensors. Furthermore, as a consequence of this
characterization, it follows that recent related results for quadratic problems can
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be further strengthened and generalized to higher order polynomial optimization
problems.

Let Rd[x] be the set of all polynomials with degree less than d. Consider the
following polynomial optimization problem:

inf q(x)

s.t. hi(x) = 0, i = 1, 2, · · · ,m,

x ≥ 0,

(5.1)

where q(x), hi(x) ∈ Rd[x] are given polynomials. For this problem, Peña et al. [61]
presented another optimization problem with conic constraints in the completely
positive tensor cone:

inf 〈Cd(q(x)),A〉

s.t. 〈Cd(hi(x)),A〉 = 0, i = 1, 2, · · · ,m,

〈Cd(1),A〉 = 1,

A ∈ CPd,n+1,

(5.2)

where Cd : Rd[x]→ Sd,n+1 is a map defined as

Cd

( ∑
|β|≤d

pβxβ
)
i1i2···id

=
α1! · · ·αn!

|α|!
pα,

and α is the (unique) exponent such that xα1
1 · · ·xαn

n = xi1 · · ·xid (i.e., αk is the
number of times k appears in the multi-set {i1, · · · , id}).

Actually, problem (5.2) is a relaxation problem of (5.1).

Theorem 5.1 ( [61]). Let q(x), h1(x), · · · , hm(x) ∈ Rd[x] in (5.1) be given poly-
nomials. Then the optimal value of (5.2) is a lower bound for the optimal value of
(5.1).

Based on Theorem 5.1, we want to know how to characterize conditions under
which the relaxation (5.2) is tight, which means that one of the problems (5.1)
and (5.2) attains its optimal value if and only the other one does. To answer this
question, the following definition is needed.

Given a nonempty set E ⊆ Rn, the horizon cone E∞ is defined as

E∞ := {y ∈ Rn | ∃ x(k) ∈ E, λk ∈ R+, k ∈ N such that λk → 0 and λkx
(k) → y}.

More properties about the cone E∞ can be found in Proposition 3 of [61]. Moreover,
by the notion of the horizon cone, Peña et al. [61] introduced several equivalent
conditions for problems (5.1) and (5.2).

For function h(x) ∈ Rd[x], let h̃(x) denote the homogeneous part of h(x) of
highest total degree, which means that h̃(x) is obtained by dropping from h the
terms whose total degree is less than deg(h). Then we have the following.

Theorem 5.2 ( [61]). Suppose q(x), h1(x), · · · , hm(x) ∈ Rd[x] are given polynomi-
als in (5.1). Then problems (5.1) and (5.2) are equivalent if it satisfies that
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(1) deg(hi) = d, hi(x) ≥ 0 for all x ∈ Ei−1,
(2) {x ∈ E∞i−1 | h̃i(x) = 0} ⊆ E∞i ,
where E0 = Rn+ and Ei = {x ∈ Ei−1 | hi(x) = 0}.

Similarly, we can give another equivalent conditions.

Theorem 5.3 ( [61]). Suppose q(x), h1(x), · · · , hm(x) ∈ Rd[x] are given polynomi-
als in (5.1). Then problems (5.1) and (5.2) are equivalent if it satisfies that
(1) deg(hi) = d, hi(x) ≥ 0 for all x ∈ Rn+, and

(2) q̃(x) ≥ 0 for all x ∈ {x ∈ Rn+ | h̃i(x) = 0, i = 1, 2, · · · ,m}.

It should be noted that the reformulation procedures presented in (5.2) for
the equality constrained polynomial optimization problem (5.1) can be applied
to inequality constrained polynomial optimization problems by adding slack vari-
ables [61]. More details for completely positive tensors, copositive tensors and their
applications can be found in related references [40,41,55,68,99].

6. Copositive tensor detection

From previous sections, we have know that copositive tensors play an important
role in some problems, and many interesting theoretical equivalent conditions for
copositive tensors have been established. Then, a challenging question is posed
naturally: how to check the copositivity of a given symmetric tensor efficiently? In
other words, can we propose some numerical methods to check the copositivity of
a given symmetric tensor? In this section, we will review some existing solution
methods for identifying the copositivity of a symmetric tensor.

Very recently, by Theorem 3.2, Chen et al. [16, 17] give several new sufficient
conditions or necessary conditions with the help of simplicial partition for a standard
simplex. Then an efficient numerical methods is proposed to check the copositivity
of tensors. As applications of the proposed method, it is proved that an upper
bound of the coclique number of a uniform hypergraph can be computed through
an equivalent optimization problem. The proposed algorithm is also applied in
testing copositivity of some potential fields.

