Journal of Applied Analysis and Computation Website:http://jaac-online.com/
Volume 8, Number 5, October 2018, 15861603 DOI:10.11948/2018.1586

CODIMENSION-TWO BIFURCATION
ANALYSIS OF THE CONTINUOUS STIRRED
TANK REACTOR MODEL WITH DELAY™*

Ai Ke! and Chunrui Zhang®?

Abstract The aim of this paper is to research the dynamical behaviors of the
continuous stirred tank reactor (CSTR) model with delay. Firstly, we discuss
the situation that its related characteristic equation has a simple zero root and
a pair of purely imaginary roots. Secondly, the center manifold method and the
normal form method are used to reduce the equation of CSTR model. Finally,
some characteristics about the CSTR model can be obtained. We analyze
three different topological structure and give entire bifurcation diagrams and
phase portraits, which are innovative phenomenon. At the end, we obtain the
stable and unstable periodic solutions by numerical simulation.
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1. Introduction

There has been great concern in high codimensional bifurcation analysis for some
differential equations with delay, including the Zero-Hopf bifurcations [4, 16,21, 23,
26], Bogdanov-Takens bifurcations [11,12,25,28], and bifurcation analysis has been
widely applied in chemical engineering field [9, 15, 18,20, 29]. There is a class of
saddle-node-Hopf bifurcation also being studied (see [10,27]).

Within the framework of Faria and Magalhaes [5,6], many scholars sum up
approaches which are detailed and accessible, see e.g. [11,23]. And He Xing, et al.
study the Zero-Hopf bifurcation about the bidirectional ring network model with
delay [8]. In the case of CSTR model, considering about the exponential term, we
obtain the linear part by Taylor expansion, and in the next calculation, in order
to prevent the lack of items in normal forms, two perturbation parameters are not
equal to zero.

CSTR as a kind of reactor tank of chemical experiments, it has many char-
acteristics, for example, low cost, strong heat exchange capacity and great product
quality. So it becomes a main equipment of producing polymer. It has been used
widely in the production process of chemical industry, oil production and other in-
dustrial production process.

In [17], a high-performance small continuous stirred-tank reactor with non-
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contact hypnotic coupling providing intensive disturbance inside the sealed minia-
turized chamber is presented. D.Kastsian and M.Moénnigmann [13] exhibit that the
normal vector method for robust optimization of nonlinear systems can be contin-
ued to delayed systems. S.Pushpavanam and A.Kienle [19] discussed the balance
of the constant states of a reactor-separator system, where a first-order exothermic
irreversible reaction is performed in a continuous stirred tank reactor, and as for
the reaction in a nonisothermal CSTR, small delays could have a stabilizing effect
(see [1,7]). Disjoint bifurcations and isola behavior were found in [15], which make
the reactor to be easier to control problems. In [2], the traditional Van der Pol
Oscillator with a forcing dependent on a delay is considered, and researchers study
the Zero-Hopf bifurcation and provide a physical understanding of the oscillator
which is very useful.

In order to treat the reactor tank as a whole when constructing a consequent
CSTR model, this section makes the following assumptions:

i Materials in the reactor tank are fully mixed.

ii The volume of materials which flow into reactor tank is equal to the volume of
materials which flow out reactor tank.

ili The chemical reaction is a first order irreversible chemical reaction in the reac-
tion process.

According to the principle of material and energy balance [3], the original equa-
tion is following:

£1(t) = fi(@) + (5 — Daa(t - ),
Eo(t) = fol@) + (& — Das(t - 7) + Bar(t — 7),

where z(t) = (z1(t), 22(t))T,t € [-7,0], and

(1.1)

fi(2) = =L a1 (t) + Da(l — 21 (t)e ™37,

vy 1.2
fo(z) = = (3 + B)a2(t) + HDa(1 — 1 (t))e ™27 . (12)

The variable x4 (t) is the transformation rate of the reaction, and 0 < z1(¢) <1,
and zo(t) represents temperature. H, D,y and 7 are all positive constants. In
order to simplify the system, we make the control term vanish, so Sx1(t — 7) = 0,
namely, 5 = 0.

