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CREEPING FLOW ANALYSIS OF SLIGHTLY
NON-NEWTONIAN FLUID IN A UNIFORMLY

POROUS SLIT
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Abstract This paper provides the analysis of the steady, creeping flow of a
special class of slightly viscoelastic, incompressible fluid through a slit having
porous walls with uniform porosity. The governing two dimensional flow equa-
tions along with non-homogeneous boundary conditions are non-dimensionalized.
Recursive approach is used to solve the resulting equations. Expressions for
stream function, velocity components, volumetric flow rate, pressure distribu-
tion, shear and normal stresses in general and on the walls of the slit, fractional
absorption and leakage flux are derived. Points of maximum velocity compo-
nents are also identified. A graphical study is carried out to show the effect of
porosity and non-Newtonian parameter on above mentioned resulting expres-
sions. It is observed that axial velocity of the fluid decreases with the increase
in porosity and non-Newtonian parameter. The outcome of this theoretical
study has significant importance both in industry and biosciences.

Keywords Creeping flow, non-Newtonian fluid, porous slit, recursive ap-
proach.
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1. Introduction
A wide range of applications for fluid flows through permeable boundaries exists
in different problems like gaseous diffusion, filtration, oil production, coalescence
and in biological mechanism such as in the circulation of blood through an artificial
kidney and the flow through renal tubules of nephron in kidneys. Berman [2] stud-
ied for laminar steady state incompressible viscous fluid flow in channel between
porous walls and discussed the effects of wall porosity on the velocity and pressure
distribution. Afterwards this problem has been further investigated by many re-
searchers [6,15,20,22], Recently Siddiqui et al. [16,17] have studied flow in channel
with different absorption patterns at permeable walls for Stokes problem. Ahmad
and Naseem [1] studied the hydrodynamics of the creeping flow of a viscous, incom-
pressible, laminar fluid flowing in a tube with permeable walls and T. Haroon et
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al. [5] discussed the creeping viscous fluid flow in a proximal tubule with uniform
reabsorption.

Non-Newtonian fluids have their own practical, industrial and mathematical
importance due to their complex and distinct features and has been a core topic
for researchers and scientists from many decades. These fluids may categorize as
differential type, rate type and integral type fluids. Rivlin-Ericksen [12] proposed
a theory for fluids of differential type which explain several interesting features as
normal stress effects, rod climbing, shear thinning and thickening effects. These flu-
ids have a complex mathematical structure as well. Many researchers [3,4,7,13,14]
have discussed many interesting and challenging issues related to differential type
fluids. An important subclass of differential type fluids is a third order fluid. Ka-
cou [8] and Ng and Saibel [11] discussed a special class of third grade fluid model
for journal bearing and slider bearing, respectively and this model differs slightly
from the Newtonian fluid. As per our knowledge, no attempt has been made to
study the plane steady flow of special class of slightly viscoelastic fluid model in
a porous slit. This model leads to a highly non linear set of partial differential
equations in two dimensions along with non-homogeneous boundary conditions. In
general it is very difficult to solve this type of equations either analytically or nu-
merically. Analytical study of such type of nonlinear problem is important not
only because of its technological significance but also due to the interesting math-
ematical features presented by these equations. An analytic technique known as
recursive approach was used by Langlios [9, 10] to linearize the equations of mo-
tion for steady state, slow flows. We have generalized this approach to solve highly
non-linear two-dimensional momentum equations for slow flows of incompressible
slightly viscoelastic fluid model along with non-homogeneous boundary conditions.
Expressions for the velocity components, flow rate, pressure field, mean pressure
drop, wall shear stress, normal stresses, leakage flux and fractional reabsorption are
obtained. Graphical results and discussion are also presented. We hope that this
article will be useful in understanding the mechanism of flows through permeable
boundaries in industry and also in biosciences, e.g., in reabsorption of blood and
nutrients through renal tubule.

2. Basic equations
The basic equations that govern the steady, slow flow of isothermal, incompressible
fluid in the absence of body forces are

∇ ·V = 0, (2.1)
∇ ·T = 0, (2.2)

where V is the velocity vector and T is the Cauchy stress tensor, which for simple
fluids is given by Truesdell and Noll [21]

T = −pI+ S, (2.3)

where p is the pressure, I is the identity tensor and

S =

i=3∑
i=0

Si, (2.4)
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with

S1 = µA1, (2.5)
S2 = α1A2 + α2A

2
1, (2.6)

S3 = β1A3 + β2(A2A1 +A1A2) + β3(trA
2
1)A1, (2.7)

µ is the coefficient of dynamic viscosity, α1, α2, β1, β2 and β3 are material constants,
and A1, A2 and A3 are kinametical tensors defined respectively as

