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OSCILLATORY AND ASYMPTOTIC
CRITERIA OF THIRD ORDER NONLINEAR
DELAY DYNAMIC EQUATIONS WITH
DAMPING TERM ON TIME SCALES*

Qinghua Feng

Abstract In this paper, we are concerned with oscillatory and asymptotic be-
havior of third order nonlinear delay dynamic equations with damping term on
time scales. By using a generalized Riccati function and inequality technique,
we establish some new oscillatory and asymptotic criteria. The established
results on one hand extend some known results in the literature, on the other
hand unify continuous and discrete analysis as two special cases of an arbitrary
time scale. We also present some applications for the established results.
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1. Introduction

In the research of the theory of differential equations, if their exact solutions can
not be expressed in usual form, then it is necessary to research the qualitative
properties of the solutions. In the investigations of qualitative properties of solutions
of differential equations, research for existence, stability and oscillation of solutions
has been a hot topic, which has been paid much attention by many authors so
far. For example, in [11,12,25, 27,33, 35, 36, 38], existence of solutions of various
differential equations were researched, while in [40,41], orbital stability of solitary
wave solutions and periodic traveling wave solutions of two nonlinear evolution
equations were investigated. In [8,19-24, 26,34, 37,39, 42], oscillation of solutions
of various differential equations and systems were researched, and a lot of new
oscillation criteria for these equations have been established therein.

On the other hand, the theory of time scale, which was initiated by Hilger [15],
trying to treat continuous and discrete analysis in a consistent way, have received
a lot of attention in recent years. Various investigations have been done by many
authors. Among these investigations, some authors have taken research in oscilla-
tion of dynamic equations on time scales, and there has been increasing interest in
obtaining sufficient conditions for oscillatory and asymptotic behavior of solutions
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of first order or second order dynamic equations on time scales (for example, we
refer the reader to [2,5,9,28,30]). Recently, there have also been much attention
paid to the research of oscillation of third order or higher order dynamic equations
on time scales. For such results, we refer the reader to [6,7,10,14,16,18,29,31,32].

We notice that in the research mentioned above, relatively less attention has
been paid to oscillatory and asymptotic behavior of third order nonlinear delay
dynamic equations with damping term on time scales, in which the damping term
brings new difficulty in establishing oscillatory and asymptotic criteria for them.

Motivated by the analysis above, in this paper, we are concerned with oscillatory
and asymptotic behavior of third order nonlinear delay dynamic equation with
damping term on time scales of the following form:

(a®)([r(®)a® @))% + p@)([r(6)e> (D)) + () f(2(0(1))) =0, t € To, (L.1)

where T is an arbitrary time scale, Tg = [tg,o0) (T, a, 7, p, ¢ € Cra(To,Ry), f €
C(R,R) satisfying = f(x) > 0, % > L >0forxz#0,0c CqyR,R) satisfying
6(t) < t, 62(t) > 0 and tlg(r)lo 0(t) = oo, v > 1 is a quotient of two odd positive
integers.

A solution of Eq. (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative, otherwise it is nonoscillatory. Eq. (1.1) is said to be
oscillatory in case all its solutions are oscillatory.

We will establish some new oscillatory and asymptotic criteria for Eq. (1.1) by
a generalized Riccati function and inequality technique in Section 2, and present
some applications for our results in Section 3. Throughout this paper, R denotes
the set of real numbers and Ry = (0,00), while Z denotes the set of integers. T
denotes an arbitrary time scale, and we always assume sup T = co. For an interval
[a,b], [a,b]T :=[a,b] (' T. On T we define the forward and backward jump operators
o € (T,T) and p € (T,T) such that o(t) = inf{s € T,s > t}, p(t) = sup{s €
T,s < t}. A point t € T with ¢ > inf T is said to be left-dense if p(t) = ¢t and
right-dense if o(t) = t, left-scattered if p(t) < ¢t and right-scattered if o(t) > t. A
function f € (T,R) is called rd-continuous if it is continuous in right-dense points
and if the left-sided limits exist in left-dense points, while f is called regressive
if 14+ u(t)f(t) # 0, where p(t) = o(t) —t. Crq denotes the set of rd-continuous
functions, while R denotes the set of all regressive and rd-continuous functions, and
R ={f|f€R, 1+pult)f(t) >0, Vt € T}.