The objective of the paper is to study the Zero-Hopf bifurcation by regrading
H and 7 as bifurcation parameters. In section 2, the existence conditions of Zero-
Hopf bifurcation are given in Lemma 2.1. In section 3, center manifold theory and
normal form method [5,6] are used to research Zero-Hopf bifurcation, and we get
the normal form for Zero-Hopf bifurcation with parameters. A primary difficulty
for figuring out the third order terms with parameters is that we have to deal with
the linear system whose coefficient matrices are singular. This problem is solved by
adopting the approach in [24]. Then in section 4, we select some parameter values,
and obtain some numerical simulations to support our theoretical results.

2. The existence of codimension-two bifurcation

In this section, we give the necessary and sufficient conditions for existence of Zero-
Hopf bifurcation, which can guarantee the characteristic equation has a simple root
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0 and a simple pair of purely imaginary roots +iwy and all other roots of the
characteristic equation have negative real parts, then the Zero-Hopf bifurcation will
occur.

Assuming (z7,z3) is the equilibrium point of equation (1.1), let =7 = z1 —
x‘,2+z§
. wotak
Xy, Ty = 29 — 5, —/\io =a,g(xs) =e' "0 ’ , then system (1.1) becomes

{57 = 4@ + Da(l — 71 — 21)g(@) + (—a — VTi(t — 1) — Da(l - 2)g(0),
@3 = aZs + HDa(1 — 71 — a)g(@3) + (—a — 1)T2(t — 7) — HDa(1 — 21)g(0).

Omitting the ” ~ 7 and use the Taylor expansion at the origin and the system
above becomes

. . ! a
Z1 =azx1 + Do(1 — 21 — 27) (1 + agxs + 73553 + %x%)
+(—a—Dz1(t —7) — Do(1l — z7) 1, 2.1)
X =axs + HDy(1 — 21 — x7) (a1 + oo + %x% + %x‘;’)

+(~a— Day(t —7) — HDu(1 - 2})an.

We assume ¢(0) = a1,4¢'(0) = as,¢”(0) = as, g’ (0) = ay. The linearization of
the system above is

Z1 = azy + Do (1 — z5)aszs — Dyziar — (a + D)y (t — 7), (2.2)
2152 = axy + HDa(l — IT)CVQIQ — HDaxloq — (CL + 1)1’2(t — T). .

The characteristic equation of system (2.2) is
ANT) = A—a+(a+1)e ) A—a+(a+1)e ™ + Doy — HDyao(1—23)). (2.3)

If A = 0 is one root of the equation (2.3), we obtain H = Df%%. Let H = f3;.
We obtain that if 7 = 0, except a single zero eigenvalue, the other root of equation
(2.3) has negative real part, so the stability of system is uncertain in this case.
When 7 # 0, let iw(w > 0) into A — a + (@ + 1)e~*7, and separate the real and

imaginary parts, we have

45 = cos(wT),

at (2.4)
aL-H = sin(wT)
Eliminating 7 from (2.4), one has
w? =2a+1.
In order to assure the existence of a simple pair of purely imaginary roots, let
a > —%, because a = —)%O < 0, so —% < a < 0. We obtain
wo=+v2a+1,

1 2-1
Tl = —arccos d +2km, k=0,1,2,....

wo w3+1
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And we have

dr Tla+1)e -1 7la+1)—e _T. e
d\  (a+De (=) (a+1)(=A) A (a+ 1)\
then J ) )
Re| 7.  sin(wr) -0,

ﬁ] C(a+ 1w (a+1)2
so we have the following lemma.

Lemma 2.1. IfH = % andf% < a < 0 hold, whent =T1,(k=0,1,2,...),

the system (1.1) undergoes a Zero-Hopf bifurcation at equilibrium (x7,x3).