A1 = (gradV) + (gradV)T, (2.8)

A2 =
D

Dt
A1 + (A1gradV) + (A1gradV)T, (2.9)

A3 =
D

Dt
A2 + (A2gradV) + (A2gradV)T, (2.10)

where grad is the gradient operator and the D

Dt
is the material time derivative

defined as
D

Dt
(∗) = ∂

∂t
(∗) + (V · grad)(∗). (2.11)

Rajagopal and Fosdick [13] have studied the thermodynamics of fluids modeled ex-
actly by equation (2.3) in detail. They have shown that if a fluid modeled by equa-
tion (2.3) is to be compatible with thermodynamics, that is, meet the restrictions
imposed by the Clausius-Duhem inequality and the assumptions that the specific
Helmholtz free energy to be minimum when the fluid is locally at rest, the material
coefficients have to meet the following restrictions

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√
24µβ3, β1 = β2 = 0, β3 ≥ 0. (2.12)

Thus the Cauchy stress tensor T from equation (2.3) reduces to

T = −pI+ µA1 + α1A2 + α2A
2
1 + β3(trA

2
1)A1. (2.13)

If the material constants α1 and α2 vanish then the fluid modeled by equation (2.13)
takes the form [8]

T = −pI+ µA1 + β3(trA
2
1)A1 (2.14)

equation (2.14) is the constitutive equation for slightly non-Newtonian fluids (flu-
ids for which the stress deformation relation departs only slightly from that of a
Newtonian fluid).

Substituting equation (2.14) into equation (2.2) yields

grad p = µ div(A1) + β3 [A1 grad|A1|2 + |A1|2div(A1)], (2.15)

where

|A1|2 = tr(A2
1). (2.16)

This model has been used by some researchers [8, 11] for journal bearing as well as
for slider bearing studies. It may be considered as a subclass of simple fluid theory.
On the other hand, this model may be taken as a special class of Sisko fluid.
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3. Problem statement
Consider steady, two dimensional, slow, isothermal flow of slightly non-Newtonian,
incompressible fluid between slit walls, where walls are porous and porosity v0 is
uniformly distributed. The gap between the slit walls is assumed to be 2H and the
breadth is taken as W . We choose rectangular coordinate system such that x axis
is taken along the centre of the slit while y axis is taken normal to x axis. The
volume flow rate is assumed to be Q0 at the starting position x = 0.

For steady two dimensional flow, we choose velocity profile as

V = [u(x, y), v(x, y)] .

The boundary conditions of the problem under consideration are

Figure 1. Geometry of the Problem

u = 0, v = ±v0, at y = ±H, (3.1)

Q0 =W

∫ H

−H

u(0, y) dy. (3.2)

The governing equations under the assumptions stated above are

∂u

∂x
+
∂v

∂y
= 0, (3.3)

∂p

∂x
= (µ+ β3M)

[
∂2u

∂x2
+
∂2u

∂y2

]
+ β3

[
2
∂u

∂x

∂M

∂x
+
∂M

∂y
(
∂u

∂y
+
∂v

∂x
)

]
, (3.4)

∂p

∂y
= (µ+ β3M)

[
∂2v

∂x2
+
∂2v

∂y2

]
+ β3

[
2
∂v

∂y

∂M

∂y
+
∂M

∂x
(
∂u

∂y
+
∂v

∂x
)

]
. (3.5)

From equation (2.14), the expression for stresses are

T xx = −p+ 2µ
∂u

∂x
+ 2β3M

∂u

∂x
, (3.6)

T yx = T xy = µ

(
∂u

∂y
+
∂v

∂x

)
+ β3M

(
∂u

∂y
+
∂v

∂x

)
, (3.7)
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T yy = −p+ 2µ
∂v

∂y
+ 2β3M

∂v

∂y
, (3.8)

where

M(x, y) = 8

(
∂u

∂x

)2

+ 2

(
∂u

∂y
+
∂v

∂x

)2

. (3.9)

It is noteworthy that the dissipation function for viscous incompressible fluid flow
is normally defined as

Φ(x, y) = 4

(
∂u

∂x

)2

+

(
∂u

∂y
+
∂v

∂x

)2

. (3.10)

From equations (3.9) and (3.10), we have

M(x, y) = 2 Φ(x, y). (3.11)

Introducing the dimensionless parameters as

x =
x

H
, y =

y

H
, u =

u

Q0/WH
, v =

v

Q0/WH
, (3.12)

p =
p

µQ0/WH2
, Tij =

T ij

µQ0/WH2
, ϕ =

Φ

Q2
0/W

2H4
. (3.13)

