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CODIMENSION-TWO BIFURCATION
ANALYSIS OF THE CONTINUOUS STIRRED
TANK REACTOR MODEL WITH DELAY∗

Ai Ke1 and Chunrui Zhang1,†

Abstract The aim of this paper is to research the dynamical behaviors of the
continuous stirred tank reactor (CSTR) model with delay. Firstly, we discuss
the situation that its related characteristic equation has a simple zero root and
a pair of purely imaginary roots. Secondly, the center manifold method and the
normal form method are used to reduce the equation of CSTR model. Finally,
some characteristics about the CSTR model can be obtained. We analyze
three different topological structure and give entire bifurcation diagrams and
phase portraits, which are innovative phenomenon. At the end, we obtain the
stable and unstable periodic solutions by numerical simulation.
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1. Introduction

There has been great concern in high codimensional bifurcation analysis for some
differential equations with delay, including the Zero-Hopf bifurcations [4, 16, 21, 23,
26], Bogdanov-Takens bifurcations [11,12,25,28], and bifurcation analysis has been
widely applied in chemical engineering field [9, 15, 18, 20, 29]. There is a class of
saddle-node-Hopf bifurcation also being studied (see [10,27]).

Within the framework of Faria and Magalhaes [5, 6], many scholars sum up
approaches which are detailed and accessible, see e.g. [11, 23]. And He Xing, et al.
study the Zero-Hopf bifurcation about the bidirectional ring network model with
delay [8]. In the case of CSTR model, considering about the exponential term, we
obtain the linear part by Taylor expansion, and in the next calculation, in order
to prevent the lack of items in normal forms, two perturbation parameters are not
equal to zero.

CSTR as a kind of reactor tank of chemical experiments, it has many char-
acteristics, for example, low cost, strong heat exchange capacity and great product
quality. So it becomes a main equipment of producing polymer. It has been used
widely in the production process of chemical industry, oil production and other in-
dustrial production process.

In [17], a high-performance small continuous stirred-tank reactor with non-
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contact hypnotic coupling providing intensive disturbance inside the sealed minia-
turized chamber is presented. D.Kastsian and M.Mönnigmann [13] exhibit that the
normal vector method for robust optimization of nonlinear systems can be contin-
ued to delayed systems. S.Pushpavanam and A.Kienle [19] discussed the balance
of the constant states of a reactor-separator system, where a first-order exothermic
irreversible reaction is performed in a continuous stirred tank reactor, and as for
the reaction in a nonisothermal CSTR, small delays could have a stabilizing effect
(see [1,7]). Disjoint bifurcations and isola behavior were found in [15], which make
the reactor to be easier to control problems. In [2], the traditional Van der Pol
Oscillator with a forcing dependent on a delay is considered, and researchers study
the Zero-Hopf bifurcation and provide a physical understanding of the oscillator
which is very useful.

In order to treat the reactor tank as a whole when constructing a consequent
CSTR model, this section makes the following assumptions:

i Materials in the reactor tank are fully mixed.

ii The volume of materials which flow into reactor tank is equal to the volume of
materials which flow out reactor tank.

iii The chemical reaction is a first order irreversible chemical reaction in the reac-
tion process.

According to the principle of material and energy balance [3], the original equa-
tion is following: ẋ1(t) = f1(x) + ( 1

λ0
− 1)x1(t− τ),

ẋ2(t) = f2(x) + ( 1
λ0

− 1)x2(t− τ) + βx1(t− τ),
(1.1)

where x(t) = (x1(t), x2(t))
T , t ∈ [−τ, 0], and f1(x) = − 1
λ0
x1(t) +Dα(1− x1(t))e

x2
1+x2/γ0 ,

f2(x) = −( 1
λ0

+ β)x2(t) +HDα(1− x1(t))e
x2

1+x2/γ0 .
(1.2)

The variable x1(t) is the transformation rate of the reaction, and 0 ≤ x1(t) ≤ 1,
and x2(t) represents temperature. H,Dα, γ0 and τ are all positive constants. In
order to simplify the system, we make the control term vanish, so βx1(t − τ) = 0,
namely, β = 0.

The objective of the paper is to study the Zero-Hopf bifurcation by regrading
H and τ as bifurcation parameters. In section 2, the existence conditions of Zero-
Hopf bifurcation are given in Lemma 2.1. In section 3, center manifold theory and
normal form method [5, 6] are used to research Zero-Hopf bifurcation, and we get
the normal form for Zero-Hopf bifurcation with parameters. A primary difficulty
for figuring out the third order terms with parameters is that we have to deal with
the linear system whose coefficient matrices are singular. This problem is solved by
adopting the approach in [24]. Then in section 4, we select some parameter values,
and obtain some numerical simulations to support our theoretical results.

2. The existence of codimension-two bifurcation

In this section, we give the necessary and sufficient conditions for existence of Zero-
Hopf bifurcation, which can guarantee the characteristic equation has a simple root
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0 and a simple pair of purely imaginary roots ±iω0 and all other roots of the
characteristic equation have negative real parts, then the Zero-Hopf bifurcation will
occur.

