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BIFURCATION OF TRAVELING WAVE
SOLUTIONS OF THE K(M,N) EQUATION
WITH GENERALIZED EVOLUTION TERM
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Abstract In this paper, by using bifurcation theory and methods of plane
dynamic system, we investigate the bifurcations of the traveling wave system
corresponding to the K(m,n) equation with generalized evolution term. Under
different parameter conditions, some exact explicit parametric representations
of traveling wave solution are obtained.
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1. Introduction

In 1993, to understand the role of nonlinear dispersion in the formation of patterns in
liquid drops, P. Rosenau and J.M. Hyman [19] introduced and studied the nonlinear
dispersive equations K(m,n)

ut + (um)x + (un)xxx = 0, m > 0, 1 < n ≤ 3. (1.1)

They found that (1.1) has a class of solitary waves with compact support which is
called compactons. P. Rosenau [18] also studied the K(m,n) equation

ut + a(um)x + (un)xxx = 0, (1.2)

where a is a constant. He found a number of dispersive effect and obtained kinks,
solitons, dark solitons with cusp all being manifestations of nonlinear dispersion
in action. In 2008, A. Biswas [1] proposed the following K(m, n) equation with
generalized evolution term

(ul)t + aumux + b(un)xxx = 0, (1.3)

where a, b are constants, l,m, n ∈ Z+. He obtained 1-soliton solution and used the
solitary wave ansatz to get the exact solution. Especially, the case l = m = n = 1
leads to the KdV equation.

In this paper, we consider the following traveling wave system of (1.3) when
l = 2, m = 3, n = 2

(u2)t + au3ux + b(u2)xxx = 0. (1.4)
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Recently, in the book [11] written by Li and Dai, the authors have found and
studied theoretically that a lot of nonlinear wave equations have nonanalytic solitary
wave solutions (which was called the peakon or valleykon) and periodic cusp wave
solutions. Moreover, they gave a more systematic account for the bifurcation theory
method of dynamical systems to find traveling wave solutions with an emphasis
on singular waves. By using the bifurcation method of dynamical systems, many
authors [3–10,12–17,20–26] also investigated traveling wave solutions of some partial
differential equations. Therefore, in this paper, to consider traveling wave solutions
of the partial differential equation (1.4), we will investigate the dynamical behavior
of the corresponding ordinary differential equation (traveling wave equation).

2. The bifurcation of phase portraits of (1.4)

Substituting u(x, t) = ϕ(ξ) and ξ = x− ct (c is the wave speed) into (1.4), one gets
the following ODE

−c(ϕ2)ξ +
a

4
(ϕ4)ξ + b(ϕ2)ξξξ = 0,

integrating the above equation once, we have

−cϕ2 +
a

4
ϕ4 + 2bϕϕξξ + 2b(ϕξ)

2 = g, (2.1)

where g is an integral constant. (2.1) is equivalent to the system
dϕ
dξ = y,

dy
dξ =

cϕ2− a
4ϕ

4−2by2+g
2bϕ ,

(2.2)

which has the first integral

H(ϕ, y) = ϕ2(by2 − c

4
ϕ2 +

a

24
ϕ4 − g

2
) = h. (2.3)

Since the traveling wave solutions of Equation (1.4) are determined by the phase
portraits of system (2.2), we only need to study system (2.2).

Let dξ = 2bϕdζ. Then, except on the singular straight line ϕ = 0, the system
(2.2) has the same topological phase portraits and the first integral (2.3) as the
following system 

dϕ
dζ = 2bϕy,

dy
dζ = −2by2 − a

4ϕ
4 + cϕ2 + g.

(2.4)

Therefore, we can obtain the topological phase portraits of system (2.2) from those
of system (2.4).

Assume b > 0 without loss of generality. When g > 0, system (2.4) has two
equilibrium points (0,±

√
g
2b ) in the singular straight line ϕ = 0.