Definition 1.1. For p € R, the exponential function is defined by

ep(t:5) = exp( | (p(r)AT)

for s,t € T.

Remark 1.1. If T =R, then e,(t,s) = exp(f: p(r)dr) for s, t € R. If T = Z, then
t—1

ep(t,s) = [[[1+p(r)] for s, t € Z and s < t.

The following two theorems include some known properties on the exponential
Sfunction.

Theorem 1.1 (Agarwal etc [1, Theorem 5.1]). If p € R, and fix ty € T, then the
exponential function e,(t,to) is the unique solution of the following initial value
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problem

y(to) = 1.

Theorem 1.2 (Agarwal etc [1, Theorem 5.2]). If p € RT, then ey(t,s) > 0 for
Vs, t€T.

For more details about the calculus of time scales, we refer to Bohner and
Peterson [4].

2. Main Results

2=

cIS]
—~

. . t [67 S, tO)]
For the sake of convenience, in the rest of the paper, set 8 (t,a) = [ As,

LSS
oai(s)
d2(t,a) = f; (517'((35,)(1) As, and we always assume t; € T, i = 1,2, ..., 6, and oo = gof.

Lemma 2.1. Suppose —g € R4, and assume that

% [e_»(s,to)]7
—*1——As=00,, 2.1
/to av (s) 21)
* ]
/t'o @AS = 00, (22)

and x is eventually a positive solution of Eq. (1.1). Then there exists a sufficiently
large T such that

on [T}, 00)T.

Proof. By 7% € MRy, from Theorem 1.2 we have e_=z(t,t9) > 0. Since z is
eventually a positive solution of (1.1), there exists a sufficiently large ¢; such that
x(t) > 0, z(6(t)) > 0 on [t1,00)r, and for ¢ € [t1,00)r, by Theorem 1.1 we obtain

that

"o (tto)e_2(a(t), to)
_ @@z 1)) + e (rOz )1
ez (o(t), o)
_—aWfE60) _, 23
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Then alt )(L r(t)z )(t t( ))] ) is strictly decreasing on [¢1, 00)T, and together with a(t) >
_r 0

0, e,g(t,to) > 0 we deduce that [r(t)z>(t)]” is eventually of one sign. We claim

[r(t)z2 ()] > 0 on [ty, 00)T, where to > t; is sufficiently large. Otherwise, assume
there exists a sufficiently large t3 > t5 such that [r(¢)z®(¢)]® < 0 on [t3,00)r. Then

T As
e~z (s,t0)a(s)]~
5 A )A [t [e_e (s, to)]™
A [ el o
[e—z(ts,to)]> e av(s)
By (2.1), we have tli}m r(t)z2(t) = —oo, and thus there exists a sufficiently large
o

t4 € [t3,00)T such that 7(t)z>(t) < 0 on [ts,00)r. By the assumption [r(t)z> (t)]> <
0 one can see 7(t)x™(t) is strictly decreasing on [t4, 00)T, and then

t A t
z(t) —z(ts) = /t WAS < r(t4)xA(t4)/f %As.

Using (2.2), we have tlim x(t) = —oo, which leads to a contradiction. So [r(t)z (t)]*
—00

> 0 on [tg,00). Setting T} = to, we complete the proof.
O

Lemma 2.2. Suppose —g € R4, and assume that

' ti o e,g(T,to) e q(s) s% T =00
tgr&sup/to[r(g)/g ( a(7) /T e_%(a(s),to)A )7AT]IAL =00, (2.5)

Then either there exists a sufficiently large Ty such that z®(t) > 0 on [T, 00)r or
tlim x(t) = 0.
— 00

Proof. By Lemma 2.1, we deduce that 2 (t) is eventually of one sign. So there
exists a sufficiently large t5 > t, such that either 22(t) > 0 or 22(t) < 0 on
[ts5,00)T, where t; is defined as in Lemma 2.1. If 22(t) < 0, together with z(t)
is eventually a positive solution of Eq. (1.1), we obtain flim z(t) = a > 0 and
L— 00
tlim r(t)z2(t) = B < 0. We claim a = 0. Otherwise, assume o > 0. Then x(t) > «
— 00
on [ts,00)r. Since tlim 0(t) = oo, there exists t¢ > t5 such that 6(t) > ¢5 on
—r 00