Assuming (x∗1, x
∗
2) is the equilibrium point of equation (1.1), let x̃1 = x1 −

x∗1, x̃2 = x2 − x∗2,− 1
λ0

= a, g(x2) = e

x2+x∗
2

1+
x2+x∗

2
γ0 , then system (1.1) becomes{

˙̃x1 = ax̃1 +Dα(1− x̃1 − x∗
1)g(x̃2) + (−a− 1)x̃1(t− τ)−Dα(1− x∗

1)g(0),

˙̃x2 = ax̃2 +HDα(1− x̃1 − x∗
1)g(x̃2) + (−a− 1)x̃2(t− τ)−HDα(1− x∗

1)g(0).

Omitting the ” ∼ ”, and use the Taylor expansion at the origin and the system
above becomes

ẋ1 =ax1 +Dα(1− x1 − x∗1)(α1 + α2x2 +
α3

2
x22 +

α4

6
x32)

+ (−a− 1)x1(t− τ)−Dα(1− x∗1)α1,

ẋ2 =ax2 +HDα(1− x1 − x∗1)(α1 + α2x2 +
α3

2
x22 +

α4

6
x32)

+ (−a− 1)x2(t− τ)−HDα(1− x∗1)α1.

(2.1)

We assume g(0) = α1, g
′(0) = α2, g

′′(0) = α3, g
′′′(0) = α4. The linearization of

the system above is ẋ1 = ax1 +Dα(1− x∗1)α2x2 −Dαx1α1 − (a+ 1)x1(t− τ),

ẋ2 = ax2 +HDα(1− x∗1)α2x2 −HDαx1α1 − (a+ 1)x2(t− τ).
(2.2)

The characteristic equation of system (2.2) is

∆(λ, τ) = (λ−a+(a+1)e−λτ )(λ−a+(a+1)e−λτ +Dαα1−HDαα2(1−x∗1)). (2.3)

If λ = 0 is one root of the equation (2.3), we obtain H = Dαα1+1
Dαα2(1−x∗

1)
. Let H = β1.

We obtain that if τ = 0, except a single zero eigenvalue, the other root of equation
(2.3) has negative real part, so the stability of system is uncertain in this case.
When τ ̸= 0, let iω(ω > 0) into λ − a + (a + 1)e−λτ , and separate the real and
imaginary parts, we have  a

a+1 = cos(ωτ),

w
a+1 = sin(ωτ).

(2.4)

Eliminating τ from (2.4), one has

ω2 = 2a+ 1.

In order to assure the existence of a simple pair of purely imaginary roots, let
a > −1

2 , because a = − 1
λ0
< 0, so −1

2 < a < 0. We obtain

ω0 =
√
2a+ 1,

τk =
1

ω0
arccos

ω2
0 − 1

ω2
0 + 1

+ 2kπ, k = 0, 1, 2, . . . .
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And we have

dτ

dλ
=
τ(a+ 1)e−λτ − 1

(a+ 1)e−λτ (−λ)
=
τ(a+ 1)− eλτ

(a+ 1)(−λ)
= − τ

λ
+

eλτ

(a+ 1)λ
,

then

Re[
dτ

dλ
] =

sin(ωτ)

(a+ 1)ω
=

1

(a+ 1)2
> 0,

so we have the following lemma.

Lemma 2.1. If H = Dαα1+1
Dαα2(1−x∗

1)
and − 1

2 < a < 0 hold, when τ = τk(k = 0, 1, 2, ...),

the system (1.1) undergoes a Zero-Hopf bifurcation at equilibrium (x∗1, x
∗
2).

3. Normal form with parameters for Zero-Hopf bi-
furcation

In this section, normal form is obtained by performing a center manifold reduction
and by applying the normal form method. First, Let H = µ1+β1, τ = µ2+τ0, then
µ1, µ2 are bifurcation parameters. After scaling the time by t → t/τ , the system
(2.1) can be written as

ẋ1 =(µ2 + τ0)ax1 + (µ2 + τ0)Dα(1− x1 − x∗1)(α1 + α2x2 +
α3

2
x22 +

α4

6
x32)

− (µ2 + τ0)Dα(1− x∗1)α1 − (µ2 + τ0)(a+ 1)x1(t− 1),

ẋ2 =(µ2+τ0)ax2+(µ1+β1)(µ2+τ0)Dα(1−x1−x∗1)(α1+α2x2 +
α3

2
x22 +

α4

6
x32)

− (µ2 + τ0)(µ1 + β1)Dα(1− x∗1)α1 − (µ2 + τ0)(a+ 1)x2(t− 1).
(3.1)

The linearization of system (3.1) at (0, 0) is ẋ1 = τ0ax1 + τ0Dα(1− x∗1)α2x2 − τ0Dαx1α1 − τ0(a+ 1)x1(t− 1),

ẋ2 = τ0ax2 + τ0β1Dα(1− x∗1)α2x2 − τ0β1Dαx1α1 − τ0(a+ 1)x2(t− 1).