Making use of equation (3.13) into equations (3.1)−(3.10), we have dimensionless
equations as

∂u

∂x
+
∂v

∂y
= 0, (3.14)

∂p

∂x
= (1 + 2βϕ)

[
∂2u

∂x2
+
∂2u

∂y2

]
+ β

[
4
∂u

∂x

∂ϕ

∂x
+ 2

∂ϕ

∂y

(
∂u

∂y
+
∂v

∂x

)]
, (3.15)

∂p

∂y
= (1 + 2βϕ)

[
∂2v

∂x2
+
∂2v

∂y2

]
+ β

[
4
∂v

∂y

∂ϕ

∂y
+ 2

∂ϕ

∂x

(
∂u

∂y
+
∂v

∂x

)]
, (3.16)

Txx = −p+ 2
∂u

∂x
+ 4βϕ

∂u

∂x
, (3.17)

Tyx = Txy = (
∂u

∂y
+
∂v

∂x
) + 2βϕ(

∂u

∂y
+
∂v

∂x
), (3.18)

Tyy = −p+ 2
∂v

∂y
+ 4βϕ

∂v

∂y
, (3.19)

ϕ(x, y) = 4(
∂u

∂x
)2 + (

∂u

∂y
+
∂v

∂x
)2, (3.20)

and the boundary conditions due to symmetry of center line are

u = 0, v = S, at y = 1, (3.21)
∂u

∂y
= 0, v = 0, at y = 0, (3.22)

2

∫ 1

0

u(0, y) dy = 1, (3.23)

where β =
β3 Q

2
0

µW 2 H4
and S =

v0 W H

Q0
are the non-Newtonian and porosity param-

eters, respectively and Q(x) = Q(x)
Q0

.
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4. Solution of the problem
The exact solution of the above system of partial differential equations subject to
non-homogeneous boundary conditions due to non-linearity seems to be impossible.
Langlios [9, 10] proposed an approach known as recursive approach to linearize the
equations of motion for steady state, slow flows, so we choose

u(x, y) =

i=∞∑
i=0

ϵi u(i)(x, y), (4.1)

p(x, y) = Constant+

i=∞∑
i=0

ϵi p(i)(x, y), (4.2)

T (x, y) =

i=∞∑
i=0

ϵi T (i)(x, y), (4.3)

where ϵ is a small dimensionless number. Substituting (4.1-4.3) into equations (3.14-
3.23) and collecting the coefficients of like powers of ϵ, we obtain the set of boundary
value problems. We plan to solve these problems at O(ϵ), O(ϵ2) and O(ϵ3).

4.1. First order problem
On equating coefficients of ϵ, we get

∂u(1)

∂x
+
∂v(1)

∂y
= 0, (4.4)

∂p(1)

∂x
=
∂2u(1)

∂x2
+
∂2u(1)

∂y2
, (4.5)

∂p(1)

∂y
=
∂2v(1)

∂x2
+
∂2v(1)

∂y2
, (4.6)

T (1)
xx = −p(1) + 2

∂u(1)

∂x
, T (1)

xy =

(
∂u(1)

∂y
+
∂v(1)

∂x

)
, T (1)

yy = −p(1) + 2
∂v(1)

∂y
(4.7)

along with the corresponding boundary conditions

u(1) = 0, v(1) = S, at y = 1, (4.8)
∂u(1)

∂y
= 0, v(1) = 0, at y = 0, (4.9)∫ 1

0

u(1)(0, y) dy =
1

2
, at x = 0. (4.10)

On introducing stream function ψ(1)(x, y) as

u(1) =
∂ψ(1)

∂y
, v(1) = −∂ψ

(1)

∂x
. (4.11)
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Equation (4.4) is identically satisfied and equations (4.5) and (4.6) after eliminating
pressure take the form

∇4ψ(1) = 0. (4.12)

Moreover, boundary conditions (4.8-4.10) in terms of stream functions become

∂ψ(1)

∂y
= 0,

∂ψ(1)

∂x
= −S, at y = 1, (4.13)

∂2ψ(1)

∂y2
= 0,

∂ψ(1)

∂x
= 0, at y = 0, (4.14)

ψ(1)(0, 1) =
1

2
, ψ(1)(0, 0) = 0. (4.15)

To obtain the solution of equation (4.12) along with the boundary conditions (4.13-
4.15), inverse method [18,19] is used, so we choose the stream function ψ(1)(x, y) of
the form

ψ(1)(x, y) = SxR(1)(y) + T(1)(y), (4.16)

where R(1)(y) and T(1)(y) are unknown functions to be determined. Using equation
(4.16) in equations (4.12-4.15), we obtain