Let f(ϕ) = cϕ2 − a
4ϕ

4 + g, f ′(ϕ) = 2cϕ− aϕ3. Assume that a > 0, c > 0, then
it is easy to show that the following facts hold.

(1) For g > 0, f(ϕ) has two simple zeros at ϕ1±, and |ϕ1±| >
√

2c
a .

(2) For g = 0, f(ϕ) has three simple zeros at ϕ1±, ϕ0, and |ϕ1±| >
√

2c
a , ϕ0 = 0.
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(3) For g < 0, when − c
2

a < g < 0, f(ϕ) has four simple zeros at ϕ1±, ϕ2±, and

|ϕ1±| >
√

2c
a , 0 < |ϕ2±| <

√
2c
a . When g = − c

2

a , f(ϕ) has two simple zeros

at ϕe±, and |ϕe±| =
√

2c
a . When g < − c

2

a , f(ϕ) has no zero.

Let M(φ, 0) be the coefficient matrix of the linearized system of (2.4) at the
equilibrium point (φ, 0), then

Tr(M(φ, 0)) = 0,

detM(φ, 0) = 2bφ2(aφ2 − 2c).

By the theory of planar dynamical systems, for an equilibrium point of a planar
integral system, since Tr(M(φ, 0)) = 0, if detM(φ, 0) > 0, then it is a center point.
If detM(φ, 0) < 0, then it is a saddle point. If detM(φ, 0) = 0 and the Poincaré
index of the equilibrium point is 0, then it is a cusp point.

Case I When a > 0, according to the theory of planar dynamical systems, one
can see the following facts.

Assume that c > 0.

(1) For g > 0, system (2.4) has two equilibrium points at (ϕ1±, 0) which are
center, and there exist two equilibrium points of system (2.4) at (0, y±) in the
singular straight line ϕ = 0. Here, y± = ±

√
g
2b .

(2) For g = 0, system (2.4) has three equilibrium points at (ϕ1±, 0), (ϕ0, 0).
(ϕ1±, 0) are center and (ϕ0, 0) is a cusp point.

(3) For g < 0, when − c
2

a < g < 0, system (2.4) has two center at (ϕ1±, 0) and two

saddle points at (ϕ2±, 0). When g = − c
2

a , system (2.4) has two cusp points

at (ϕe±, 0). When g < − c
2

a , system (2.4) has no critical point.

Assume that c < 0.

(1) For g > 0, system (2.4) has two equilibrium points at (ϕ±, 0) which are center,
and there exist two equilibrium points of system (2.4) at (0, y±) in the singular
straight line ϕ = 0. Here, y± = ±

√
g
2b .

(2) For g = 0, system (2.4) has an equilibrium point at (ϕ0, 0) which is a cusp
point.

(3) For g < 0, system (2.4) has no critical point.

For a given a > 0, there is a bifurcation curve in the (g, c)-parameter plane as
following. These curves partition the (g, c)-parameter plane into the following six
regions (see Figure 1).

(Ia) = {(g, c)|g > 0}, (Ib) = L+
1 = {(g, c)|c > 0, g = 0},

(Ic) = {(g, c)|c >
√
−ag, g < 0}, (Id) = L+

2 = {(g, c)|c =
√
−ag, g < 0},

(Ie) = {(g, c)|c <
√
−ag, g < 0}, (If ) = L−1 = {(g, c)|c < 0, g = 0}.

According to the qualitative theory of dynamical systems, we draw the bifurcation
of phase portraits of system (2.4) as Figure 2.
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Figure 1. (g, c)-plane, where L1 = L+
1 ∪ L

−
1 : g = 0, L+

2 : c =
√
−ag (g < 0).

Figure 2. The phase portrait bifurcation of system (2.4) when a > 0.

From the above analysis, we can get the following results.