[te, o0)T, and then x(0(t)) > a on [t, 00)r. On the other hand, for ¢ € [tg,00) T,
an integration for (2.3) from ¢ to co yields

a(t)([r(H)z>(6)]2)"

— =— lim
c_» (i, to) BT e s (hht) +
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bt < e (G [T M a e

Substituting ¢ with 7 in (2.6), an integration for (2.6) with respect to 7 from ¢ to
oo yields

t—o00

B 1 [ e2(Tto) [ q(s) 1
_ﬁ—aLv/t ( a(r) /T P Us)’to)As)wAT

050 = i r(0020) - ozt [T (SEDO [T O agtar

A IO Y e_z(1,tg) [ q(s) SEAS
z2(t) < —alL T(t)/t ( a() /T 675(0(5)’t0)A) AT. (2.7)

Substituting ¢ with £ in (2.7), an integration for (2.7) with respect to £ from tg to
t yields

o(t) — z(tg) < —alh /t[rl /:0(65(7’“) /TOO — a05) gyt ArjAc.

ts (&) a(r) (o(s),to)
(2.8)
By (2.8) and (2.5) we have tlim x(t) = —oo, which leads to a contradiction. So we
— 00
have aw = 0, and the proof is complete by setting 75 = t5. O

Lemma 2.3. Suppose —g € Ry, and assume that x is eventually a positive solution
of Eq. (1.1) such that

[r(t)z® ()] >0, 22(t) >0
on [T5,00)r, where Ty > to is sufficiently large. Then we have

§1(t, T3 av (O)[r@®)z® )2
le_z(t,t0)]7

}

and

on [T5,00)r.
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Proof. Take T3 > max(T},Ty), where T, Ty are defined as in Lemmas 2.1 and

a(®)([r(H)z>(1)]2)”

e_» (L o) is strictly decreasing

2.2 respectively. By Lemma 2.1 we have
on [T§,00)T. So

()2 (t) 2r(t)e™ (t) — r(T3)a™
t fe_z(s,to)a <>m

I
B>
»

and then

Furthermore,

which is the desired result. O

Lemma 2.4 (Hardy etc [17, Theorem 41]). Assume that X andY are nonnegative
real numbers. Then

AXYA - XA < (A - 1Yy?

for all X > 1.

Theorem 2.1. Suppose —g € Ry, and assume that (2.1), (2.2), (2.5) hold, and
for all sufficiently large T € T,
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[ =

(v + D) (0(s))CT () (02 (s)) T 677 (0(s), T)
=00, (2.9)

r(0()G (5) + (v + DG ()6 ()31 (0(5), T a0 (5)) o (0 (5))] 1} As)

where (1, (o are two given nonnegative functions on T with (1(t) > 0. Then every
solution of Eq. (1.1) is oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution = on Ty. Without loss of gener-
ality, we may assume z(t) > 0, z(6(¢)) > 0 on [t1, 00)1, where ¢ is sufficiently large.
By Lemmas 2.1 and 2.2, there exists sufficiently large 5 such that [r(t)z>(¢)]* > 0
on [ty,o0)T, and either z2(¢) > 0 on [tz,00) or tlim x(t) = 0. Now we assume
Exde el
x2(t) > 0 on [ty,00)7. Since tlim 0(t) = oo, there exists t3 > to such that 6(¢) > to
— 00

on [t3,00)7. So 2(#(t)) > 0 on [t3,00)7. Define a generalized Riccati function:

Then for ¢ € [t5,00)T, we have

WA (1)

b G(t) ]Aa(ﬂ(t))( r(a(t)a® (o (1))
27(0(¢)) e_z(o(t),to)
+ G 0)[a) 0] + (P (Dalo(t)Ca(a(t))
Gi(t) {e—g(fatO)(a(t)([T(t)l“A(t)}A)”)A - (e—g(tatO))Aa(t)([T(t)wA(t)]AW}