R(1)(y) =
1

2

(
−3y + y3

)
, (4.17)

T(1)(y) =
1

4

(
3y − y3

)
. (4.18)

Therefore, expressions for stream function, the equation (4.16) in account of equa-
tions (4.17) and (4.18) and velocity components (4.11) become

ψ(1) =
1

4
(1− 2Sx)

(
3y − y3

)
, (4.19)

u(1) =
3

4
(1− 2Sx)

(
1− y2

)
, (4.20)

v(1) =
S

2

(
3y − y3

)
. (4.21)

Pressure is calculated at first order problem using equations (4.20)and (4.21) into
equations (4.5)and (4.6) as

∂p(1)

∂x
= −3

2
(1− 2Sx), (4.22)

∂p(1)

∂y
= −3Sy. (4.23)

Integrating equation (4.22)with respect to x, we have

p(1) = −3

2
x(1− Sx) +A(y), (4.24)

where A(y) is unknown constant to be determined.
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Now differentiating equation (4.24)with respect to y, and comparing with the
equation (4.23), yields

A′(y) = −3Sy, (4.25)

where equation (4.24) implies

p(1) = −3

2
x(1− Sx)− 3Sy2

2
+ p

(1)
0 , (4.26)

where p(0, 0) = p
(1)
0 is the pressure at the entrance of the channel at (x, y) = (0, 0).

The dimensionlized mean pressure at any section of the slit can be obtained by
using the formula

p̄(1)(x) =

∫ 1

0

(p(1) − p
(1)
0 )dy, (4.27)

= −1

2
(3x(1− Sx) + S),

and the pressure drop over the length L of the slit is

∆ p̄1(L) = p̄1(0)− p̄1(L), (4.28)

=
3

2
L(1− LS).

Shear, normal stresses and normal stresses difference at first order are obtained by
substituting equations (4.20), (4.21) and (4.26) in equation (4.7)

T (1)
xx = −3S − 3

2
x(−1 + Sx) +

9Sy2

2
, (4.29)

T (1)
xy = −3

2
(1− 2Sx)y, (4.30)

T (1)
yy = 3S − 3

2
x(−1 + Sx)− 3Sy2

2
, (4.31)

T (1)
xx − T (1)

yy = 6S
(
−1 + y2

)
. (4.32)

The normal stress difference is not zero as the walls of the channel are porous. If
S = 0 then we see that difference of normal stresses is zero, which happened in the
case of solid walls. We noticed that the result obtained for first order system is very
similar to the slow flow of viscous fluid with uniform porosity [6].

4.2. Second order problem
On equating coefficients of ϵ2, we get three equations with three unknowns along
with the corresponding boundary conditions and stresses

∂u(2)

∂x
+
∂v(2)

∂y
= 0, (4.33)

∂p(2)

∂x
=
∂2u(2)

∂x2
+
∂2u(2)

∂y2
, (4.34)

∂p(2)

∂x
=
∂2v(2)

∂x2
+
∂2v(2)

∂y2
, (4.35)
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u(2) = 0, v(2) = 0, at y = 1, (4.36)
∂u(2)

∂y
= 0, v(2) = 0, at y = 0, (4.37)∫ 1

0

u(2)(0, y) dy = 0, at x = 0. (4.38)

T (2)
xx = −p(2) + 2

∂u(2)

∂x
, T (2)

xy =

(
∂u(2)

∂y
+
∂v(2)

∂x

)
, T (2)

yy = −p(2) + 2
∂v(2)

∂y
. (4.39)

We remark that we do not see any contribution of slightly non newtonian parameter
at this order. On introducing stream function ψ(2)(x, y) as

u(2) =
∂ψ(2)

∂y
, v(2) = −∂ψ

(2)

∂x
, (4.40)

equation (4.33) is identically satisfied and equations (4.34) and (4.35) after elimi-
nating pressure take the form

∇4ψ(2) = 0. (4.41)

Moreover, equations (4.36-4.38) in terms of stream function become

∂ψ(2)

∂y
= 0,

∂ψ(2)

∂x
= 0, at y = 1, (4.42)

∂2ψ(2)

∂y2
= 0,

∂ψ(2)

∂x
= 0, at y = 0, (4.43)

ψ(2)(0, 1) = 0, ψ(2)(0, 0) = 0. (4.44)

The solution of equation (4.41) along with boundary conditions (4.42-4.44) for any
supposed ψ(2)(x, y) is zero due to homogeneous boundary conditions, therefore

ψ(2) = 0, (4.45)
u(2) = 0, (4.46)
v(2) = 0. (4.47)

