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Abstract The boundedness of solutions for certain nonlinear impulsive d-
ifferential equations are obtained, the jumping conditions at discontinuous
points are related to the integral of the past states, rather than a left hand
limit at the discontinuous points. These results are obtained by new built im-
pulsive integral inequalities with integral jumping conditions using the method
of successive iteration.
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1. Introduction

Impulsive differential equations are differential equations involving impulse effect,
which appear as a natural description of observed evolution phenomena of several
real world problems. The theories of impulsive differential equations are firstly re-
searched by V.D. Milman and A.D. Myshkis in 1960s, and they take on a blooming
research scene in recent years. They are widely used in many areas such as bio-
logical mathematics (they are used in characterizing the heart beats, blood flows,
population dynamics), theoretical physics, pharmacokinetics, mathematical econo-
my, chemical technology, electric technology and so on (see the monographs [1,2,9]
and [15] for details).

In spite of their importance of impulsive differential equations, the development
of the theory of impulsive differential equations is quite slow due to the special fea-
tures possessed by impulsive differential equations in general. Among these results,
differential inequalities and integral inequalities with impulsive effects play increas-
ingly important roles in the study of quantitative and qualitative properties of solu-
tions of impulsive differential systems. However, most of these results involved the
impulsive effects are of point-discontinuous, i.e., jumping conditions at a sequences
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of discontinuous points depend on the left hand limits (see [3, 4, 6–8, 10–14, 16–23]
for details). For example, D. S. Borysenko [3] considered the following integral
inequality with impulsive effect

u(t) ≤ a(t) +

∫ t

t0

f(s)u(s)ds+
∑

t0<ti<t

αiu
r(ti − 0),

and gave an estimate of unknown function; in [8], G. Iovane studied the following
integral inequalities

u(t) ≤ a(t) +

∫ t

t0

f(s)u(λ(s))ds+
∑

t0<ti<t

αiu
r(ti − 0),

u(t) ≤ a(t) + q(t)

[∫ t

t0

f(s)u(α(s))ds+

∫ t

t0

f(s)

∫ s

t0

g(t)u(τ(t))dtds

+
∑

t0<ti<t

αiu
r(ti − 0)

]
;

in [20], Wusheng Wang gave the upper bound for the nonlinear inequality of the
form

vp(t) ≤ A0(t) +
p

p− q

∫ t

t0

f(s)vq(τ(s))ds+
∑

t0<ti<t

αiv
q(ti − 0).

As we know, most of phenomena occur in natural world are not sudden changed,
thus the impulsive differential equations with integral jump conditions are more
accurate than impulsive differential equations with stationary discontinuous points
in characterizing the nature.

In paper [18], the authors investigated the following integral inequality

m(t) ≤ c+

∫ t

t0

p(s)m(s)ds+
∑

t0<tk<t

βkm(tk) +
∑

t0<tk<t

αk

∫ tk−σk

tk−τk

m(s)ds, (1.1)

and obtained the estimation of m(t):

m(t) ≤ c
∏

t0<tk<t

[
(1 + βk)e

∫ tk
tk−1

p(τ)dτ
+ αk

∫ tk−σk

tk−τk

e
∫ s
tk−1

p(τ)dτ
ds

]
e
∫ t
tk−1

p(τ)dτ
.

(1.2)
Using the method of successive iteration, the authors in paper [16] researched some
new nonlinear impulsive differential inequalities and integral inequalities with inte-
gral jump conditions.

Motivated by the above mentioned papers, we will investigate some more gener-
alized integral inequalities with integral jump conditions, and give the upper-bound
estimate of unknown functions firstly, then we use the new built inequalities to
investigate the boundedness of solutions for impulsive differential equations with
integral jump conditions at the discontinuous points.

2. New integral inequalities with integral jump con-
ditions

Firstly, we give some auxiliary lemmas which are important in the proofs of the
main results.
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Lemma 2.1. If z(t) ∈ C[t0, b) such that{
z′(t) ≤ p(t)z(t) + q(t),

z(t0) ≤ z0,

where p(t), q(t) ∈ C[t0, b), then

z(t) ≤ e
∫ t
t0

p(s)ds

[
z0 +

∫ t

t0

q(s)e
−

∫ s
t0

p(τ)dτ
ds

]
.