= (0(1) e e(tte (o0 o

n [fﬁv(@(t) () — (27 (B))) Gt ]G(U(t))( r(o(t)z®(o(1)]%)

z7(0(t))z" (0(c(t))) e_z(o(t),to
]

A
SO A oo
- S o Sy
SO L oo
<1 e b
OO0 e DT gy
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By [4, Theorem 1.93], and 6 o 0 = 0 0 §, we have

(@7(8(8))2 = 72?1 O())(@(0(1))> = 727~ (8(2))=(0(1))0° (1).

o(t))]*

—~

(@O OO O _ (alo ()3 [r(o(t)a?
: ez (0(t).t0)]

2=

=
~~
=)
Nl
2=

for t € [t3,00)T, and we obtain that

) )
) T G(o()
1)

w(o(t)) + () [a(t) G ()]

r(0(1)) Gi(o())
Using the following inequality (see Hassan [13, Eq. (2.17)]):
w—0)' 3 2 2o (1 et
(w—v)"7 2 + (1+2)
we obtain
Wlo()
W) 1 e L ae0)Ge0) e )
e UL D U Y07
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A combination of (2.11) and (2.12) yields:

g GOlaOGr

GO0 (0(1), ) a(o(t)) Ga(a ()]

wir(t)<—L

+ (v
" OG0 () w(o(®)
L GmA 08 0(t), ts) W' (0(1))
) o
Setting
L G@erm)ad), ts) W' (a(t)
A OO G )
YA oyt FOEIGR D) + (1 + DG (051 0(0): ta)lalo () Gal <>>ﬁ}
(v + et (0(8))¢7 T ()02 (8) 787 (0(t), t2)

Using Lemma 2.4 in (2.13) we get that

. % Qe

G 0)8(0(), ts)[alo(t)Cala(8)]
r(0(1)

r(OO)CR () + (v +1)
(v + raH(8()

w(t)

IA

+ -

)
L2 ()31 (8(¢ ) 3)
)T OO (6) T (0(0), 1)

(2.14)

Substituting ¢ with s in (2.14), an integration for (2.14) with respect to s from t3
to t yields

/t{Le e~ ()

(510 (561 (06). 1) falo () Gl (6]
(0(5))
(D) + by DGO )il (Dol LD

(y+ Dr7 (9(3)) ”11( )(0°(5)) 71677 (0(s), t2)
Sw(ts) —w(t) <wl(ts) <

which contradicts (2.9), and the proof is complete. O
In Theorem 2.1, if we take T for some special cases, then we can obtain the
following corollaries:
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Corollary 2.1. Let T = R. Assume that

ez (s,t0)]”
—45———ds = 00, 2.15
/to av (s) (2.15)
<1
/to @ds = 00, (2.16)

L [Pep(nto) (7 gls) o
/to [T(f)/g( a(7) /T 6_5(57150)61) dr]d§ = oo, (2.17)

and for all sufficiently large T € R,

s ' 2(S 1+%

7[7'(9( 5))¢ ( )+ (( )7( $)0"(5)01(6(s), Dlals)ca(s)] st — co.  (2.18)

(7 + e (B()) T () (0 () 7787 (6(s). T)

2=

Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Corollary 2.2. Let T =7 and —g € Ry. Assume that

i [ef%(jvto)h = o, (2.19)
s=to CL’Y(S)

i % = 00, (2.20)
21 & en(t) & q(s) L

g:zt [r(f) 72:5( a(T) ; e_»(s+ l,to)) = oo, (2.21)

and for all sufficiently large T € Z,

lim sup{Z{ A — Gu(s)lals + 1éas + 1) — a()Ga(s)]

2(s+1,tp)
LGl ><e<s+1> — 6(5))81(6(5), T)[als + D)Ca(s + D]
r(0(s))
_ 1
[y + 1) (0())CT (5)(0(s + 1) — 0(s)) 718777 (8(s), T+
x[r(0()) (i (s + 1) = Cu(5)) + (7 + 1)¢a () (O(s + 1) — 0(s))61(6(s), T)
[a(s + 1)Ca(s + 1)) ] 1Y} = (2.22)

Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Theorem 2.2. Suppose —g € Ry, and (2.1), (2.2), (2.5) hold. If for all sufficiently
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large T € T,
tllrgosup{/ {L —C1( )a(s)¢a(s)]2
761(5)0° (5)6 ( ( ), ) “H(0(0(s),T))a’ (0(s))¢3 (0 (s))
" r(6(s)
0GR (5) + 26 (50500 0). )3} Bo(s). T alo ) Gl
4yr(0(s))C1(5)0% (5)61(0(s), T)63 " (0(a(s), T))
—0, (2.23)

where (1, (o are defined as in Theorem 2.1. Then every solution of Eq. (1.1) is
oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution = on T¢. Similar to Theorem
2.1, we may assume z(t) > 0 on [t1,00)r, where ¢; is sufficiently large. By Lemmas
2.1 and 2.2, there exists sufficiently large t5 such that [r(t)z®(¢)]® > 0 on [t2,00)T,
and either () > 0 on [tz,00)r or tlg& z(t) = 0. Now we assume z2(t) >

0, z2(A(t)) > 0 on [t3,00)T, where t3 > o is sufficiently large. Let w(t) be defined as
in Theorem 2.1. By Lemma 2.3, for ¢ € [t3, 00)1, we have the following observation:

() .
* o)+ GOlv&E)
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<L TS e e ) + GG
s (100 )3 O (). 1) (e (o)A @ ))
A (100 ) A EORA I TEG

e 2(o(Dto) Gl
51(0(1), )57 (B (1)), t3)  wl(o (1))

— G (102 (1) (0(t)) [Cl(a(t)) — a(o(D))Ca(a(1))]?
B (GISTON . N
=L (.t T GOeG)

G ()62 ()s

1(B(1), )03 (80 (1)), t3)a* (o (1)) G (o (1))
r(0(t))

r(0())SE (8) + 296 (162 (1)01(6(¢), 13)53 " (0(0 (1) ta)a(o(t))Ca (o (1))

r(0(t)Ci(a(t))

G025 (0(1), )53 (0(0 (), ts) 5

+1

gl a A
< Le_g(a(t),to) + Gu(t)[a(t)C(t)]
6

G B51(0(2), t)53 (6

+ T
(2.25)

Substituting ¢ with s in (2.25), an integration for (2.25) with respect to s from ¢3
to t yields

4l N
/tS{Le_P( iy~ @)
S $)0° (5)81(6(s), t3)87 1 (8(a(s)), t3)a>(a(s))C3 (o (s))
)

)
[r(0())GE (5) + 2961 (5)0° (5)0
477 (8(5))C1 ()8 (

<w(ts) —w(t) < w(ts) < oo,
which contradicts (2.23). So the proof is complete. O

Based on Theorems 2.1 and 2.2, we will establish some Philos-type oscillation
criteria for Eq. (1.1).

Theorem 2.3. Suppose —g € R, and assume that (2.1), (2.2), (2.5) hold, and
define D = {(t,s)|[t > s > to, t,s € T}. If there exists a function H € Crq(D,R)
such that

H(t,t) =0, fort>ty, H(t,s)>0, (2.26)
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fort > s >tg, and H has a nonpositive A— partial derivative H®+(t, s) with respect
to the second variable, and for all sufficiently large T € T,

| ! ACISTO NN
ggw%MmﬁmH(H%% e — Gola(s)as)
| G0 (£)61(0(), Dol () Galo(s)])

r(8(s))
rwm¢@+m+mu3<>wm n<mm<mﬁrﬂmﬁzm
(v + 1)rae (0(s)) ¢ (5)(0° () 71677 (6(s), T)

=

(2.27)

Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution x on Ty. Similar to Theorem
2.1, we may assume z(t) > 0 on [t;,00)r, where ¢; is sufficiently large. By Lemmas
2.1 and 2.2, there exists sufficiently large t5 such that [r(t)z®(t)]® > 0 on [tz, 00)T,
and either x2(¢) > 0 on [tz,00)r or tlg(r)lo z(t) = 0. Now we assume z°(t) >

0, 22(0(t)) > 0 on [t3,00)T, where t3 > t, is sufficiently large. Let w(t) be defined
as in Theorem 2.1. Then by (2.14), for ¢ € [t3,00)T, we have