3. Normal form with parameters for Zero-Hopf bi-
furcation

In this section, normal form is obtained by performing a center manifold reduction
and by applying the normal form method. First, Let H = puy + 81,7 = 2 + 79, then
11, po are bifurcation parameters. After scaling the time by ¢ — ¢/7, the system
(2.1) can be written as

71 =(p2 + 70)azy + (p2 + 70)Da(l — 21 — 27) (01 + oo + 2 5 Sl % x3)
— (p2 +70)Da(1 — 27)ar — (u2 + 70)(a + )z (t — 1),

y =(2+70)aza + (1 +51) (Ha+70) Da (1 =21 —a}) (o +ages + Sad + Zhad)
= (p2 +710)(p1 + B1)Da (1 = 27)on — (2 + 7o) (a + 1)wa(t — 1). o)

The linearization of system (3.1) at (0,0) is

21 = 19ax1 + 70Do (1 — x7) ey — 19 Dpx101 — To(a + 1)z (t — 1),

Lo = Tpaxo + ToﬁlDa(l — (ET)CVQ!BQ — 1981 Dax1001 — TO(a + 1)x2(t - 1)'

n(6) = As(0) + Bs(6 + 1),

A To(a — Daai) T0Da(1 — x7)az B_ —1o(a+1) 0
,ToﬂlDaOzl To(a+ﬁlDQ(1*(L'>f)Oé2) ’ 0 77’0(a+1) -

Ly = / dn(0)y(0),Yy € C = C([-1,0],C?).
I Fl
Let X = and let F(Xp) = e Choosing the phase space C =
xT9 F

C([-1,0],C?), then system (1.1) can be transformed into
X(t) = L(p) X; + F(X¢, ) (3.2)
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and the bilinear form on C* x C'is

0
(1, 0) = $(0)(0) + / e+ DBle)ds.

P1(s)
where p(6) = (¢1(0),01(0),02(0)) € C, ¥(s) = | ¢1(s) | € C*. Then the space

¥a(s)
C can be decomposed by A = {0, +iwerp} as C = P 4+ Q, where Q = {9 € C :
(¥, ) = 0,Vy) € P*}. Choosing the bases for P and the adjoint P* are

az(] x»{)eiwo‘roé‘ %(1 _ x;)e*iwo‘foe ﬂi

o) = ™ :
eiwo‘roe efiwg‘roe 1
and
_Dlﬁlefiwgros Dlefiwg‘ros
\IJ(S) — _Dlﬁle’inT()S _DleiWQTos
_ D2(11
ag(1—x7) Dy
where
DaOél DaOél + 1

(T(s),®(0)=1,0<s<1. Dy = o

Tola—iwg) — 1" 2 I—rola+1)

Thus, the dual bases satisfy d=dJ, -V = JU with
inTQ 0 0

J = 0 711(.()07'0 0

0 0 0

To consider system (3.2), we need the enlarged phase space BC' of function from
[—1,0] to C:

BC = {a:[-1,0] = C?: a is continuous on [—1,0),3911111 a() € C*}
—0~
The items of BC can be represented by ¥ = ¢ + Toa with ¢ € C, o € C?, and

0, —7<6<0,
To(e){[ 9—0

Define the continuous projection 7 : BC' — P by w(p+Tpa) = ®[(¥, )+ T (0)a].
Then we can decompose the enlarge phase space as BC = P & kerm.
Define A : C* — BC is

<)b7 Zf_]-§9<07

Ap = ¢+ To[Le — $(0)] = {fo dn(t)e(t), if 6=0.
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In BC, equation (3.2) can be written as an abstract ODE:

%u = Au + ToF(u, ). (3.3)

Let X; = ®2(t) + y(0), where 2(t) = (21, 22, 23)T, namely

) . 1
x1(0) = Z—j(l — xf)e“"”m‘gzl + Z—?(l - xf)eﬂ“’omezQ + EZ:} +y1(6),

3?2(9) = einTOGZl + e_ionUQZQ + 23 + y2(9)
Equation (3.3) can be decomposed into the equation
2=Jz+Y(0)F(Pz+y(0),p),
¥=Aqy+ U —m)ToF(®z+y(0), p),

(3.4)

where y(0) € Q' := QN C' C kerm, Ag, is an operator from Q; to the Banach
space kerm . And equation (3.4) can be written as

. 1 1
i= Tt 5ifa (20 + 5 f3 (20, ) + ot
! : (3.5)

1 1
i =Aquy+ 5 3(z0,0) + 51329, ) + heot.