Let
η(θ) = Aδ(θ) +Bδ(θ + 1),

where

A =

(
τ0(a−Dαα1) τ0Dα(1− x∗

1)α2

−τ0β1Dαα1 τ0(a+ β1Dα(1− x∗
1)α2)

)
, B =

(
−τ0(a+ 1) 0

0 −τ0(a+ 1)

)
.

Define

Lψ =

∫ 0

−1

dη(θ)ψ(θ), ∀ψ ∈ C = C([−1, 0], C2).

Let X =

x1

x2

 and let F (Xt, µ) =

F 1

F 2

 . Choosing the phase space C =

C([−1, 0], C2), then system (1.1) can be transformed into

Ẋ(t) = L(µ)Xt + F (Xt, µ) (3.2)
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and the bilinear form on C∗ × C is

⟨ψ,φ⟩ = ψ(0)φ(0) +

∫ 0

−1

ψ(ξ + 1)Bφ(ξ)dξ,

where φ(θ) = (φ1(θ), φ̄1(θ), φ2(θ)) ∈ C, ψ(s) =


ψ1(s)

ψ̄1(s)

ψ2(s)

 ∈ C∗. Then the space

C can be decomposed by Λ = {0,±iω0τ0} as C = P + Q, where Q = {φ ∈ C :
(ψ,φ) = 0,∀ψ ∈ P ∗}. Choosing the bases for P and the adjoint P ∗ are

Φ(θ) =

 α2

α1
(1− x∗1)e

iω0τ0θ α2

α1
(1− x∗1)e

−iω0τ0θ 1
β1

eiω0τ0θ e−iω0τ0θ 1


and

Ψ(s) =


−D1β1e

−iω0τ0s D1e
−iω0τ0s

−D̄1β1e
iω0τ0s −D̄1e

iω0τ0s

− D2α1

α2(1−x∗
1)

D2

 ,

where

(Ψ(s),Φ(θ)) = 1, 0 < s < 1. D1 =
Dαα1

τ0(a− iω0)− 1
, D2 =

Dαα1 + 1

1− τ0(a+ 1)
.

Thus, the dual bases satisfy Φ̇ = ΦJ,−Ψ̇ = JΨ with

J =


iω0τ0 0 0

0 −iω0τ0 0

0 0 0

 .

To consider system (3.2), we need the enlarged phase space BC of function from
[−1, 0] to C2:

BC = {α : [−1, 0] → C2 : α is continuous on [−1, 0), ∃ lim
θ→0−

α(θ) ∈ C2}

The items of BC can be represented by ψ = φ+ T0α with φ ∈ C,α ∈ C2, and

T0(θ) =

{
0, −τ ≤ θ < 0,

I, θ = 0.

Define the continuous projection π : BC → P by π(φ+T0α) = Φ[(Ψ, φ)+Ψ(0)α].
Then we can decompose the enlarge phase space as BC = P ⊕ kerπ.

Define A : C1 → BC is

Aφ = φ̇+ T0[Lφ− φ̇(0)] =

{
φ̇, if − 1 ≤ θ < 0,∫ 0

−1
dη(t)φ(t), if θ = 0.
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In BC, equation (3.2) can be written as an abstract ODE:

d

dt
u = Au+ T0F (u, µ). (3.3)

Let Xt = Φz(t) + y(θ), where z(t) = (z1, z2, z3)
T , namelyx1(θ) =

α2

α1
(1− x∗1)e

iω0τ0θz1 +
α2

α1
(1− x∗1)e

−iω0τ0θz2 +
1

β1
z3 + y1(θ),

x2(θ) = eiω0τ0θz1 + e−iω0τ0θz2 + z3 + y2(θ).

Equation (3.3) can be decomposed into the equation ż = Jz +Ψ(0)F (Φz + y(θ), µ),

ẏ = AQ1
y + (I − π)T0F (Φz + y(θ), µ),

(3.4)

where y(θ) ∈ Q1 := Q
∩
C1 ⊂ kerπ, AQ1 is an operator from Q1 to the Banach

space kerπ . And equation (3.4) can be written as
ż = Jz +

1

2!
f12 (z, y, µ) +

1

3!
f13 (z, y, µ) + h.o.t.,

ẏ = AQ1y +
1

2!
f22 (z, y, µ) +

1

3!
f23 (z, y, µ) + h.o.t..

(3.5)

On the center manifold, (3.5) can be written as the following

ż = Jz +
1

2
g12(z, y, µ) +

1

6
g13(z, y, µ) + h.o.t..