Particularly, z(t0) = 0 implies that

z(t) ≤
∫ t

t0

q(s)e
∫ t
s
p(τ)dτds.

By the Young inequality (see [5] for details), we have the following lemma.

Lemma 2.2. Let C(t) and x(t) be nonnegative functions, let 0 < λ < 1 be a real
number. Then for any positive function K(t),

Cxλ ≤ λKλ−1Cαx+ (1− λ)KλCβ ,

where α and β are nonnegative constants satisfying

λα+ (1− λ)β = 1.

Throughout this paper, we always assume that 0 ≤ t0 < t1 < t2 < · · · ,
limk→∞ tk = +∞, R+ = [0,+∞), I ⊂ R. x(t) : [t0,∞) → R+ is a continuous
function for t ̸= tk, x(0

+), x(t−k ) and x(t+k ) exist, x(t
−
k ) = x(tk), k = 1, 2, · · · , i.e.,

x(t) is left-continuous at tk, k = 1, 2, · · · .

Theorem 2.1. Suppose that x(t) is left-continuous at tk and satisfies

x(t) ≤ a(t)+b(t)

∫ t

t0

p(s)x(s)ds+
∑

t0<tk<t

αkx(tk)+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

x(s)ds, (2.1)

where a(t), b(t), p(t) ∈ C([t0,∞),R+), αk ≥ 0, Ck ≥ 0, 0 ≤ σk ≤ τk ≤ tk − tk−1

are constants. Then for t ∈ (tk, tk+1],

x(t) ≤ ak(t) + b(t)

∫ t

tk

p(s)ak(s)e
∫ t
s
p(τ)b(τ)dτds, (2.2)

where

ak(t) = a(t)+
∑

t0<tk<t

αkak−1(tk)

+
∑

t0<tk<t

(b(t) + αkb(tk))

∫ tk

tk−1

p(s)ak−1(s)e
∫ tk
s

p(τ)b(τ)dτds

+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

[
ak−1(s) + b(s)

∫ s

tk−1

p(v)ak−1(v)e
∫ s
v
p(τ)b(τ)dτdv

]
ds,

(2.3)
with a0(t) ≡ a(t).
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Proof. For t ∈ [t0, t1], we have that

x(t) ≤ a(t) + b(t)

∫ t

t0

p(s)x(s)ds. (2.4)

Let y1(t) =
∫ t

t0
p(s)x(s)ds, then y1(t0) = 0, x(t) ≤ a(t)+b(t)y1(t), y

′

1(t) = p(t)x(t) ≤
p(t)b(t)y1(t) + p(t)a(t). Hence

y1(t) ≤
∫ t

t0

p(s)a(s)e
∫ t
s
p(τ)b(τ)dτds. (2.5)

When t ∈ (t1, t2], we have

x(t) ≤a(t) + b(t)

∫ t

t0

p(s)x(s)ds+ α1x(t1) + C1

∫ t1−σ1

t1−τ1

x(s)ds

=[a(t) + α1a(t1)] + [b(t) + α1b(t1)]

∫ t1

t0

p(s)a(s)e
∫ t1
s

p(τ)b(τ)dτds

+ C1

∫ t1−σ1

t1−τ1

[
a(s) + b(s)

∫ s

t0

p(ν)a(ν)e
∫ s
ν
p(τ)b(τ)dτdν

]
ds

+ b(t)

∫ t

t1

p(s)x1(s)ds

,a1(t) + b(t)

∫ t

t1

p(s)x(s)ds.

Let y2(t) =
∫ t

t1
p(s)x(s)ds, we have by Lemma 2.2 that

x(t) ≤ a1(t) + b(t)

∫ t

t1

p(s)a1(s)e
∫ t
s
p(τ)b(τ)dτds, (2.6)

this shows that (2.2) holds for k = 1.
Now we assume that (2.2) holds for t ∈ [t0, tk]. This implies that for t ∈

(tk−1, tk],

x(t) ≤ ak−1(t) + b(t)

∫ t

tk−1

p(s)ak−1(s)e
∫ t
s
p(τ)b(τ)dτds,

where

ak−1(t) = a(t) +
k−1∑
i=1

αiai−1(ti)

+
k−1∑
i=1

[b(t) + αib(ti)]

∫ ti

ti−1

p(s)ai−1(s)e
∫ ti
s

p(τ)b(τ)dτds

+
k−1∑
i=1

Ci

∫ ti−σi

ti−τi

[
ai−1(s) + b(s)

∫ s

ti−1

p(ν)ai−1(ν)e
∫ s
ν
p(τ)b(τ)dτdν

]
ds.