On the center manifold, (3.5) can be written as the following

. 1 1
E= T4 50020 0) + 593 (2, 0, ) + hot.

We have

1;[}11F21(Zﬂ Y, ,u) + leFQZ(Z’ Y, PJ)

Lo 1 5

§f2(zvyuu) = 1/]21F2 (Zayvﬂ)"'_wZQFQ (Zvyvﬂ) =
P31 Fy (2,9, 1) + V32 F5 (2,9, 1)

7,UJOD1

paz1 + 502 1120 + %les + D1fi((a+ 1)poyi(—1) — apay1(0))
+ Dl(au2y2(0) - (a + 1)u2y2(— )) + Di7o( P25 11y (0) — Darpayi (0))
el 1u 21+ Pz + 1 2 piyz3 + D1fr((a+ 1)payi (—1) — apayi(0))

+D1(au2y2(0) —(a+ 1)#21/2(* ) +D170(D“§‘j“u1y2(0) Daonpinyi(0))

Baro 123+ Damo[(55 — 92) (27 +23) + (52 — poay) 23]+ Domo[ (22 — 2222129
2 2 Doc
+(-2— DDQQ(TH)(2123+2223)]+[(Daa1—a) a‘ff(lfw%)

=Dy Do (pa7o+ Brp2)]y1(0)

+ 10 D02 Da( 5525y — Bi) (21 + 22 + 23)11(0) + %l(ggl)%(—l)

+ P37 2 (0) 4 (Poes — P21002) (5 25y (0) + (P10 — Pagafa ) 215 (0)
+ Dafz(a + 1) + p 7o P25 y2(0) — Dapz(a + 1)ya(—1) — 227241 (0)y2(0)
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and
1 1 1 . 1 2
592('2’ 07 ,u) = §P7ﬁ0]s1f2 (Z’ 07 ,u) + O(|M| )
(@11p1 + ar2p2)21 + aizz1 23
= (@r1p1 + Gr2pi2) 22 + G132223 +O(|ul?)
(ag1p1 + agopto)zs + 232122 + (124Z§
where s; is spanned by

2 .
{miz1e1, z123e1, pizoes, za23e3, 212263, j1i23€3, Z3€3}, @ = 1,2,

a1 = a3 =ag =0

’iWQDl iOJO
a2 = — = . )
Dya; 1 —19(a —iwp)
ToD2
az; = )
b1
Q3 2042
a3 = D2To(07 )
2 1

ag D,az

%y Doy i1

azq = DaTo(
Next we calculate gi(z,0, ). Note that, from paper [23], we have
égé (Zv 0; IU/> = éprojker(M%)f}(za 07 /1’)
= $Proje, f3(2,0, 1) + O(|z]|uf* + |22 |l)
= %PTOjSQfSI(Za 0, ,LL) + %Proj”[(szg)(z,O,u)Ugl(z,,u)
+ (Dy f3) (2,0, W)U3 (2, 10)] + O(|2||pef* + [2]?| ]
First let us calculate Projs, f4(z,0,u). Since
P11F3 (2,0, p) + 912F5 (2,0, 1)

1 1
6f31(z70?lu) = 6 ’(/J21F31(Z70,/J/) +w22F§(z7OaM)
P31 F3 (2,0, 1) + 32 F5 (2,0, 1)

Then we have

bnulzlzs

1 . 1_911#12223
6Pr0J52f§(ZaO>M): 2 2
b1 12122 + baofioz1 22 + bagp1 25 + baafiozs

+bas i1 223 + bagz122023 + bz7z§

where ss is spanned by

2 2 2 2 2
{M1H221€17 Hiz1€1, HiZ123€1, Z122€1, Z123€1, U1 [H222€2, [l Z2€2, [L;2223€2, 2125€2,