We have

1

2
f12 (z, y, µ) =


ψ11F

1
2 (z, y, µ) + ψ12F

2
2 (z, y, µ)

ψ21F
1
2 (z, y, µ) + ψ22F

2
2 (z, y, µ)

ψ31F
1
2 (z, y, µ) + ψ32F

2
2 (z, y, µ)

 =



−iω0D1

Dαα1
µ2z1 +

iω0D1

Dαα1
µ2z2 +

D1τ0
β1

µ1z3 +D1β1((a+ 1)µ2y1(−1)− aµ2y1(0))

+D1(aµ2y2(0)− (a+ 1)µ2y2(−1)) +D1τ0(
Dαα1+1

β1
µ1y2(0)−Dαα1µ1y1(0))

−iω0D̄1

Dαα1
µ2z1 +

iω0D̄1

Dαα1
µ2z2 +

D̄1τ0
β1

µ1z3 + D̄1β1((a+ 1)µ2y1(−1)− aµ2y1(0))

+ D̄1(aµ2y2(0)− (a+ 1)µ2y2(−1)) + D̄1τ0(
Dαα1+1

β1
µ1y2(0)−Dαα1µ1y1(0))

D2τ0
β1

µ1z3+D2τ0[(
α3

2α2
− α2

α1
)(z21+z

2
2)+( α3

2α2
− Dαα2

Dαα1+1
)z23 ]+D2τ0[(

α3

α2
− 2α2

α1
)z1z2

+(α3

α2
− α2

α1
− Dαα2

Dαα1+1
)(z1z3+z2z3)]+[(Dαα1−a) µ2D2α1

α2(1−x∗
1)

−D2Dαα1(µ1τ0+β1µ2)]y1(0)

+ τ0Dαα2D2(
α1

α2(1−x∗
1)

− β1)(z1 + z2 + z3)y1(0) +
D2µ2α1(a+1)

α2(1−x∗
1)

y1(−1)

+D2τ0α3

2α2
y22(0)+(D2τ0α3

α2
−D2τ0α2

α1
)(z1+z2)y2(0)+(D2τ0α3

α2
−D2τ0α2Dα

Dαα1+1
)z3y2(0)

+D2[µ2(a+ 1) + µ1τ0
Dαα1+1

β1
]y2(0)−D2µ2(a+ 1)y2(−1)− D2τ0

1−x∗
1
y1(0)y2(0)
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and

1

2
g12(z, 0, µ) =

1

2
Projs1f

1
2 (z, 0, µ) +O(|µ|2)

=


(a11µ1 + a12µ2)z1 + a13z1z3

(ā11µ1 + ā12µ2)z2 + ā13z2z3

(a21µ1 + a22µ2)z3 + a23z1z2 + a24z
2
3

+O(|µ|2)

where s1 is spanned by

{µiz1e1, z1z3e1, µiz2e2, z2z3e2, z1z2e3, µiz3e3, z
2
3e3}, i = 1, 2,

a11 = a13 = a22 = 0

a12 = − iω0D1

Dαα1
=

iω0

1− τ0(a− iω0)
,

a21 =
τ0D2

β1
,

a23 = D2τ0(
α3

α2
− 2α2

α1
),

a24 = D2τ0(
α3

2α2
− Dαα2

Dαα1 + 1
).

Next we calculate g13(z, 0, µ). Note that, from paper [23], we have

1
6g

1
3(z, 0, µ) =

1
6Projker(M1

2 )
f̃13 (z, 0, µ)

= 1
6Projs2 f̃

1
3 (z, 0, µ) +O(|z||µ|2 + |z|2|µ|)

= 1
6Projs2f

1
3 (z, 0, µ) +

1
4Projs2 [(Dzf

1
2 )(z, 0, µ)U

1
2 (z, µ)

+ (Dyf
1
2 )(z, 0, µ)U

2
2 (z, µ)] +O(|z||µ|2 + |z|2|µ|).

First let us calculate Projs2f
1
3 (z, 0, µ). Since

1

6
f13 (z, 0, µ) =

1

6


ψ11F

1
3 (z, 0, µ) + ψ12F

2
3 (z, 0, µ)

ψ21F
1
3 (z, 0, µ) + ψ22F

2
3 (z, 0, µ)

ψ31F
1
3 (z, 0, µ) + ψ32F

2
3 (z, 0, µ)

 .

Then we have

1

6
Projs2f

1
3 (z, 0, µ) =


b11µ1z1z3

b̄11µ1z2z3

b21µ1z1z2 + b22µ2z1z2 + b23µ1z
2
3 + b24µ2z

2
3

+b25µ1µ2z3 + b26z1z2z3 + b27z
3
3


where s2 is spanned by

{µ1µ2z1e1, µ
2
i z1e1, µiz1z3e1, z

2
1z2e1, z1z

2
3e1, µ1µ2z2e2, µ

2
i z2e2, µiz2z3e2, z1z

2
2e2,

z2z
2
3e2, µiz1z2e3, µiz

2
3e3, µ1µ2z3e3, z1z2z3e3, z

3
3e3, µ

2
i z3e3}, i = 1, 2,
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b11 = D1τ0Dα[(1− x∗1)α3 − (1− x∗1)
α2

2

α1
− α2

β1
],

b21 = D2τ0Dα(1− x∗1)(α3 − 2α2
2

α1
),

b22 = D2(
α3

α2
− 2α2

α1
),

b23 = D2τ0Dα[
α3(1−x∗

1)
2 − α2

β1
],

b24 = D2[
α3

2α2
− 1

(1−x∗
1)β1

],

b25 = D2Dα[(1− x∗1)α2 − α1

β1
],

b26 = D2τ0[
α4

α2
− 2α3

α1
− Dαα3

Dαα1+1 ],

b27 = D2τ0[
α4

6α2
− Dαα3

2(Dαα1+1) ].