A a\o 20 1+%
Le_qp(z()jiltgt)to> o Cl(t)[a(t)@(t)]A + Cl(t)e (t)él(g(t);t(?b)([t)() (t))C ( (t))]
B [T(G(t))éf(t) + (7 + 1) (182 () (8(1), 3)[@(0@))42(0(25))]%]%1
(v + DT ()G (D02 (6) 77677 (8(8), t2)
< —wh(). (2.28)

Substituting ¢ with s in (2.28), multiplying both sides by H (¢, s) and then integrat-
ing with respect to s from t3 to t yields

B [7’(9(8))61A($) 1v 1)¢1(5)8° (5)81(6(s). ta)[a(0(5))Ga (o (5 ))]%]7+1}AS

ts

K Q(S)Q
L ) )

a
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G (8)6° ()01 (8(5), ta)[a(o ()G (o ()]
r(0(s))
r(0())CE (s) + (v + 11 ()02 (5)81(8(s), t [g( o(s ))@(“(S))ﬁwlms

[ 7

3)
(7 + Dr (6())¢7 () (0% () 7167 (6(s), £2)

OO
/0 Ht ML gy ~ G@leea)®

G1(5)0° ()01 (6(s), t3) a(o () Ga((5))] 7
r(0(s))
r(0())C (5) + (v + 1)1 ()0 (5)81(8(5), t)
(v + D7 (0(s) ¢ (S)(HA(S))ilfW“ (6(s), t2)

+

+

?
/—\
/—\
\_/
S~—
G
A
/—\
\_/
=
2=
=]
+
—
S
)

! q(s)¢i(s) A
+ b H(t7 8){L€_,’(O'(S)7t0) C (8)[G(S)<2(S)]
C1(5)0° ()31 (6(s), t3)[a(0(5))¢a (o (5))] 7
r(6(s))

_ POGDEE) + (0 + DG )000), 6) sl )@ 1y
(7 + DrT (0(5))67 (5)(0°(s)

<H(t,to)w(ts) + H(t,to) [ |L

e s

G1()6° ()51 (6(s), t3)a(o (5))Ga
r(0(s))

PO () + (0 + DG (0 00). )l (DGl i 5

_[ o S, }

(7 + D)7 ()¢ () (0%(5)) 71677 (0(5), £2)

+

So
s ! 5 A)G(S) Vi) (s)A
Jim swp s ([ e W gy~ @)
L Q)8 (8)01(0(5). t3)[a(o () (o (s)]
r(6(s))
_ IR E) + O+ DGE RO laE)a0 6N iy
(7 -+ Dr 7 (0(s) 6 (5) (0 () F1 87 (0(s).12)
" a8 ()
<w(ts) + . |LW — Gi(9)[als)¢a(s)]?
| G0 (9)91(0(5). ) [a(o())Ga(o ()] 7
r(6(s))
_ (IO + 0+ DG )00 0(0) ) lelo(DGlo O] 1y,
(7 -+ D (0() G (5) (0% () T 67 (0().12)
<00,

which contradicts (2.27). So the proof is complete. O
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Theorem 2.4. Suppose 7% € Ry, and assume that (2.1), (2.2), (2.5) hold. Let
H be defined as in Theorem 2.3, and for all sufficiently large T € T,

— 0. (2.29)

Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution = on Tg. Similar to Theorem
2.1, we may assume xz(t) > 0 on [t1, 00)T, where t; is sufficiently large. By Lemmas
2.1 and 2.2, there exists sufficiently large 5 such that [r(t)z®(¢)]® > 0 on [ta,00)T,
and either () > 0 on [ty,00)r or tlgglo z(t) = 0. Now we assume z°(t) >

0, 22(0(t)) > 0 on [t3,00)T, where t3 > t, is sufficiently large. Let w(t) be defined
as in Theorem 2.1. Then by (2.25), for ¢ € [t3,00)r, we have

< —wh (). (2.30)

Substituting ¢ with s in (2.30), multiplying both sides by H(¢, s) and then integrat-
ing with respect to s from t3 to ¢ yields