2 2 3 2 L
29239, ;%1 2263, [LiZ3€3, [11 [1273€3, Z17223€3, Z5€3, [l Z3€3}, 1 = 1,2,
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2
b11 = DlT()Da[(l - (E’{)Ozs - (1 - $>{)£ - &]7
012
boy = Da7oDo (1 — 2% ) (g — 222),

ai
bao = Dz(%z — 22y

aq
bas = D2ToDa[M - #l,
boa = Da[5 — =T )51]
bas = Da Dy [(1 — x7)as — %],
bas = Daro[24 — 203 — %],

D a3
bar = D2TO[6a2 2(Dfal+1)]’

Next let us calculate Projs, [(D. fi(2,0, 1)U (2, p)]. Since

Uz (2, 1) = (Mz) ™ Projpm ) f2 (2,0, 1)

— 3 Bt s — BT i 23
— i _ liwgDy DlTo
iwo T2 Dooy H2%1 T T 123
Domo(82 — 82 — 52225 ) (2123 — 2223) + 5 Dao(5 — 22)(2F — 23)
we have
c1114321 + C1ap12123
1 .
EPTOJSQ [(sz21(za 0, M))U21 (2, 1)) = C11 1322 + Crapi1 2223
Co1fi221 22 + Coopi123
where
ZLdoDlDl
c11 = ,
T T (Daon )?
DiDy7g ja5  as  Dyas )
Clg= ——2(—= - = - —% =),
12 zwoﬂl a9 a7 Daoq —+ ].
Dorg , a3 o =
Cor = — 5 _22y(Dy + Dy),
21 D,y <2a2 oy )(Ds v
D27'2 Qs [65) D Qo _
o = 202202 D@y, )

Now let us calculate Projs,[(Dyf3)(2,0,u)U3(z,1)]. Define h = h(z)(0) =
U3(z,p), and let

RV (6)
R (6)

= hllz% + huzg + h132§ + h14,u% + h15ug + ha12122 + hooz1 23 + hazzi i
+ hoazi i + ha12223 4+ haazapn + haszapia + ha1 231 + haszspia + Rsififio
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where h;; € Q'. The coefficients of h are resolved by (M3h)(z) = f3(2,0, i), which
is equal to
DthZ - AQl (h) = (I — W)XQFQ(@Z, ,u)

where h stands for the derivative of h(f) related to 6. Let

Fo(®z,p) = A1127 + A1225 + A1323 + Ajapd + Arspb + As12122 + Aosozi 23
+ Aozzipn + Agazipie + Az12023 + Azazopin + Aszzapiz + Ag123ji
+ Asgzzpa + Asippo
M‘%(l — %) (21 — 22) + ToDa(1 — 23)az(21 + 29 + 23)?
—270Da a2 (1 — 27)(21 + 22) + %23}(21 + 29 + 23)
2iwope(z1 + 22) + 2‘2%023 + 70[(Dac1 +1)(52 — 20%2)(21 + 29)

Dyajas+az—2Dga2
4 Duomoatontbuod s (o) 4 sy 4 2)

where A;; € C2. Comparing the coefficients of all terms, we have that
has = h3a = 0, has = hsz, has = h31, hs1 = hig = his = hys = 0

and that hog, hoo, ha1, ho1, h13 satisfy the following differential equations. Respec-
tively,

il24 — iw070h24 = @(9)@(0)1424,

. (3.6)
hioa(0) — L(has) = Aoy,
f.122 —iwgTohaz = ®(0)W¥(0) Az, (3.7)
hQQ(O) — L(h22) = A227
}:141 = ‘1’(9)‘1’(0)14417 (3.8)
h41(0) — L(h41) = A417
f:L21 = @(9)‘1’(0)1421> (3.9)
h21(0) — L(hgl) = A217
iz = B(6)¥(0) A, (3.10)

h13(0) — L(his) = Ajs.