To move on, we first present some notions about simplex and its simplicial
partitions. The standard simplex with vertices e1, e2, · · · , en is denoted by S0 =
{x ∈ Rn+ | ‖x‖1 = 1}.

Let S, S1, S2, · · · , Sr be finite simplices in Rn. The set S̃ = {S1, S2, · · · , Sr} is
called a simplicial partition of S if it satisfies that

S =

r⋃
i=1

Si and intSi
⋂

intSj = ∅ for any i, j ∈ [r] with i 6= j,

where intSi denotes the interior of Si for any i ∈ [r]. Let d(S̃) denote the maximum

diameter of a simplex in S̃, which is given by

d(S̃) = max
k∈[r]

max
i,j∈[n]

‖uki − ukj ‖2.

Based on the notions above, Chen et al. [16] gave several conclusions, which is
useful for proposing numerical algorithms to check the copositivity of tensors.
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Theorem 6.1 ( [16]). Let A ∈ Sm,n be given. Suppose S̃ = {S1, S2, · · · , Sr} is
a simplicial partition of simplex S0; and the vertices of simplex Sk are denoted by
uk1 ,u

k
2 , · · · ,ukn for any k ∈ [r]. Let VSk

= (uk1 uk2 · · · ukn) be the matrix correspond-
ing to simplex Sk for any k ∈ [r]. Then, the followings hold.
(1) if 〈A, uki1 ◦ uki2 ◦ · · · ◦ ukim〉 ≥ 0 for all k ∈ [r], ij ∈ [n], j ∈ [m], then A is
copositive;
(2) if 〈A, uki1 ◦uki2 ◦ · · · ◦ukim〉 > 0 for all k ∈ [r], ij ∈ [n], j ∈ [m], then A is strictly
copositive;
(3) if V TSk

AVSk
is copositive for all k ∈ [r], then A is copositive;

(4) if V TSk
AVSk

is strictly copositive for all k ∈ [r], then A is strictly copositive.

On the other hand, to show the simplicial partition is fine enough, Chen et
al. [16] give a necessary condition for strictly copositive tensor, and an equivalent
condition for a symmetric tensor which is not copositive.

Theorem 6.2 ( [16]). Let A ∈ Sm,n be given. Suppose S̃ = {S1, S2, · · · , Sr} is
a simplicial partition of simplex S0; and the vertices of simplex Sk are denoted by
uk1 ,u

k
2 , · · · ,ukn for any k ∈ [r]. Then the following two assertions hold.

(1) If A is strictly copositive, then there exists ε > 0 such that d(S̃) < ε, it follows
that

〈A, uki1 ◦ uki2 ◦ · · · ◦ ukim〉 > 0

for all k ∈ [r], ij ∈ [n], j ∈ [m].

(2) A is not copositive if and only if there exists ε > 0 such that d(S̃) < ε, there
are at least one k ∈ [r] and one i ∈ [n] satisfying A(uki )m < 0.

Based on Theorems 6.1-6.2, Chen et al. [16] develop an algorithm to verify
whether a tensor is copositive or not, as stated below.

Algorithm 6.1: Test whether a given symmetric tensor is copositive or not
Input: A ∈ Sm,n

Set S̃ := {S0}, where S0 = conv{e1, e2, · · · , en} is the standard simplex

while S̃ 6= ∅ do

choose S = conv{u1,u2, · · · ,un} ∈ S̃
if there exists i ∈ [n] such that Aumi < 0, then return “A is not copositive”

else if 〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉 ≥ 0 for all i1, i2, · · · , im ∈ [n], then S̃ = S̃\{S}
else simplicial partition S = S1

⋃
S2; and set S̃ := S̃\{S}

⋃
{S1, S2}

end if
end while
return “ A is copositive.”

Output: “A is copositive” or “A is not copositive”.

By this algorithm, the numerical performance given in [16] show that Algorithm
6.1 can capture all strictly copositive tensors and non-copositive tensors. Unfortu-
nately, when the input symmetric tensor is copositive but not strictly copositive, it
is possible that the partition procedure of the algorithm leads to d(S̃)→ 0; and in
this case, the algorithm dose not terminate in general. The reason for this is listed
below.

Theorem 6.3 ( [16]). Suppose A ∈ Sm,n is copositive. Let S = conv{u1,u2, · · · ,un}
be a simplex with Aumi > 0 for all i ∈ [n]. If there exists x ∈ S\{u1,u2, · · · ,un}
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such that Axm = 0, then there are i1, i2, · · · , im ∈ [n] such that 〈A,ui1 ◦ ui2 ◦ · · · ◦
uim〉 < 0.

Similar to Algorithm 6.1, Chen, Huang and Qi [17] make a modification for the
method in [16], where the updated algorithm is proposed based on a convex cone
M. Here we do not say more about the updated algorithm, we pay attention to
several practical applications in the following analysis.