Theorem 2.1. If a > 0, system (2.4) has two center at (ϕ1±, 0) and two equilibrium
points in the singular straight line ϕ = 0 when (g, c) ∈ (Ia). System (2.4) has two
center at (ϕ1±, 0) and a cusp point at (ϕ0, 0) when (g, c) ∈ (Ib). System (2.4) has
two center at (ϕ1±, 0) and two saddle points at (ϕ2±, 0) when (g, c) ∈ (Ic). System
(2.4) has two cusp points at (ϕe±, 0) when (g, c) ∈ (Id). System (2.4) has no critical
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points when (g, c) ∈ (Ie). System (2.4) has a cusp point at (ϕ0, 0) when (g, c) ∈ (If ).

Case II When a < 0, one can see the following facts.

Assume that c < 0.

(1) For g < 0, system (2.4) has two equilibrium points at (ϕ1±, 0) which are saddle
points, and there exist two equilibrium points of system (2.4) at (0, y±) in the

singular straight line ϕ = 0. Here, |ϕ1±| >
√

2c
a , and y± = ±

√
g
2b .

(2) For g = 0, system (2.4) has three equilibrium points at (ϕ1±, 0) and (ϕ0, 0).
Furthermore, (ϕ1±, 0) are saddles point and (ϕ0, 0) is a cusp point. Here,

|ϕ1±| >
√

2c
a , ϕ0 = 0.

(3) For g > 0, when 0 < g < − c
2

a , system (2.4) has four equilibrium points
at (ϕ1±, 0) and (ϕ2±, 0). (ϕ1±, 0) are saddle points and (ϕ2±, 0) are center.

When g = − c
2

a , system (2.4) has two equilibrium points (ϕe±, 0) which are

cusp points. When g > − c
2

a , system (2.4) has no critical point. Here, |ϕ1±| >√
2c
a , 0 < |ϕ2±| <

√
2c
a and |ϕe±| =

√
2c
a .

Assume that c > 0.

(1) For g < 0, system (2.4) has two equilibrium points at (ϕ±, 0) which are saddle
points.

(2) For g = 0, system (2.4) has an equilibrium point at (ϕ0, 0) which is a cusp
point.

(3) For g > 0, system (2.4) has no critical point.

For a given a < 0, there is a bifurcation curve in the (g, c)-parameter plane as
following.

Figure 3. (g, c)-plane, where L1 = L+
3 ∪ L

−
3 : g = 0, L−

4 : c = −
√
−ag (g < 0).

These curves partition the (g, c)-parameter plane into the following six regions
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(see Figure 3).

(IIa) = {(g, c)|c > −
√
−ag, g > 0}, (IIb) = L+

3 = {(g, c)|c > 0, g = 0},

(IIc) = {(g, c)|g < 0}, (IId) = L−3 = {(g, c)|c < 0, g = 0},

(IIe) = {(g, c)|c<−
√
−ag, g>0}, (IIf ) = L−4 ={(g, c)|c =−

√
−ag, g>0}.

According to the qualitative theory of dynamical systems, we draw the bifurcation
of phase portraits of system (2.4) as Figure 4.

Figure 4. The phase portrait bifurcation of system (2.4) when a < 0.

From the above analysis, we can also obtain the following results.

Theorem 2.2. If a < 0, system (2.4) has no equilibrium point except in the singular
straight line ϕ = 0 when (g, c) ∈ (IIa). System (2.4) has a cusp point at (ϕ0, 0) when
(g, c) ∈ (IIb). System (2.4) has two saddle points at (ϕ1±, 0) when (g, c) ∈ (IIc).
System (2.4) has two saddle points at (ϕ1±, 0) and a cusp point at (ϕ0, 0) when
(g, c) ∈ (IId). System (2.4) has two saddle points at (ϕ1±, 0) and two center at
(ϕ2±, 0) when (g, c) ∈ (IIe). System (2.4) has two cusp points at (ϕe±, 0) when
(g, c) ∈ (IIf ).
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3. Some traveling wave solutions determined by ph-
ase portraits of (2.2) and their exact explicit para-
metric representations

Definition 3.1 ( [11]). If the “time interval” of existence of a traveling wave solu-
tion φ(ξ) with respect to ξ in the positive direction or (and) negative direction of
ξ is finite, then the profile of wave defined by φ(ξ) is called a breaking wave on one
(two) side(s).