Then we have

di1piapozr +diapbzr +dispn 21 23 +diapioz1 23

1 . CZ11M1M22’2 +J12H32’2+CZ13M12223+6214M22223
7PT0]82 [(Dyf21 (Z7 Ov O))U22(Za O)] =

4 d21u12’122+d22u22’12’2+d23212223+d24l112§

+da5 23 +dag i 23
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where

Daal +1
B1

di2 =D1 115} (0) — DA%y (0),

Dyoq +1

=515 (0) = Dacuhiy (0))

dv4 =D B1h%y (0) — Dih%y) (0),

da1 =Da1oDo[(1 — 27)ash$? (0) — aq hSY (0)],

dy1 =D1719] hgi) (0) - Daalhéi)(o)]’

di13 =D1719[

Do1
das = = T2 [ (0) + A (0)] + Daro(52 — S2)[RiE) (0) + A3 (0))
Ty Q2 o
Do a3 «
oy = = 77 e (i) (0) + h5g) (0) + sy (0)) + Damol (2 — 51T (0) + 1) (0)
a3 —az  Daag (2)
+ ( vy Dot + 1)h21 (0)],
(1)
a3 — Qg Dyon ) hyy (0)
:D - -
doy 27'0[( o Dooy + 1)h41 (O) 1_ m{]
+ DamoDa[(1 — 27)anh E (0) — arh{y (0)],
(1)
B a3 —as Do @y Mg (0)

das =DamoDal(1 — f)ash ) (0) — ar S} (0)

and AV h-j will be calculated by the method in [24]. Here are the formulas of

1 %
h;; which we need.

h4(0) = (iworod — L(e°™)INV (I —&(0)W(0)) Agy
— / Oe—WOTO““)<I>(t)\11(0)A24dt],
h22(0) = (iOJOT()I — L(eionﬂe))INv[(I — (I)(O)\I/(O))AQQ

0
B B/ e—iwo‘ro(t+1)(1)(t)\11(0)A22dt]7
—1

0
has (0) = (L(1)™V [(®(0)¥(0) — ) Ay + B / D(1)W(0) Ay ]
Bt (0) = (L(1)TVV [(@(0)W(0) — ) Asy + B / (0) Ao d],

Pis(0) = (L)Y (@09(0) - Dss + 8 [ @09 0) st

After simplified calculation, we have the expression as followed:
h2a(0) = (M1)™Y (k54 + K34),
ha2(0) = (M1)™Y (ks + K32),
ha1(0) = (M) kg1,
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pan (0) = ()" b + ),
hi3(0) = (M2)'™™V (k15 + Kis),
where

Ml = 7:&)07'01 — L(eiw0700)7
M, = L(1),

1+7181D1(1 — ary + iwerg) + —22

woy151
ﬂlDl(l —aTy + inTO) + 4Dy

woY1

H2 _ A(2) Dl’}/l (CLTO — tWoTo — 1) _ %,6?1
24 24 . o
14 Dy (ato — iworo — 1) — *22

1+ 71B1D1(1 — ary + iwgTy) + 22

woy1B1
ﬂlDl(]- —aTy + inTO) + 4Dy

wov1
K2 — A(2) Dimy (CLTO — WeTy — 1) — uingl
22 22 ) iD
1+ Di(arg —iworo — 1) — 702
kar = A —unim(Dil+ %(1 — aro — 7o)
—wl’yl]m[Dl] + Dg(l — aTty — 7'0) —1
RYCY i fIm[D] + ﬂ 22 (ato + 70 — 1) — 1
21 — 421 )

= B1Im[Dy] + 22(aro + 70 — 1)

_wlo’yllm[D ] + %(1 —aty — 7'0)
— 2y Im[Di] + Dy(1 — arg — 70) — 1
+ 1

77151]77?[1)1] (aTo + 710 — 1) _

1
”%3 = Agz) ) ,
woPIm[Da] + ato+ 70 — 1)
- Im[D]"i_&(l—aT —’T)
Ky = A w11 A 0= 70 ’
—2mIm[Di] + Da(1 —arg — 70) — 1
as (1l —x7)
’71 = %7
2iwoayy 279Dy az(1 — 1) — agyr — %]
Az = , y Aog = ,
e 2r0[(Dacy +1)(53 = §1) — Dacz]
0 270D [aa(l — %) — 2«
Agy = \ Aoy = 0 oz[ 3( 1(1 2271]
B 270(Dao +1)(22 — 202)
ToDoJas(1 — %) — 202
A13 = 0 [ 3( 1) B1 ]