Pressure, mean pressure drop, pressure drop, shear and normal stresses at 2nd order
solution becomes

p(2) − p
(2)
0 = 0, (4.48)

p̄2(x) = 0, (4.49)
∆p̄2(L) = 0, (4.50)
T (2)
xx = 0, (4.51)
T (2)
xy = 0, (4.52)
T (2)
yy = 0. (4.53)
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4.3. Third order problem
Coefficients of ϵ3 provide us the system of equations:

∂u(3)

∂x
+
∂v(3)

∂y
= 0, (4.54)

∂p(3)

∂x
=
∂2u(3)

∂x2
+
∂2u(3)

∂y2
+ 2 β

(
∂ϕ(2)

∂y

∂u(1)

∂y
+ 2

∂ϕ(2)

∂x

∂u(1)

∂x

+
∂ϕ(2)

∂y

∂v(1)

∂x
+ ϕ(2)

(
∂2u(1)

∂x2
+
∂2u(1)

∂y2

))
, (4.55)

∂p(3)

∂y
=
∂2v(3)

∂x2
+
∂2v(3)

∂y2
+ 2 β

(
∂ϕ(2)

∂x

∂u(1)

∂y
+ 2

∂ϕ(2)

∂x

∂v(1)

∂y

+
∂ϕ(2)

∂x

∂v(1)

∂x
+ ϕ(2)

(
∂2v(1)

∂x2
+
∂2v(1)

∂y2

))
, (4.56)

T (3)
xx = −p(3) + 2

∂u(3)

∂x
+ 4 β ϕ(2)

∂u(1)

∂x
, (4.57)

T (3)
xy =

(
∂u(3)

∂y
+
∂v(3)

∂x

)
+ 2 β ϕ(2)

(
∂u(1)

∂y
+
∂v(1)

∂x

)
, (4.58)

T (3)
yy = −p(3) + 2

∂v(3)

∂y
+ 4 β ϕ(2)

∂v(1)

∂y
, (4.59)

along with the corresponding boundary conditions

u(3) = 0, v(3) = 0, at y = 1, (4.60)
∂u(3)

∂y
= 0, v(3) = 0, at y = 0, (4.61)∫ 1

0

u(3)(0, y) dy = 0, at x = 0, (4.62)

where

ϕ(2) = 4

(
∂u(1)

∂x

)2

+

(
∂u(1)

∂y
+
∂v(1)

∂x

)2

. (4.63)

On introducing stream function ψ(3)(x, y) as

u(3) =
∂ψ(3)

∂y
, v(3) = −∂ψ

(3)

∂x
. (4.64)

Equation (4.54) is identically satisfied and equations (4.55) and (4.56), after elimi-
nating pressure takes the form

∇4ψ(3) = (1− 2 S x)

((
810 S2 β

)
y3 +

27

2

(
3K(x)− 40 S2

)
β y

)
, (4.65)

where

K(x) = 1− 4Sx+ 4S2x2. (4.66)
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Moreover, boundary conditions (4.60-4.62) in terms of stream function become

∂ψ(3)

∂y
= 0,

∂ψ(3)

∂x
= 0, at y = 1, (4.67)

∂2ψ(3)

∂y2
= 0,

∂ψ(3)

∂x
= 0, at y = 0, (4.68)

ψ(3)(0, 1) = 0, ψ(3)(0, 0) = 0. (4.69)

To obtain the solution of equation (4.65) with boundary conditions (4.67–4.69), we
choose the stream function ψ(3)(x, y) of the form

ψ(3)(x, y) = (1− 2Sx)

(
R(3)(y) +

(
27

2

(
3K(x)− 40S2

)
β

)
T(3)(y)

)
, (4.70)

where R(3)(y) and T(3)(y) are unknown functions to be determined.
Using equation (4.70) in equations (4.65-4.69), we get

(1− 2 S x)

(
1944S2 β T(3)

′′

(y) + R(3)iv (y) +
27

2

(
3K(x)− 40S2

)
β T(3)iv (y)

)
=(1− 2 S x)

(
810 S2 β y3 +

27

2

(
3K(x)− 40 S2

)
β y

)
, (4.71)

The boundary conditions after making the use of equation (4.70)reduce to

R(3)(0) = R(3)(1) = R(3)
′

(1) = R(3)
′′

(0) = 0, (4.72)

T(3)(0) = T(3)(1) = T(3)
′

(1) = T(3)
′′

(0) = 0. (4.73)

The equation (4.71), gives rise to two differential equations:

R(3)iv (y) + 1944S2 β T(3)
′′

(y) = 810 S2 β y3, (4.74)

T(3)iv (y) = y. (4.75)

Solving equations (4.74) and (4.75) subject to boundary conditions (4.72) and (4.73),
we obtain

R(3)(y) =
81

700
S2y

(
−1 + y2

)2 (
24 + 5y2

)
β, (4.76)

T(3)(y) =
1

120

(
y − 2y3 + y5

)
. (4.77)

Note that equation (4.76) contributes towards non Newtonian parameter β while
equation (4.77) is free of non newtonian effects.