6.1. An upper bound for the coclique number of an uniform
hypergraph

Very recently, Chen et al. [17] showed that computing the coclique number of a
uniform hypergraph can be reformulated as a linear program over the cone of com-
pletely positive tensors. By the fact that copositive tensor cone is the dual cone of
completely positive tensor cone, it is presented that an upper bound for the coclique
number can be computed by Algorithm 6.1.

We first recall some notions of hypergraph [26, 64], which are generalized from
the graph theory [2–10, 48–50, 78, 79]. A hypergraph means an undirected simple
m-uniform hypergraph G = (V,E) with vertex set V = {1, 2, · · · , n}, and edge
set E = {e1, e2, · · · , ek} with ep ⊆ V for p ∈ [k]. By m-uniformity, for every
edge e ∈ E, the cardinality |e| of e is equal to m. A 2-uniform hypergraph is
typically called graph. Throughout this review, we mainly focus on m ≥ 3 and
n ≥ m. Furthermore, since the trivial hypergraph (i.e., E = ∅) is of less interest,
the hypergraphs considered here has at least one edge (i.e., nontrivial).

Definition 6.1 (Coclique number of a hypergraph). The coclique of an m-uniform
hypergraph G is a set of vertices such that any of its m vertex subset is not an edge
of G, and the largest cardinality of a coclique of G is called the coclique number of
G, denoted by ω(G).

The following definition for the adjacency tensor is first introduced by Cooper
and Dutle [26]

Definition 6.2 (Adjacency tensor of a hypergraph). Let G = (V,E) be an m-
uniform hypergraph where V = {1, 2, · · · , n}. The adjacency tensor of G is defined
as the m-th order n-dimensional tensor A with

ai1i2···im =

 1
(m−1)! {i1, i2, · · · , im} ∈ E,

0 otherwise.

Let E be a all one tensor with order m and dimension n, and X is a completely
positive tensor such as

X =

s∑
i=1

vmi , for some vi ∈ Rn,vi ≥ 0, i ∈ [s] and s ∈ N.

Based on Definitions 6.1-6.2, we have the following conclusions.

Theorem 6.4 ( [17]). Let G = (V,E) be an m-uniform hypergraph. Suppose |V | =
n and G is nontrivial. Let ω(G) denote the coclique number of G. Then we have
the following conclusions.
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(1) The value ω(G)m−1 is equal to the optimal value of the following problem:

(P) max 〈X , E〉

s.t. Xi1i2···im = 0, {i1, i2, · · · , im} ∈ E,

〈X , I〉 = 1,

X ∈ CPm,n.

(2) It holds that

ω(G)m−1 ≤ min
λ∈N
{λ | λ(A+ I)− E ∈ COPm,n}.

By Theorem 6.4 and Definition 6.1, one can try finitely many iterations to get an
upper bound for the coclique number of a given uniform hypergraph by Algorithms
6.1. For example, for an m-uniform hypergraph G = (V,E) with V = [n], if there
is k ∈ [n] such that

km−1(A+ I)− E ∈ COPm,n, (k − 1)m−1(A+ I)− E /∈ COPm,n,

then we know that the coclique number of G satisfies ω(G) ≤ k.

6.2. Checking vacuum stability for Z3 scalar dark matter

Recently, Kannike [39] studied the vacuum stability of a general scalar potential
of a few fields. With the help of copositive tensors and its relationship to orbit
space variables, Kannike showed that how to find positivity conditions for more
complicated potentials. Then, he discussed the vacuum stability conditions of the
general potential of two real scalars, without and with the Higgs boson included
in the potential [39]. Furthermore, explicit vacuum stability conditions for the two
Higgs doublet model were given, and a short overview of positivity conditions for
tensors of quadratic couplings were established via tensor eigenvalues.

In [39], one important physical example is given by scalar dark matter stable
under Z3 discrete group. The most general scalar quartic potential of the stan-
dard model(SM) Higgs H1, an inert doublet H2 and a complex singlet S which is
symmetric under a Z3 group is

V (h1, h2, S)

=λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4(H†1H2)(H†2H1) + λS |S|4

+ λS1|S|2|H1|2 + λS2|S|2|H2|2 +
1

2
(λS12S

2H†1H2 + λ∗S12S
†2H†2H1)