70[22 (D + 1) — 2Dg 0]
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Finally, we can get

1
69%(27 0, 1)

(b11 + 12 + dis)prz123 + (c11 + dio)p3zy + duypin prezy + diapiozi 23
(b11 + €12 + di3) 12223 + (€11 + di2)pdzo + diipin iz + diapiozezs
(bo1 + do1) 12122 + (bag + +ca1 + dag)paz1 20 + (baz + +co2 + d24)u1232,
+boapiozd + bospapizzs + (bag + dog) 212223 + (bay + das) 25 + daguizs
+O(|2]|ul? + |2 u))-

On the center manifold, system (3.5) can be written as the following form

21 = inTozl + (mwl + mg’Ug)Zl —|—p12’12’3 + h.O.t.,
Zo = —iwoToze + (M1v1 + Mave) 22 + P12223 + h.o.t., (3.11)

Z3 = (n1v1 + nov2)zs + paz1 22 + P3zi + paz12223 + P52 + hoot.,

where v; = v;(u)(i = 1,2), and the quadratic terms or higher order terms of u are
ignored. Then we have

miv1 + Mav2 = ai2it2, N1V1 + N2V = a21/41,
p1 = (b11 + c12 + diz)pr + diapro, p2 = (ba1 + da1)pn + (b2 + c21 + dao2) 2,
ps = (bag + ca2 + doa) 1 + baapta, pa = bag + dos, p5 = bay + dos.

Through the change of variables z; = rcosf + irsinf, zo = rcosf — irsinf,
z3 = &, the system (3.11) becomes
7 = Re[myv1 + mava]r + Re[p1]ré + h.o.t.,
0 = woro + Im[mivy + movs| + h.o.t., (3.12)
€ = (n1v1 + nov2)€ + par? + ps&? + par?€ + ps& + hoot..

Let Re[myv; +mavs] = &1, Relp1] = a1, n1v1 + navy = £9. As the second equation
depicts a rotation around the £ — axis, it is unrelated to our analysis and we will
ignore it. Thus we can have a system in the plane (r, &),

r=er+airé,
=artar (3.13)
§ = e2€ + par? + ps&® + par?E 4 ps&P.

4. Bifurcation diagrams

Let us introduce the transformation /|pops|r — r, ps€ — &£, and we consider about
the cubic terms of system(3.13)

= er + b’l’f,

4.1
£ =eof +er? 4+ € + er?t 4 f6°, b
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where b= %, ¢c= 2B — 4] = P4 f— P3

p3 [P2ps] [p2ps] 3
Truncating (4.1) at quadratic terms, then we can obtain system (4.2) with lower
order terms , and in [14], a categorization of the probable mode interactions for a

similar bifurcation is given.

r=er+ bré,

| (4.2)
£ =exf +er? + €2
There are four different topological structure, which are depending on the signs of
band c:
casel: c=1, b>0; case IT: c¢c=1, b< 0
case [Il : ¢ = —1, b > 0; case IV:c= -1, b<0.

In [22], similarly, we can obtain system (4.2) has a trivial equilibrium O =
(0,0), a semi-trivial equilibrium M; = (0, —e5) and a nontrivial equilibrium M; =

(\/El(bszel),—%) for ce1(e; — bea) < 0. On the line Ty : 2 = 0, the trivial
equilibrium shows a transcritical bifurcation which means that two equilibria O and
M collide and exchange stability. On the line T3 : €1 = 0, a pitchfork bifurcation
occurs at O. On the line T3 : €1 = bey, M7 shows a pitchfork bifurcation, bringing
about a new equilibrium point Mj for cg1(e; —bea) < 0 on the positive quadrant of
T.