Using equations (4.76) and (4.77) in equation (4.70), the expression for stream
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function and velocity components become

ψ(3) =
9 (1− 2Sx) β

2800

[ (
105K(x)− 536S2

)
y +

(
−210K(x) + 1252 S2

)
y3

+
(
105K(x)− 896 S2

)
y5 + 180 S2 y7

]
, (4.78)

u(3) =
9(1− 2Sx) β

2800

[
105K(x)− 536S2 +

(
−630K(x) + 3756S2

)
y2

+
(
525K(x)− 4480S2

)
y4 + 1260S2y6

]
, (4.79)

v(3) =
9Sβ

1400

[ (
315K(x)− 536S2

)
y +

(
−630K(x) + 1252S2

)
y3

+
(
315K(x)− 896S2

)
y5 + 180S2y7

]
. (4.80)

Pressure, mean pressure drop and pressure drop at 3rd order solution using equa-
tions (4.79) and (4.80) into equations (4.55) and (4.56) and following the same
procedure from equations (4.22–4.29), we have

p(3) − p
(3)
0 =

9β

700

[
(3x(−1 + Sx)

(
105K(x) + 105

2
− 136S2

)
+
(
105SK(x)

− 7992S3
)
y2 +

(
525SK(x) + 7630S3

)
y4 − 2660S3y6

]
, (4.81)

p̄3(x) =
9β

1400

[
−3036S3 +

(
−315 + 816S2

)
x+

(
315S − 816S3

)
x2

+ 35
(
−9x+ S

(
8 + 9x2

))
K(x)

]
, (4.82)

∆p̄3(L) = − 9

700
L(−1 + LS)

[
315 + 2S(76S + 315L(−1 + LS))

]
β. (4.83)

Shear stress, normal stresses and the normal stresses difference are obtained by
substituting equations (4.79-4.81), (4.20) and (4.21) in equations (4.57–4.59), thus

T (3)
xx =

9β

1400

[
− 7328S3 + x

(
315 + 1704S2 + 315K(x)

)
− 630S

+ x2
(
− 315S − 1704S3 − 315SK(x)

)
+
(
33672S3 + 1470SK(x)

)
y2

+
(
−31500S3 − 2100SK(x)

)
y4 + 11200S3y6

]
,

(4.84)

T (3)
xy =

9(−1 + 2Sx)β

700

[ (
315K(x) + 852S2

)
y − 980S2y3 + 840S2y5

]
, (4.85)

T (3)
yy =

9β

1400

[
7328S3 + x

(
315− 3336S2 + 315K(x)

)
+ 630S

+ x2
(
−315S + 3336S3 − 315SK(x)

)
+
(
−1704S3 − 1890SK(x)

)
y2

+ 980S3y4 − 560S3y6
]
,

(4.86)

T (3)
xx − T (3)

yy =
9Sβ

350

[
− 315K(x)− 3664S2 +

(
840K(x) + 8844S2

)
y2

−
(
525K(x) + 8120S2

)
y4 + 2940S2y6

]
.

(4.87)

We see that the non-Newtonian parameter β contributed in velocity field, pressure
field and shear and normal stresses at third order solution. If β = 0 then all solutions
at 3rd order become zero.
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On combining first, second and third order solutions we have

ψ =
(1− 2Sx)

2800

[ (
2100 + 9β

(
105K(x)− 536S2

))
y −

(
700 + 18β

(
105K(x)

− 626S2
))
y3 + 9β

(
105K(x)− 896S2

)
y5 + 1620S2y7β

]
, (4.88)

u =
3(1− 2Sx)

2800

[
700 + 3β

(
105K(x)− 536S2

)
−
(
700 + 18β

(
105K(x)

− 626S2
))
y2 + 15β

(
105K(x)− 896S2

)
y4 + 3780S2y6β

]
, (4.89)

v =
3S

1400

[ (
700 + 3β

(
315K(x)− 536S2

))
y −

(
700

3
+ 6β

(
315K(x)− 626S2

))
y3

+ 3β
(
315K(x)− 896S2

)
y5 + 540S2y7β

]
, (4.90)

p− p0 = −3

2
x(1− Sx)− 3Sy2

2
+

9β

700

[
(3x(−1 + Sx)