Next let us calculate Projs2 [(Dzf
1
2 (z, 0, µ))U

1
2 (z, µ)]. Since

U1
2 (z, µ) = (M1

2 )
−1ProjIm(M1

2 )
f12 (z, 0, µ)

=
2

iω0


− 1

2
iω0D1

Dαα1
µ2z2 − D1τ0

β1
µ1z3

− 1
2
iω0D̄1

Dαα1
µ2z1 +

D̄1τ0
β1

µ1z3

D2τ0(
α3

α2
− α2

α1
− Dαα2

Dαα1+1 )(z1z3 − z2z3) +
1
2D2τ0(

α3

2α2
− α2

α1
)(z21 − z22)


we have

1

4
Projs2 [(Dzf

1
2 (z, 0, µ))U

1
2 (z, µ)] =


c11µ

2
2z1 + c12µ1z1z3

c̄11µ
2
2z2 + c̄12µ1z2z3

c21µ2z1z2 + c22µ1z
2
3


where

c11 = − iω0D1D̄1

2(Dαα1)2
,

c12 =
D1D2τ

2
0

iω0β1
(
α3

α2
− α2

α1
− Dαα2

Dαα1 + 1
),

c21 = − D2τ0
Dαα1

(
α3

2α2
− α2

α1
)(D1 + D̄1),

c22 =
D2τ

2
0

iω0β1
(
α3

α2
− α2

α1
− Dαα2

Dαα1 + 1
)(D̄1 −D1).

Now let us calculate Projs2 [(Dyf
1
2 )(z, 0, µ)U

2
2 (z, µ)]. Define h = h(z)(θ) =

U2
2 (z, µ), and let

h(θ) =

h(1)(θ)

h(2)(θ)


= h11z

2
1 + h12z

2
2 + h13z

2
3 + h14µ

2
1 + h15µ

2
2 + h21z1z2 + h22z1z3 + h23z1µ1

+ h24z1µ2 + h31z2z3 + h32z2µ1 + h33z2µ2 + h41z3µ1 + h42z3µ2 + h51µ1µ2
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where hij ∈ Q1. The coefficients of h are resolved by (M2
2h)(z) = f22 (z, 0, µ), which

is equal to

DzhJz −AQ1(h) = (I − π)X0F2(Φz, µ)

where ḣ stands for the derivative of h(θ) related to θ. Let

F2(Φz, µ) = A11z
2
1 +A12z

2
2 +A13z

2
3 +A14µ

2
1 +A15µ

2
2 +A21z1z2 +A22z1z3

+A23z1µ1 +A24z1µ2 +A31z2z3 +A32z2µ1 +A33z2µ2 +A41z3µ1

+A42z3µ2 +A51µ1µ2

=


2iω0µ2aα2

α1
(1− x∗1)(z1 − z2) + τ0Dα(1− x∗1)α3(z1 + z2 + z3)

2

−2τ0Dαα2[
α2

α1
(1− x∗1)(z1 + z2) +

1
β1
z3](z1 + z2 + z3)

2iω0µ2(z1 + z2) +
2µ1τ0
β1

z3 + τ0[(Dαα1 + 1)(α3

α2
− 2α2

α1
)(z1 + z2)

+
Dαα1α3+α3−2Dαα2

2

α2
z3](z1 + z2 + z3)


where Aij ∈ C2. Comparing the coefficients of all terms, we have that

h̄23 = h32 = 0, h̄24 = h33, h̄22 = h31, h51 = h14 = h15 = h42 = 0

and that h24, h22, h41, h21, h13 satisfy the following differential equations. Respec-
tively,  ḣ24 − iω0τ0h24 = Φ(θ)Ψ(0)A24,

ḣ24(0)− L(h24) = A24,
(3.6)

 ḣ22 − iω0τ0h22 = Φ(θ)Ψ(0)A22,

ḣ22(0)− L(h22) = A22,
(3.7)

 ḣ41 = Φ(θ)Ψ(0)A41,

ḣ41(0)− L(h41) = A41,
(3.8)

 ḣ21 = Φ(θ)Ψ(0)A21,

ḣ21(0)− L(h21) = A21,
(3.9)

 ḣ13 = Φ(θ)Ψ(0)A13,

ḣ13(0)− L(h13) = A13.
(3.10)