Then for t ∈ (tk, tk+1], we get

x(t) ≤a(t) + b(t)

∫ t

t0

p(s)x(s)ds+

k∑
i=1

αix(ti) +

k∑
i=1

Ci

∫ ti−σi

ti−τi

x(s)ds
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=a(t) + b(t)
k∑

i=1

∫ ti

ti−1

p(s)x(s)ds+
k∑

i=1

αix(ti)

+
k∑

i=1

Ci

∫ ti−σi

ti−τi

x(s)ds+ b(t)

∫ t

tk

p(s)x(s)ds

≤a(t) + b(t)

k∑
i=1

∫ ti

ti−1

p(s)ai−1(s)e
∫ ti
s

p(τ)b(τ)dτds

+

k∑
i=1

αi

(
ai−1(ti) + b(ti)

∫ ti

ti−1

p(s)ai−1(s)e
∫ ti
s

p(τ)b(τ)dτds

)

+
k∑

i=1

Ci

∫ ti−σi

ti−τi

[ai−1(s)

+ b(s)

∫ s

ti−1

p(ν)ai−1(ν)e
∫ s
ν
p(τ)b(τ)dτdν

]
ds+ b(t)

∫ t

tk

p(s)x(s)ds

=ak(t) + b(t)

∫ t

tk

p(s)x(s)ds.

Hence we have for t ∈ (tk, tk+1],

x(t) ≤ ak(t) + b(t)

∫ t

tk

p(s)ak(s)e
∫ t
s
p(τ)b(τ)dτds,

where

ak(t) = a(t)+
∑

t0<tk<t

αkak−1(tk)

+
∑

t0<tk<t

[b(t) + αkb(tk)]

∫ tk

tk−1

p(s)ak−1(s)e
∫ tk
s

p(τ)b(τ)dτds

+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

[
ak−1(s) + b(s)

∫ s

tk−1

p(ν)ak−1(ν)e
∫ s
ν
p(τ)b(τ)dτdν

]
ds.

This completes the proof of Theorem 2.1 by the mathematical induction.

Corollary 2.1. Suppose that αk ≡ 0 in (2.1), i.e.,

x(t) ≤ a(t) + b(t)

∫ t

t0

p(s)x(s)ds+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

x(s)ds,

then for t ∈ (tk, tk+1],

x(t) ≤ ãk(t) + b(t)

∫ t

tk

p(s)ãk(t)e
∫ t
s
p(τ)b(τ)dτds,

where

ãk(t) = a(t)+b(t)
∑

t0<tk<t

∫ tk

tk−1

p(s)ak−1(s)e
∫ tk
s

p(τ)b(τ)dτds
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+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

[ãk−1(s) + b(s)

∫ s

tk−1

p(ν)ãk−1(ν)e
∫ s
ν
p(τ)b(τ)dτdν]ds

with ã0(t) ≡ a(t).

Next, we will give some nonlinear integral inequalities with integral jump con-
ditions.

Theorem 2.2. We suppose that x(t) is left-continuous at tk and satisfies

x(t) ≤ a(t) + b(t)

∫ t

t0

[
g(s)x(s) + h(s)xλ(s)

]
ds+

∑
t0<tk<t

αkx(tk)

+
∑

t0<tk<t

∫ tk−σk

tk−τk

x(s)ds,

(2.7)

where a(t), b(t), g(t), h(t) ∈ C([t0,∞),R+), αk ≥ 0, Ck ≥ 0, 0 ≤ σk ≤ τk ≤
tk − tk−1 are constants. Then for t ∈ (tk, tk+1], we have

x(t) ≤ ak(t) + b(t)

∫ t

tk

Q(s)e
∫ t
s
P (τ)dτds, (2.8)

where

ak(t) =a(t) +
∑

t0<tk<t

αkak−1(tk)

+
∑

t0<tk<t

(b(t) + αk−1b(tk))

∫ tk

tk−1

Q(s)e
∫ tk
s

P (τ)b(τ)dτds

+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

[
ak−1(s) + b(s)

∫ s

tk−1

Q(v)e
∫ s
ν
P (τ)dτdν

]
ds,

(2.9)