(
105K(x) + 105

2
− 136S2

)
+
(
105SK(x)− 7992S3

)
y2 +

(
525SK(x) + 7630S3

)
y4 − 2660S3y6

]
,

(4.91)

p̄(x) = −1

2
(3x(1− Sx) + S) +

9β

1400

[
− 3036S3 +

(
−315 + 816S2

)
x+

(
315S

− 816S3
)
x2 + 35

(
−9x+ S

(
8 + 9x2

))
K(x)

]
, (4.92)

∆p̄(L) = − 3

700
L(−1 + LS)[350 + 3(315 + 2S(76S + 315L(−1 + LS)))β], (4.93)

Txx = −3S − 3

2
x(−1 + Sx) +

9Sy2

2
+

9β

1400

[
− 7328S3 + x

(
315 + 1704S2

+ 315K(x)
)
− 630S + x2

(
− 315S − 1704S3 − 315SK(x)

)
+

(
33672S3

+ 1470SK(x)
)
y2 +

(
−31500S3 − 2100SK(x)

)
y4 + 11200S3y6

]
, (4.94)

Txy = −3

2
(1− 2Sx)y +

9(−1 + 2Sx)β

700

[ (
315K(x) + 852S2

)
y

− 980S2y3 + 840S2y5
]
, (4.95)

Tyy = 3S − 3

2
x(−1 + Sx)− 3Sy2

2
+

9β

1400

[
7328S3 + x

(
315− 3336S2

+ 315K(x)
)
+ 630S + x2

(
−315S + 3336S3 − 315SK(x)

)
+

(
− 1704S3

− 1890SK(x)
)
y2 + 980S3y4 − 560S3y6

]
, (4.96)

Txx − Tyy = 6S
(
−1 + y2

)
+

9Sβ

350

[
− 315K(x)− 3664S2 +

(
840K(x) + 8844S2

)
y2

−
(
525K(x) + 8120S2

)
y4 + 2940S2y6

]
. (4.97)

Here we observe that pressure p(x, y), mean pressure p̄(x), pressure drop ∆p̄(L),
shear and normal stresses are varying with porosity parameter and non newtonian
parameter. If β = 0 then the Newtonian velocity and pressure fields can be recover
[5].

The dimensionless volume flow rate is given by

Q(x) = 2

∫ 1

0

u(x, y)dy,

= 1− 2Sx, (4.98)



Creeping flow analysis... 153

which shows the variation downstream.
The maximum axial velocity occurs at the center of the channel as

umax =
3(1− 2Sx)

2800
(700 + 3(105K(x)− 536S2)β). (4.99)

The transverse velocity is found to be maximum at the walls, i.e.,

vmax = S, (4.100)

which is due to the porosity at the walls.
The wall shear stress from equation (4.95) is obtain as

Tw = −Txy|y=1 = − 3

700
(−1 + 2Sx)

(
350 + 2136S2β + 945βK(x)

)
. (4.101)

From equation (4.97), the normal stresses difference at the wall and at the center
of the channel are given as

Txx − Tyy|y=1 = 0, (4.102)

Txx − Tyy|y=0 = −6S +
9

350
Sβ

(
−3664S2 − 315K(x)

)
.

The wall shear stress and normal stresses difference at the center of the channel are
dependent on S and β.

The fractional reabsorption in a slit of length L is obtained as

Fa =
Q(0)−Q(L)

Q(0)
(4.103)

= 2LS. (4.104)

The leakage flux q(x) is defined as

q(x) = −dQ
dx

(4.105)

= 2S. (4.106)

It is noted that fractional reabsorption Fa and leakage flux q(x) has linear relation-
ship with porosity parameter and are independent of β.

5. Results and discussion
A graphical analysis is carried out to investigate the impact of porosity parameter
S and non-Newtonian parameter β on the expressions obtain in previous sections
for velocity components, streamlines, axial flow rate, shear and normal stresses
and pressure distributions at different axial positions x = 0.1 (entrance), x = 10
and x = 20 of the channel. Figures 2(a-c) show the impact of S on axial velocity
component u at various positions along the channel by keeping β = 0 and noticed
that in absence of porosity (S = 0), the same parabolic profile (Poiseuille flow) for
axial velocity is observed throughout the channel and magnitude of u is decreasing
continuously as S increasing and the backward flow occurs in the channel. In
Figures 3(a-c) the variation in axial velocity profile under the effect of S for β = 0.2
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is depicted. We observed that parabolic behavior is effected throughout the channel
due to the presence of non-Newtonian parameter and in comparison of figures 2(a-c)
shear thickening behavior can be observe. Figures 4(a-c) is showing the effect of β
on axial velocity keeping S = 0.2. It is seen that fluid flows slowly on increasing
β at various positions of the channel which seems realistic due to shear thickening
behavior. The variation of radial velocity can be seen in figures 5(a-c) on changing
S when a) β = 0, b) β = 0.4 and c) β = 0.8. The thickening of the fluid with
increasing β causes increase in the magnitude of v component of velocity in the
channel, though v = 0 at the center of the channel. These figures demonstrating
how v is changing its profile with the variation in S and β and also confirming the
shear thickening behavior of slightly viscoelastic fluid.
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Figure 2. Effect of porosity parameter S on axial velocity u(y) for β = 0, (a) x = 0.1, (b) x = 10, (c)
x = 20.
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Figure 3. Effect of porosity parameter S on axial velocity u(y) for β = 0.2,(a) x = 0.1, (b)x = 10, (c)
x = 20.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