Then we have

1

4
Projs2 [(Dyf

1
2 (z, 0, 0))U

2
2 (z, 0)]=


d11µ1µ2z1+d12µ

2
2z1+d13µ1z1z3+d14µ2z1z3

d̄11µ1µ2z2+d̄12µ
2
2z2+d̄13µ1z2z3+d̄14µ2z2z3

d21µ1z1z2+d22µ2z1z2+d23z1z2z3+d24µ1z
2
3

+d25z
3
3+d26µ

2
1z3
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where

d11 =D1τ0[
Dαα1 + 1

β1
h
(2)
24 (0)−Dαα1h

(1)
24 (0)],

d12 =D1β1h
(1)
24 (0)−D1h

(2)
24 (0),

d13 =D1τ0[
Dαα1 + 1

β1
h
(2)
22 (0)−Dαα1h

(1)
22 (0)],

d14 =D1β1h
(1)
22 (0)−D1h

(2)
22 (0),

d21 =D2τ0Dα[(1− x∗1)α2h
(2)
21 (0)− α1h

(1)
21 (0)],

d22 =− D2τ0
1− x∗1

[h
(1)
33 (0) + h

(1)
24 (0)] +D2τ0(

α3

α2
− α2

α1
)[h

(2)
33 (0) + h

(2)
24 (0)],

d23 =− D2τ0
1− x∗1

(h
(1)
31 (0) + h

(1)
22 (0) + h

(1)
21 (0)) +D2τ0[(

α3

α2
− α2

α1
)(h

(2)
31 (0) + h

(2)
22 (0))

+ (
α3 − α2

α2
− Dαα1

Dαα1 + 1
)h

(2)
21 (0)],

d24 =D2τ0[(
α3 − α2

α2
− Dαα1

Dαα1 + 1
)h

(2)
41 (0)−

h
(1)
41 (0)

1− x∗1
]

+D2τ0Dα[(1− x∗1)α2h
(2)
13 (0)− α1h

(1)
13 (0)],

d25 =D2τ0[(
α3 − α2

α2
− Dαα1

Dαα1 + 1
)h

(2)
13 (0)−

h
(1)
13 (0)

1− x∗1
],

d26 =D2τ0Dα[(1− x∗1)α2h
(2)
41 (0)− α1h

(1)
41 (0)]

and h
(1)
ij , h

(2)
ij will be calculated by the method in [24]. Here are the formulas of

hij which we need.

h24(0) = (iω0τ0I−L(eiω0τ0θ))INV [(I−Φ(0)Ψ(0))A24

−B
∫ 0

−1

e−iω0τ0(t+1)Φ(t)Ψ(0)A24dt],

h22(0) = (iω0τ0I − L(eiω0τ0θ))INV [(I − Φ(0)Ψ(0))A22

−B

∫ 0

−1

e−iω0τ0(t+1)Φ(t)Ψ(0)A22dt],

h41(0) = (L(1))INV [(Φ(0)Ψ(0)− I)A41 +B

∫ 0

−1

Φ(t)Ψ(0)A41dt],

h21(0) = (L(1))INV [(Φ(0)Ψ(0)− I)A21 +B

∫ 0

−1

Φ(t)Ψ(0)A21dt],

h13(0) = (L(1))INV [(Φ(0)Ψ(0)− I)A13 +B

∫ 0

−1

Φ(t)Ψ(0)A13dt].

After simplified calculation, we have the expression as followed:

h24(0) = (M1)
INV (κ124 + κ224),

h22(0) = (M1)
INV (κ122 + κ222),

h41(0) = (M2)
INV κ41,
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h21(0) = (M2)
INV (κ121 + κ221),

h13(0) = (M2)
INV (κ113 + κ213),

where

M1 = iω0τ0I − L(eiω0τ0θ),

M2 = L(1),

κ124 = A
(1)
24

1 + γ1β1D1(1− aτ0 + iω0τ0) +
iD2

ω0γ1β1

β1D1(1− aτ0 + iω0τ0) +
iD2

ω0γ1

 ,

κ224 = A
(2)
24

D1γ1(aτ0 − iω0τ0 − 1)− iD2

ω0β1

1 +D1(aτ0 − iω0τ0 − 1)− iD2

ω0

 ,

κ122 = A
(1)
22

1 + γ1β1D1(1− aτ0 + iω0τ0) +
iD2

ω0γ1β1

β1D1(1− aτ0 + iω0τ0) +
iD2

ω0γ1

 ,

κ222 = A
(2)
22

D1γ1(aτ0 − iω0τ0 − 1)− iD2

ω0β1

1 +D1(aτ0 − iω0τ0 − 1)− iD2

ω0

 ,

κ41 = A
(2)
41

− 2
ω0
γ1Im[D1] +

D2

β1
(1− aτ0 − τ0)

− 2
ω0
γ1Im[D1] +D2(1− aτ0 − τ0)− 1

 ,

κ121 = A
(1)
21

 2
ω0
γ1β1Im[D1] +

D2

β1γ1
(aτ0 + τ0 − 1)− 1

2
ω0
β1Im[D1] +

D2

γ1
(aτ0 + τ0 − 1)

 ,

κ221 = A
(2)
21

− 2
ω0
γ1Im[D1] +

D2

β1
(1− aτ0 − τ0)

− 2
ω0
γ1Im[D1] +D2(1− aτ0 − τ0)− 1

 ,

κ113 = A
(1)
13

 2
ω0
γ1β1Im[D1] +

D2

β1γ1
(aτ0 + τ0 − 1)− 1

2
ω0
β1Im[D1] +

D2

γ1
(aτ0 + τ0 − 1)