P (t) = b(t)[g(t) + λKλ−1(t)hα(t)], (2.10)

and

Q(t) = a(t)[g(t) + λKλ−1(t)hα(t)] + (1− λ)Kλ(t)hβ(t). (2.11)

Proof. For t ∈ [t0, t1], we have that

x(t) ≤ a(t) + b(t)

∫ t

t0

[
g(s)x(s) + h(s)xλ(s)

]
ds. (2.12)

Let y1(t) =
∫ t

t0

[
g(s)x(s) + h(s)xλ(s)

]
ds, then y1(t0) = 0, x(t) ≤ a(t) + b(t)y1(t).

Hence we get

y
′

1(t) = g(t)x(t) + h(t)xλ(t)

≤ g(t)x(t) + λKλ−1(t)hα(t)x(t) + (1− λ)Kλ(t)hβ(t)

=
[
g(t) + λKλ−1(t)hα(t)

]
[a(t) + b(t)y1(t)] + (1− λ)Kλ(t)hβ(t)

= P1(t)y1(t) +Q(t).

(2.13)
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By Lemma 2.2, we have

y1(t) ≤
∫ t

t0

Q(s)e
∫ t
s
p(τ)dτds. (2.14)

Hence for t ∈ (t0, t1], we obtain that

x(t) ≤a(t) + b(t)

∫ t

t0

Q(s)e
∫ t
s
p(τ)dτds.

Now for t ∈ (t1, t2],

x(t) ≤a(t) + b(t)

∫ t

t0

[
g(s)x(s) + h(s)xλ(s)

]
ds+ α1x(t1) +

∫ t1−σ1

t1−τ1

x(s)ds

=[a(t) + α1a(t1)] + [b(t) + α1b(t1)]

∫ t1

t0

Q(s)e
∫ t1
s

p(τ)dτds

+

∫ t1−σ1

t1−τ1

[
a(s) + b(s)

∫ s

t0

Q(ν)e
∫ s
ν
p(τ)dτdν

]
ds

+ b(t)

∫ t

t1

[
g(s)x(s) + h(s)xλ(s)

]
,a1(t) + b(t)

∫ t

t1

[
g(s)x(s) + h(s)xλ(s)

]
ds.

Similar calculation as (2.14) implies that

x(t) ≤ a1(t) + b(t)

∫ t

t1

Q(s)e
∫ t
s
p(τ)dτds, t ∈ (t1, t2].

This means that (2.7) holds for k = 1. Suppose for t ∈ [t0, tk], (2.7) holds, that is

x(t) ≤ ak−1(t) + b(t)

∫ t

tk−1

Q(s)e
∫ t
s
p(τ)dτds,

where

ak−1(t) =a(t) +

k−1∑
i=1

αiai−1(ti)

+
∑

t0<tk<t

(b(t) + αk−1b(tk))

∫ tk

tk−1

Q(s)e
∫ tk
s

p(τ)b(τ)dτds

+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

[
ak−1(s) + b(s)

∫ s

tk−1

Q(v)e
∫ s
ν
p(τ)dτdν

]
ds,

Hence we have for t ∈ (tk, tk+1],

x(t) ≤a(t) + b(t)

[∫ t1

t0

Q(s)e
∫ t1
s

p(τ)dτ +

∫ t2

t1

Q(s)e
∫ t1
s

p(τ)dτ + · · ·

+

∫ tk

tk−1

Q(s)e
∫ t1
s

p(τ)dτ

]



1582 J. Shao & F. Meng

+ b(t)

∫ t

tk

[g(s)x(s) + h(s)xλ(s)]ds+ (α1x(t1) + · · ·+ αkx(tk))

+ Ck

∫ tk−σk

tk−τk

x(s)ds

=ak(t) + b(t)

∫ t

tk

[
g(s)x(s) + h(s)xλ(s)

]
ds.

Therefore, we have by Lemma 2.1 that

x(t) ≤ ak(t) + b(t)

∫ t

tk

Q(s)e
∫ t
s
p(τ)dτds.

This completes the proof of Theorem 2.2.