/Hts

=H(t, t3)w(ts) + - *(t, s)w(o(s))As

ts

SH(t, tg)w(tg) S H(t, to)w(tg,).
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Then similar to Theorem 2.3, we obtain

R S Tt (e DA

Jirw o gy, 0 — GG

L FI (9 (606). 13 (B0 (), ) o)) GE o (5)
)

)
[r(6())CE () +2761(5)0° ()01 (8(5), £3)03 " (8(0(5)), t3)a(0(5))¢a(o ()]
Ayr(6(s))G1()0° ()01 (8(s). t3)3 " (6(0(s)), t3)

)

B JAs}
§w<t3>+/t‘°’L”<3><<s[<> Ga(s))
)

e_z(o(s),to)
()01 (0(s), t3)53 " (0(a(s)), t3)a* (0(s))G3 (o (s))

16 (5)0% (
’ r(0(5)
[r(6(s))¢i ( )+27(1(8)9A(8)51(9(8)’t3)5371(9(0(8))’ts)G(U(S))@(U(S))F|AS
Ayr(6(s))G1()0° (5)01(8(s). t3)3 " (B(0(s)), t3)
<00,
which contradicts (2.29). So the proof is complete. O

In Theorems 2.3 and 2.4, if we take H(¢,s) for some special functions such as

(t —s)™ or lné, then we can obtain some corollaries. For example, if we take
H(t,s) = (t —s)™, m > 1, then we have the following corollaries.

Corollary 2.3. Suppose —L q € Ry, and assume that (2.1), (2.2), (2.5) hold, and
for all sufficiently large T € ']I‘

| a(s)C1 ()
JHm sup o — = ) w{ (t —s)" {Lm — Gi(s)[a(s)G2(s)]
+ <1<s>eﬁ<s>61<e<s>,T>[a<a<s>><2<o I
r(0(s))
O )+(7+1)C1( ) A ()31(6(5), T)L ONETGO) I

=00. (2.31)
Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Corollary 2.4. Suppose —% € Ry, and assume that (2.1), (2.2), (2.5) hold, and
for all sufficiently large TeT,

o q( 1(8)

H@“ <>6l<<> e
r(0(s)

0GR () + 216 ()0 (5)01
r(0()) (0%

=c0. (2.32)

Then every solution of Eq. (1.1) is oscillatory or tends to zero.
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Remark 2.1. The results established above improve the main results by Hassan
[13, Theorems 2.1-2.4].

Remark 2.2. In Theorems 2.2-2.4, if we take T for some special time scales, we
can obtain similar results as in Corollaries 2.1-2.2, which are omitted here.

3. Applications

In this section, we will present some applications for the established results above.

Example 3.1. Consider the following third order nonlinear delay differential equa-
tion with damping term:

(k" (8)"] +ﬂ%(x“( ) +t%aﬂ(t DD 4 1] =0, t € [2,00),  (3.1)

where v > 1 is a quotient of two odd positive integers.

We have in (1.1) T = R, a(t) = ¢7, p(t) = q(t) = ﬂ% f@) = 2[e"+1], 0(t) =
t=1,r(t) =1, to=2 Then L8 >1 -1, ,u(t):a(t)ft:O, and D € %,
Soe_xz(t,tg) = e_r(t,2) = exp(— f2 z . Moreover, we have

t t
1 >exp(—/ @ds) >1 —/ @ds
2 a(s) 2 a(s)

1 /t LIPS [t27 — 2727 >
= —_ —_ s = —_— —
5 s 2y

N |

Then we have )

[ f [ e

/tooo[r(lg) /:O(e—ié:)to) /Toc egqg?to)ds)idﬂdg

and

Furthermore,

[ g
= OO[/ / —erds) e
o 1 1 > 1
27 W 2 3 o

On the other hand, for a sufficiently large T', and ¢t — oo, we have

tle_z(s,t 5 t
0 (¢, T) = / [“(170”(13 > il 1ds — 00.
T a7 (s) 2y Jr 8
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So we can take sufficiently large T > T such that 61(6(¢),T) > 1 for ¢t € [T™*, 00).
Taking (1(t) =17, (2(f) = 0 in (2.18), we get that

()