 ,

κ213 = A
(2)
13

− 2
ω0
γ1Im[D1] +

D2

β1
(1− aτ0 − τ0)

− 2
ω0
γ1Im[D1] +D2(1− aτ0 − τ0)− 1

 ,

γ1 =
α2(1− x∗1)

α1
,

A24 =

2iω0aγ1

2iω0

 , A22 =

 2τ0Dα[α3(1− x∗1)− α2γ1 − α2

β1
]

2τ0[(Dαα1 + 1)(α3

α2
− α2

α1
)−Dαα2]

 ,

A41 =

 0

2τ0
β1

 , A21 =

2τ0Dα[α3(1− x∗1)− 2α2γ1]

2τ0(Dαα1 + 1)(α3

α2
− 2α2

α1
)

 ,

A13 =

 τ0Dα[α3(1− x∗1)− 2α2

β1
]

τ0[
α3

α2
(Dαα1 + 1)− 2Dαα2]

 .
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Finally, we can get

1

6
g13(z, 0, µ)

=


(b11 + c12 + d13)µ1z1z3 + (c11 + d12)µ

2
2z1 + d11µ1µ2z1 + d14µ2z1z3

(b̄11 + c̄12 + d̄13)µ1z2z3 + (c̄11 + d̄12)µ
2
2z2 + d̄11µ1µ2z2 + d̄14µ2z2z3

(b21 + d21)µ1z1z2 + (b22 ++c21 + d22)µ2z1z2 + (b23 ++c22 + d24)µ1z
2
3

+b24µ2z
2
3 + b25µ1µ2z3 + (b26 + d23)z1z2z3 + (b27 + d25)z

3
3 + d26µ

2
1z3


+O(|z||µ|2 + |z|2|µ|).

On the center manifold, system (3.5) can be written as the following form
ż1 = iω0τ0z1 + (m1v1 +m2v2)z1 + p1z1z3 + h.o.t.,

ż2 = −iω0τ0z2 + (m̄1v1 + m̄2v2)z2 + p̄1z2z3 + h.o.t.,

ż3 = (n1v1 + n2v2)z3 + p2z1z2 + p3z
2
3 + p4z1z2z3 + p5z

3
3 + h.o.t.,

(3.11)

where vi = vi(µ)(i = 1, 2), and the quadratic terms or higher order terms of µ are
ignored. Then we have

m1v1 +m2v2 = a12µ2, n1v1 + n2v2 = a21µ1,

p1 = (b11 + c12 + d13)µ1 + d14µ2, p2 = (b21 + d21)µ1 + (b22 + c21 + d22)µ2,

p3 = (b23 + c22 + d24)µ1 + b24µ2, p4 = b26 + d23, p5 = b27 + d25.

Through the change of variables z1 = r cos θ + ir sin θ, z2 = r cos θ − ir sin θ,
z3 = ξ, the system (3.11) becomes

ṙ = Re[m1v1 +m2v2]r +Re[p1]rξ + h.o.t.,

θ̇ = ω0τ0 + Im[m1v1 +m2v2] + h.o.t.,

ξ̇ = (n1v1 + n2v2)ξ + p2r
2 + p3ξ

2 + p4r
2ξ + p5ξ

3 + h.o.t..

(3.12)

Let Re[m1v1 +m2v2] = ε1, Re[p1] = a1, n1v1 +n2v2 = ε2. As the second equation
depicts a rotation around the ξ − axis, it is unrelated to our analysis and we will
ignore it. Thus we can have a system in the plane (r, ξ), ṙ = ε1r + a1rξ,

ξ̇ = ε2ξ + p2r
2 + p3ξ

2 + p4r
2ξ + p5ξ

3.
(3.13)

4. Bifurcation diagrams

Let us introduce the transformation
√
|p2p3|r → r, p3ξ → ξ, and we consider about

the cubic terms of system(3.13) ṙ = ε1r + brξ,

ξ̇ = ε2ξ + cr2 + ξ2 + er2ξ + fξ3,
(4.1)
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where b = a1

p3
, c = p2p3

|p2p3| = ±1, e = p4

|p2p3| , f = p5

p2
3
.

Truncating (4.1) at quadratic terms, then we can obtain system (4.2) with lower
order terms , and in [14], a categorization of the probable mode interactions for a
similar bifurcation is given.  ṙ = ε1r + brξ,

ξ̇ = ε2ξ + cr2 + ξ2.
(4.2)

There are four different topological structure, which are depending on the signs of
b and c :
case I : c = 1, b > 0; case II : c = 1, b < 0;
case III : c = −1, b > 0; case IV : c = −1, b < 0.