Corollary 2.2. If a(t) ≡ a and b(t) ≡ 1 in Theorem 2.2, we have the estimate

x(t) ≤ âk +

∫ t

tk

Q̂(s)e
∫ t
s
P̂ (τ)dτds for t ∈ (tk, tk+1], (2.15)

âk =a+
∑

t0<tk<t

(αk + Ck(τk − σk))

+
∑

t0<tk<t

(1 + αk−1)

∫ tk

tk−1

Q̂(s)e
∫ tk
s

P̂ (τ)dτds

+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

∫ s

tk−1

Q̂(v)e
∫ s
ν
P̂ (τ)dτdνds,

and

P̂ (t) = g(t) + λKλ−1(t)hα(t), Q̂(t) = a[g(t) + λKλ−1(t)hα(t)] + (1− λ)Kλ(t)hβ(t).

3. Boundedness of solutions for impulsive differen-
tial equations

Consider the following impulsive differential equation
x′(t) = H(t, x(t), xλ(t)), x ̸= tk,

x(t+k ) = αkx(tk) + Ck

∫ tk−σk

tk−τk

x(s)ds,
(3.1)

where αk ≥ 0, Ck ≥ 0, 0 ≤ σk ≤ τk ≤ tk − tk−1, 0 < λ < 1 are constants.

Theorem 3.1. If there exists nonnegative continuous functions g(t) and h(t) such
that

|H(t, u, v)| ≤ g(t)|u|+ h(t)|ν|λ for t ∈ [t0,∞), (3.2)
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and ∑
k

[αk + Ck(τk − σk)] < ∞,

∑
k

(1 + αk)

∫ tk

tk−1

ˆQ(s)e
∫ tk
s

P̂ (τ)dτds < ∞,

∑
k

Ck

∫ tk−σk

tk−τk

∫ s

tk−1

Q̂(ν)e
∫ s
ν
P̂ (τ)dτdνds < ∞,

lim sup
t→∞

∫ t

t0

Q̂(s)e
∫ t
s
P̂ (τ)dτds < ∞,

(3.3)

where P̂ (t) and Q̂(t) are defined as in Corollary 2.2, then all solutions of (3.1) are
bounded.

Proof. Given arbitrarily initial value x0, we consider the following initial value
problem 

x′(t) = H(t, x(t), xλ(t)), x ̸= tk,

x(t0) = x0,

x(t+k ) = αkx(tk) + Ck

∫ tk−σk

tk−τk

x(s)ds.

Since the initial value problem is equivalent to integral equation

x(t) = x0 +

∫ t

t0

H(s, x(s), xλ(s))ds+
∑

t0<tk<t

αkx(tk) +
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

x(s)ds,

(3.4)
we can obtain the following estimate easily:

|x(t)| ≤|x0|+
∫ t

t0

|H(s, x(s), xλ(s))|ds+
∑

t0<tk<t

αk|x(tk)|

+
∑

t0<tk<t

∫ tk−σk

tk−τk

|x(s)|ds

≤|x0|+
∫ t

t0

[
g(s)|x(s)|+ h(s)|xλ(s)|

]
ds+

∑
t0<tk<t

αk|x(tk)|

+
∑

t0<tk<t

∫ tk−σk

tk−τk

|x(s)|ds.

(3.5)

Now an application of Corollary 2.2 implies the estimate

|x(t)| ≤ âk +

∫ t

tk

Q̂(s)e
∫ t
s
P̂ (τ)dτds for t ∈ (tk, tk+1],

here âk is defined by

âk =|x0|+
∑

t0<tk<t

(αk + Ck(τk − σk))

+
∑

t0<tk<t

(1 + αk−1)

∫ tk

tk−1

Q̂(s)e
∫ tk
s

P̂ (τ)dτds
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+
∑

t0<tk<t

Ck

∫ tk−σk

tk−τk

∫ s

tk−1

Q̂(v)e
∫ s
ν
P̂ (τ)dτdνds,

since the series are convergent, and lim supt→∞
∫ t

t0
Q̂(s)e

∫ t
s
P̂ (τ)dτds < ∞, we obtain

that x(t) is bounded, by the arbitrarily of initial value x0, we see that all solutions
are bounded. This completes the proof.

4. Conclusions

In this content, we give some new integral inequalities with integral jump conditions
and obtain the boundedness for impulsive differential equations (The impulsive
effects of these differential equations are of interval jump type, rather than at some
points). New impulsive integral inequalities with weak singular kernels and their
applications to fractional differential equations are still open and we will focus on
the open problem in the future study.
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