Then we exhibit the bifurcation diagrams for case II, III, IV in Fig.1, and phase
portraits for case II, III, IV in Fig.2. As for case I, it will not be discussed in this
paper because of its complexity.

153 Asz E.
(€] @ 6] @ /@ @NG @
@
Gl & &
= [ORN{ @ /O @ ] @\, @
Casell Case lll CaselV

Figure 1. The bifurcation diagrams for case II, III, IV.

5. Numerical simulations

In this section, we will give some examples to illustrate our theoretical results.
From Lemma 2.1, in order to satisfy the bifurcation conditions, We select a =
—0.2, v =20, D, = 0.1050 and H = 5.0807 into the system (1.1). There are three
equilibria of original system, only choose one, such that x7 = 0.5160057495, x5 =
2.621670411, and we can also obtain wy = 0.7745966692, 9 = 2.354098145, a; =
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Case II

Case

III

case IV

Figure 2. The phase portraits for case II, III, IV.

10.15371662, «y = 7.936621857, a3 = 6.168552293, D; = —0.2857128683 +
0.3542179573i, Dy = —2.339171855, a12 = 0.2573545565 + 0.2075826676i, az =
—1.083834929, b7 = 0.1115196025 — 0.1382585462i, by; = 1.745869318, boy =
1.838747001, bez = 0.04009217394, byy = 0.04222501805, c12 = 0.4757533068 +
0.38374350914, c21 = 1.160010729, coo = —0.9515066139, d15 = 2.569140234 +
0.2054337492i, di4 = —4.102625453 — 1.774723308i, do1 = —566.4596114, doo =
—10.01252480, doy = —410.2724108.

(1)Choose p1 = 0.001, pe = —0.1, then b = —0.9952 < 0,c¢ = —1. It will be
considered in case IV. For €1 = —0.0257,e2 = —0.001084, we have Fig.3 shows the
stable periodic orbit of system(1.1) in @ of case IV.
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Figure 3. The periodic orbit of system(1.1) is stable in (B of case IV, and the initial value is (0.044, 3.75).
(left)Phase plane of (z1,x2). (right) Wave plot of xs.

(2)Choose p; = —0.000009, pg = —0.1, then b = —786.1190 < 0,c = —1. Tt will
be considered in case IV. For ¢; = —0.0257,e2 = 0.00000975, we have Fig.4 shows
the stable periodic orbit of system(1.1) in @ of case IV.

(3)Choose p; = —0.001, pe = 0.1, then b = —0.9952 < 0,¢ = —1. It will be
considered in case IV. For e; = 0.0257,e5 = 0.001084, we have Fig.5 shows the
unstable periodic orbit of system(1.1) in @) of case IV.

(4)Choose p1 = 0.000009, pe = 0.1, then b = —786.1190 < 0,c = —1. It will be
considered in case IV. For 1 = 0.0257, 2 = —0.00000975, we have Fig.6 shows the
unstable periodic orbit of system(1.1) in (D of case IV.
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6. Conclusions

In this paper, we have considered about the codimension-two bifurcation of CSTR
model with delay. By applying the normal form method and the center manifold
theorem, we have shown how to reduce CSTR model with parameters near the
critical point of the Zero-Hopf bifurcation. According to the value of these unfolding
parameters, we can make sure the existence of periodic orbits. And we found the
emergence of Hopf-transcritical and pitchfork bifurcation.

When parameter values satisfy the conditions @) and () of case IV, there is a
stable period orbit nearby the equilibrium, namely, the chemical reaction in tank
reactor will tend to balanced, and the stable state is described by the equilibrium.
When parameter values satisfy the conditions @) and @) of case IV, there is an
unstable period orbit nearby the equilibrium, namely, the chemical reaction in tank
reactor is going to become the unbalanced state from balanced state.

Our work is a further investigation of CSTR model, which is helpful for the
investigation about complex phenomenon caused by high codimensional bifurcation
of delay differential equations.
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