Let H(0,±
√

g
2b )=h0, H(ϕe±, 0)=he±, H(ϕ1±, 0)=h1±, H(ϕ2±, 0)=h2±.

Based on the results of Section 2 and Theorem 2.5 in [11], we can get the
following proposition.

Proposition 3.1. The following results hold.

(i) If a > 0, when (g, c) ∈ (Ia), the curve defined by H(ϕ, y) = h, h ∈ (h1−, h0)(or
h ∈ (h0, h1+)) gives a family of smooth periodic wave solutions of (1.4). If
h −→ h−0 (or h −→ h+0 ), this family of smooth periodic wave solutions will
become a periodic cusp wave solution of (1.4).

(ii) If a > 0, when (g, c) ∈ (Ic), the curves defined by H(ϕ, y) = h2+ and
H(ϕ, y) = h2− give peak-type solitary wave solution and valley-type solitary
wave solution of (1.4) respectively. The curves defined by H(ϕ, y) = h, h ∈
(h1+, h2+) and H(ϕ, y) = h, h ∈ (h2−, h1−) give two families of smooth
periodic traveling wave solutions of (1.4). If h −→ h2, the two families of s-
mooth periodic wave solutions will become two smooth solitary wave solutions
of (1.4).

(iii) If a < 0, when (g, c) ∈ (IIe) or (g, c) ∈ (IIc), the curves defined by H(ϕ, y) =
h, h ∈ (h0, h1+) and H(ϕ, y) = h, h ∈ (h1−, h0) give two families of open
orbits of (2.4). For every orbit if ξ −→ ±∞, then ϕ(ξ) −→ 0, y = ϕ′(ξ) −→
∞. Then they give two families of breaking wave solutions of (1.4).

Next we consider the exact explicit traveling solutions of (1.4) which cross (0, y±)
when ϕ > 0.

Let H(ϕ, y) = ϕ2(by2 + a
24ϕ

4 − c
4ϕ

2 − g
2 ) = h0 = 0, then

by2 +
a

24
ϕ4 − c

4
ϕ2 − g

2
= 0.

When a > 0, (g, c) ∈ (Ia), and if c 6= 0, then we have

(
dϕ

dξ
)2 = − a

24b
(ϕ4 − 6c

a
ϕ2 − 12g

a
)

=
a

24b
(r21 − ϕ2)(ϕ2 + r22).

Here, r1± and r2± are four zeros of g(ϕ)=ϕ4 − 6c
a ϕ

2 − 12g
a , r21 =r21±=

3(c+
√
c2+ 4ag

3 )

a ,

r22 = r22± = − 3(c−
√
c2+ 4ag

3 )

a . Suppose k = a
24b , then

dϕ

dξ
= −

√
k(r21 − ϕ2)(ϕ2 + r22). (3.1)
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Integrating on both sides of (3.1) over the interval [0, ξ], we obtain (see [2])

√
k

∫ ξ

0

dξ =

∫ r1+

ϕ

dϕ√
(r21 − ϕ2)(ϕ2 + r22)

= qcn−1(cosψ, p),

where q = 1√
r21+r

2
2

, p2 =
r21

r21+r
2
2
, ψ = cos−1( ϕ

r1+
), i.e.

√
kξ =

1√
r21 + r22

cn−1(
ϕ

r1+
,

r1+√
r21 + r22

).

Therefore,

ϕ(ξ) = r1+cn(

√
a(r21 + r22)

25b
ξ,

r1+√
r21 + r22

). (3.2)

Thus, we have a family of smooth periodic wave solutions of (1.4)

u(x, t) = r1+cn(

√
a(r21 + r22)

25b
(x− ct), r1+√

r21 + r22
), c 6= 0. (3.3)

The profiles of (3.2) and (3.3) are shown in Figure 5 and Figure 6, respectively.