=λ1h
4
1 + λ2h

4
2 + λ3h

2
1h

2
2 + λ4ρ

2h21h
2
2 + λSs

4 + λS1s
2h21 + λS2s

2h22

− |λS12|ρs2h1h2
≡λSs4 +M2(h1, h2)s2 + V (h1, h2),

(6.1)

whereM2(h1, h2) := λS1s
2h21+λS2s

2h22−|λS12|ρs2h1h2 and V (h1, h2) := V (h1, h2, 0).
In physical sense, the variables h1, h2 and s should be nonnegative since they are
magnitudes of scalar fields, the coupling tensor V of coefficients of (6.1) has to be
copositive, and this has to hold for all values of the extra parameter ρ ∈ [0, 1].
Hence, the potential has to be minimized or scanned over it.
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By the analysis above, in [17], an explicit form for the coupling tensor of (6.1)
is given such as V = (Vi1i2i3i4), which is a 4-order 3-dimensional real symmetric
tensor:

V1111 = λ1, V2222 = λ2, V3333 = λS ,

V1122 =
1

6
(λ3 + λ4ρ

2), V1133 =
1

6
λS1, V2233 =

1

6
λS2, V1233 = − 1

12
|λS12|

and Vi1i2i3i4 = 0 for the others.
As to λ’s in the entries of V, in particle physics all calculated quantities are

expanded in series of λi/(4π). Due to the perturbativity requirement of these series,
the absolute values of the λ coefficients must be no larger than 4π. On the other
hand, for the coupling tensor to be copositive, the diagonal entries are nonnegative.
Hence, we can take from the beginning that 0 ≤ V1111, V2222, V3333 ≤ 4π.

Then, by the fact that the rest of the entries of V are a λ parameter times some
coefficients, their lower and upper bounds should be accordingly changed. So

−2× 4π/6 ≤ V1122 ≤ 2× 4π/6

with an extra factor 2 because it is the sum of two λ’s, and

−4π/6 ≤ V1133 ≤ 4π/6, −4π/6 ≤ V1133 ≤ 4π/6,

−4π/6 ≤ V2233 ≤ 4π/6, −4π/12 ≤ V1233 ≤ 0.

When ρ 6= 0, Kannike [39] obtained that the conditions for the potential (6.1)
symmetric under a Z3 to be bounded from below are

λS > 0,

V (h1, h2) > 0,

0 < h21 < 1, 0 < h22 < 1, 0 < s2 < 1, and 0 < ρ2 < 1 =⇒ Vmin > 0,

(6.2)

where

ρ =
(
|λS12|s2

)
/ (2λ4h1h2) ,

h21 = 1
2

{
(2λ2−λ3)(4λSλ4−|λS12|2)+2λ4

[
(λ3+λS1)λS2−2λ2λS1−λ2S2

]}
/t,

h22 = 1
2

{
(2λ1−λ3)(4λSλ4−|λS12|2)+2λ4

[
(λ3+λS2)λS1−2λ1λS2−λ2S1

]}
/t,

s2 = λ4
(
4λ1λ2−λ23−2λ1λS2−2λ2λS1+λ3(λS1+λS2)

)
/t,

Vmin = 1
4

[
(4λ1λ2−λ23)(4λSλ4−|λS12|2)−4λ4(λ1λ

2
S2+λ2λ

2
S1−λ3λS1λS2)

]
/t

(6.3)

with

t := (λ1 + λ2 − λ3)× (4λSλ4 − |λS12|2)

+λ4
[
4λ1λ2 − λ23 − 4λ1λS2 − 4λ2λS1 + 2λ3(λS1 + λS2)− (λS1 − λS2)2

]
,

where the third formula in (6.2) is replaced by Vρ=0 > 0 when ρ = 0; and by
Vρ=1 > 0 when ρ = 1.

From the analysis above and the algorithms raised in [16, 17], one can easily
check the copositivity of the tensor defined by the potential (6.1), and the numerical
results of [17] verify that the algorithm is efficient and applicable to such physical
problems.
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7. Conclusions

In this survey, we have provided an overview of high order copositive tensors theory
and its applications. We mainly focus on sufficient or necessary conditions for sym-
metric copositive tensors and their applications in tensor complementarity problem,
tensor eigenvalue complementarity problem, hypergraphs and so on.

Although we have mentioned applications ranging from optimization problems
to hypergraphs and particle physics, the study about high order copositive tensors
is still at the starting stage. There are some more interesting problems need to
study in the future. Here, we list some potential problems below:

1. Are there any better and efficient numerical methods to test the copositivity
of symmetric tensors? Can we do the problem by some traditional optimization
method such as ADMM, penalty function method [45–47] and so on?

2. How to update the current methods to make it available for copositive tensors
but not strictly copositive?

3. It would be interesting to derive a copositive formulation for the coclique
number of a uniform hypergraph to be able to derive stronger bounds.

4. Another interesting direction of future work is to find other completely pos-
itive reformulation results for quadratic constraints quadratic problems that could
be potentially generalized to apply for polynomial optimization problems.
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