y

u
Hy
L

Β = 0.6

Β = 0.4

Β = 0.2

Β = 0.0

(a)

-1.0 -0.5 0.0 0.5 1.0
-8

-6

-4

-2

0

2

4

y

u
Hy
L

Β = 0.6

Β = 0.4

Β = 0.2

Β = 0.0

(b)

-1.0 -0.5 0.0 0.5 1.0
-80

-60

-40

-20

0

20

40

60

y

u
Hy
L

Β = 0.6

Β = 0.4

Β = 0.2

Β = 0.0

(c)

Figure 4. Effect of non-Newtonian parameter β on axial velocity u(y) for S = 0.2, (a) x = 0.1, (b)
x = 10, (c) x = 20.
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Figure 5. Effect of porosity parameter S on radial velocity v(y) for (a) β = 0, (b) β = 0.4, (c) β = 0.8.
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Figure 6. Effect of (a) porosity parameter S when β = 0 and (b) β when S = 0, on pressure difference
p(x, 0) − p(0, 0).
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Figure 7. Effect of S on (a) axial flow rate and (b) wall shear stress keeping β = 0.2. Effect of β on
(c) wall shear stress keeping S = 0.2.

In figures 6(a-c) profile for pressure difference is plotted on varying S and β
respectively. It is clear that on increasing S pressure difference increases and reduces
by increasing β. Figures 7(a-c) is plotted to show the variation of porosity and non
newtonian parameter on axial flow rate and shear stress at the walls of the slit. It
can be seen that flow rate is decreasing on increasing S and shear stress reduces
downstream in account of parameter S and β.
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Figure 8. Stream lines for β = 0, (a) S = 0.2, (b) S = 0.4, (c) S = 0.8.

In figures 8(a-c) the streamlines are drawn for Newtonian fluid using different
values of S. As we increase absorption back flow starts earlier in the channel.
Figures 9(a-c) are showing the streamlines for different values of β when S = 0.2.
As we increase the value of β, streamlines pattern changed.
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Figure 9. Stream lines for S = 0.2 (a) β = 0.4, (b) β = 0.6, (c) β = 0.8.

6. Concluding remarks
In this paper, a mathematical study is carried out to discuss the slow flow phe-
nomenon for a special class of third grade fluid through slit with porous walls.
Recursive approach is used to linearize the system of nonlinear partial differential
equations along with non-homogeneous boundary conditions and exact solutions for
velocity profile, volume flow rate, pressure difference, pressure drop, leakage flux,
fractional reabsorption and wall shear stress are obtained. A graphical analysis is
also presented. Key outcomes of the present study can be summarized as follows:

1. The results for slow flow of the Newtonian fluid are recovered for β = 0.
2. Backward flow is observed earlier along the length of the channel with increas-

ing porosity.
3. The maximum axial and radial velocities occur at center and at the slit walls,

respectively.
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4. Flow become slow due to non-Newtonian parameter β which indicates the
shear thickening behavior of the fluid.

5. Pressure is increasing in account of increasing porosity parameter S and it is
decreasing on increasing non-Newtonian parameter β.

6. Shear stress and axial flow rate decreases downstream.
7. It is noted from streamlines that for increasing porosity parameter S, the

backward flow can be observed along the length of the channel and the large
values of non newtonian parameter affected the flow pattern.
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der physick (ed. Flügge), III/3. Berlin-Heidelberg-New York: Springer 1965.

[22] S. W. Yuan, Further investigation of laminar flow in channels with porous
walls, J. Appl. Phys., 1956, 27, 267–269.


	Introduction
	Basic equations
	Problem statement
	Solution of the problem
	First order problem
	Second order problem
	Third order problem

	Results and discussion
	Concluding remarks