Figure 5. The smooth periodic wave solution of the equation (3.2) with a=1, b=2, c=-4, g=1.

If c = 0, then

(
dϕ

dξ
)2 =

−a
24b

(ϕ4 − 12g

a
) =

a

24b
(r2 − ϕ2)(ϕ2 + r2),

where r± = ±( 12g
a )

1
4 . Suppose k = a

24b , it then follows that

dϕ

dξ
= −

√
k(r2 − ϕ2)(ϕ2 + r2). (3.4)

Integrating on both sides of (3.4) over the interval [0, ξ], we obtain

√
k

∫ ξ

0

dξ =

∫ r+

ϕ

dϕ√
(r2 − ϕ2)(ϕ2 + r2)

= qcn−1(cosψ, p),
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Figure 6. The smooth periodic wave solution of the equation (3.3) when a=1, b=2, c=-4, g=1.

where q =
√
2

2r , p2 = 1
2 , ψ = cos−1( ϕr+ ), i.e.

√
kξ =

√
2

2r
cn−1(

ϕ

r+
,

√
2

2
),

then we have

ϕ(ξ) = r+cn(
√

2kr+ξ,

√
2

2
) = r+cn(

√
a

12b
r+ξ,

√
2

2
).

Thus, we have a family of smooth periodic wave solutions of (1.4)

u(x, t) = r+cn(

√
a

12b
r+(x− ct),

√
2

2
), c = 0. (3.5)

Similarly, when a < 0, (g, c) ∈ (IIe), ϕ > 0, the exact explicit traveling solution
which cross (0, y±) of (1.4) is as following.

u(x, t) = r3+cn(

√
a(r23 + r24)

−25b
(x− ct), r3+√

r23 + r24
), (3.6)

where r23± =
3(c+
√
c2+ 4ag

3 )

a , r24 = − 3(c−
√
c2+ 4ag

3 )

a .
With the above analysis, we present the following proposition.

Proposition 3.2. The following results hold.

(i) If a > 0, when (g, c) ∈ (Ia), system (1.4) has two families of smooth periodic
wave solutions and two periodic cusp wave solutions. When (g, c) ∈ (Ic),
system (1.4) has two smooth periodic wave solutions. If a < 0, when (g, c) ∈
(IIe), system (1.4) has two families of periodic cusp wave solutions and two
families of breaking wave solutions. When (g, c) ∈ (IIc), system (1.4) has two
families of breaking wave solutions.

(ii) If a > 0, on the (g, c)-parametric plane, when (g, c) goes from (Ia) to (Ic)
by the bifurcation curve L+

1 , system (1.4) has two families of smooth periodic
wave solutions and two smooth solitary wave solutions. When (g, c) goes to
(Ie) by the bifurcation curve L+

2 , system (1.4) has no periodic solution.
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(iii) If a < 0, on the (g, c)-parametric plane, when (g, c) goes from (IIa) to (IIc) by
the bifurcation curve L+

3 , system (1.4) has two families of breaking wave solu-
tions. When (g, c) goes to (IIe) by the bifurcation curve L−3 , system (1.4) has
two periodic cusp wave solutions and two families of breaking wave solutions.
When (g, c) goes from (IIe) to (IIa) by the bifurcation curve L−4 , system (1.4)
has no periodic solution and breaking wave solution.

4. Conclusion

In this paper, by using the bifurcation theory and the method of phase portrait anal-
ysis, we investigated the bifurcations of Equation (1.4) and obtained some traveling
wave solutions determined by phase portraits of (2.2) and their exact explicit para-
metric representations. Based on the method given in this paper, we can also obtain
new exact traveling wave solutions for the K(m,n) equation with generalized evo-
lution term, i.e. (u3)t + au3ux + b(u2)xxx = 0. We would like to study the K(m,n)
equation further.
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