In [22], similarly, we can obtain system (4.2) has a trivial equilibrium O =
(0, 0), a semi-trivial equilibrium M1 = (0,−ε2) and a nontrivial equilibrium M2 =

(
√

ε1(bε2−ε1)
b2c ,− ε1

b ) for cε1(ε1 − bε2) < 0. On the line T1 : ε2 = 0, the trivial

equilibrium shows a transcritical bifurcation which means that two equilibria O and
M1 collide and exchange stability. On the line T2 : ε1 = 0, a pitchfork bifurcation
occurs at O. On the line T3 : ε1 = bε2, M1 shows a pitchfork bifurcation, bringing
about a new equilibrium point M2 for cε1(ε1− bε2) < 0 on the positive quadrant of
r.

Then we exhibit the bifurcation diagrams for case II, III, IV in Fig.1, and phase
portraits for case II, III, IV in Fig.2. As for case I, it will not be discussed in this
paper because of its complexity.

Figure 1. The bifurcation diagrams for case II, III, IV.

5. Numerical simulations

In this section, we will give some examples to illustrate our theoretical results.
From Lemma 2.1, in order to satisfy the bifurcation conditions, We select a =
−0.2, γ0 = 20, Dα = 0.1050 and H = 5.0807 into the system (1.1). There are three
equilibria of original system, only choose one, such that x∗1 = 0.5160057495, x∗2 =
2.621670411, and we can also obtain ω0 = 0.7745966692, τ0 = 2.354098145, α1 =
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Figure 2. The phase portraits for case II, III, IV.

10.15371662, α2 = 7.936621857, α3 = 6.168552293, D1 = −0.2857128683 +
0.3542179573i, D2 = −2.339171855, a12 = 0.2573545565 + 0.2075826676i, a21 =
−1.083834929, b11 = 0.1115196025 − 0.1382585462i, b21 = 1.745869318, b22 =
1.838747001, b23 = 0.04009217394, b24 = 0.04222501805, c12 = 0.4757533068 +
0.3837435091i, c21 = 1.160010729, c22 = −0.9515066139, d13 = 2.569140234 +
0.2054337492i, d14 = −4.102625453 − 1.774723308i, d21 = −566.4596114, d22 =
−10.01252480, d24 = −410.2724108.

(1)Choose µ1 = 0.001, µ2 = −0.1, then b = −0.9952 < 0, c = −1. It will be
considered in case IV. For ε1 = −0.0257, ε2 = −0.001084, we have Fig.3 shows the
stable periodic orbit of system(1.1) in 5⃝ of case IV.
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Figure 3. The periodic orbit of system(1.1) is stable in 5⃝ of case IV, and the initial value is (0.044, 3.75).
(left)Phase plane of (x1, x2). (right) Wave plot of x2.

(2)Choose µ1 = −0.000009, µ2 = −0.1, then b = −786.1190 < 0, c = −1. It will
be considered in case IV. For ε1 = −0.0257, ε2 = 0.00000975, we have Fig.4 shows
the stable periodic orbit of system(1.1) in 4⃝ of case IV.

(3)Choose µ1 = −0.001, µ2 = 0.1, then b = −0.9952 < 0, c = −1. It will be
considered in case IV. For ε1 = 0.0257, ε2 = 0.001084, we have Fig.5 shows the
unstable periodic orbit of system(1.1) in 2⃝ of case IV.

(4)Choose µ1 = 0.000009, µ2 = 0.1, then b = −786.1190 < 0, c = −1. It will be
considered in case IV. For ε1 = 0.0257, ε2 = −0.00000975, we have Fig.6 shows the
unstable periodic orbit of system(1.1) in 1⃝ of case IV.
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Figure 4. The periodic orbit of system(1.1) is stable in 4⃝ of case IV, and the initial value is (0.01, 3.88).
(left)Phase plane of (x1, x2). (right) Wave plot of x2.
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Figure 5. The periodic orbit of system(1.1) is unstable in 2⃝ of case IV, and the initial value is
(0.516, 2.650). (left)Phase plane of (x1, x2). (right) Wave plot of x2.
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Figure 6. The periodic orbit of system(1.1) is unstable in 1⃝ of case IV, and the initial value is
(0.530, 2.622). (left)Phase plane of (x1, x2). (right) Wave plot of x2.
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6. Conclusions

In this paper, we have considered about the codimension-two bifurcation of CSTR
model with delay. By applying the normal form method and the center manifold
theorem, we have shown how to reduce CSTR model with parameters near the
critical point of the Zero-Hopf bifurcation. According to the value of these unfolding
parameters, we can make sure the existence of periodic orbits. And we found the
emergence of Hopf-transcritical and pitchfork bifurcation.

When parameter values satisfy the conditions 4⃝ and 5⃝ of case IV, there is a
stable period orbit nearby the equilibrium, namely, the chemical reaction in tank
reactor will tend to balanced, and the stable state is described by the equilibrium.
When parameter values satisfy the conditions 1⃝ and 2⃝ of case IV, there is an
unstable period orbit nearby the equilibrium, namely, the chemical reaction in tank
reactor is going to become the unbalanced state from balanced state.

Our work is a further investigation of CSTR model, which is helpful for the
investigation about complex phenomenon caused by high codimensional bifurcation
of delay differential equations.
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