—z (s to)

s o [ 1242

- r(0(s)Gi(s) PHyas)
(v + 1) (6(s)) ”“( )(0'(5)) 77677 (0(s),T)

:tlggosup{/ {Le,g (s to)

N PO s
(7 + DT (0()) G ()(0/ () 75767 (8(5), T)

+ K {L q(s Cl(s) _[ T(i%s)) {(S) — ]'y+1}ds}
e I T ()T ()0 (5) T (0(s), T

>t111£10sup{/T {L————= a(s)61(5)

e_2(s,t0)
- ( ( ))gi(s) ]'y+1}d8
(v + 1)r+1(6(s)) ”“( )(0/() 77677 (6(5), T)

t
Y 1

So (2.15)-(2.18) all hold, and by Corollary 2.1 we deduce that every solution of Eq.
(3.1) is oscillatory or tends to zero.

Example 3.2. Consider the following third order nonlinear delay difference equa-
tion:

Al ()] + e (A%(0) + e’ (5) =0, t€ 2oz, (32)

where A denotes the difference operator, M > 0 is a constant, and v > 1 is a
quotient of two odd positive integers.

We have in (1.1) T = Z, a(t) = ¢V, p(t) = q(t) = ﬂ% f(z) = Mz", 0(t) =

%, r(t) =1, to = 2. Then f(1) >M=L, pt)=0c(t)—t=1, and

z7(t)
p(t) 1 1
— —_— = - > — —
1—u(t) a(t) 1 T 2 1 5 > 0,

which implies —% € R.. So by Bohner [3, Lemma 2] we obtain

t
e_z(t,to) =e_z(t,2) > 1 _/ P(s) A
2
t t—1
1 1
:1_/2 Frls=1-) o
s=2

>1 /t_l ! ds =1+ L [(t 1)—27 1] > L
_ T ds = (4 — _ z
- 1 827+1 2’)/ 2’
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and

Then we have

< Je_z(s,t0)]7

>

Z ai(s) = ) = 27 =
and
=1
2w
Furthermore,
1 x ez (T o) & q(s) 1
gt:o[r(f);g( a(T) ; g(s—i—lto))ﬂ
L Ger )& )
522[7"(5);( a(7) ;6_5(8—1-1,2))7]
Il s, 1N 1 1
> D (5D 5]
25 £=2 17=¢ S:TS
Il s, 1 (> 1 1 1 a1
>— — —57ds)7] = T —
220 g 2
1 1
r<r+1>‘<27>%§22‘°°

t—1 1 t—1
e_r(s,tg)|™ 1 1
51(t,T) = [ E )] L g
sor  av(s) 2v 78

So there exists T* > T such that §;(6(¢),T) > 1 for t € [T*,00)z. Let (1(t) =
7, (2(t) = 0in (2.22). Then by the inequality (t+1)7—#7 < y(t+1)7"1 < 427171
for ¢ > T* we obtain

G(s)
e_ P S+1 to)

_ r(6(s)(Gls + 1) = Gls) _ [y

(v+1) T(9(8)) f“( )(0(s +1) = 0(s)) 77877 (6(s),T)

hm sup{ Z {L

: - (s)
= 1 _
tl)rgosup zT: ez s+1 to)

. r(0 (7))(41(3+1) —Gi(s)) _ Rakd!

(v + Dr (6(s))¢7 (s)(0(s + 1) = 6(s)) 77677 (6(s), T)
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T+

Q(S)Cl(s)
+ ;{MG_E(S + 17t0)
L r(8(s) (G (s + 1) = Gi(s)) MR
(v + D)r 7 (0())C7 (5)(0(s + 1) — 0(s)) 71677 (6(s), T)
.- g(s)¢i (s)
” SZ;{MG,Q(S +1,tp)
| r(0(s) (G (s + 1) = Gi(s) oy
(v + D)r7 (0())C7 (5)(0(s + 1) — 0(s)) 71677 (6(s), T)
t—1 e

provided that M > (%)7“27%7‘1. So (2.19)-(2.22) all hold, and by Corollary

2.2 we obtain that every solution of Eq. (3.2) is oscillatory or tends to zero under
the condition M > (7_7_ T )yHoY =1
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