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Abstract In this paper, we study the time-fractional nonlinear Korteweg-
de Vries (KdV) equation. By using the theory of semigroups, we prove the
well-posedness of the time-fractional nonlinear KdV equation. Moreover, we
present the boundary controllability result for the problem.
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1. Introduction and main results
In the present paper, we are concerned with the well-posedness and boundary con-
trollability for the following time-fractional nonlinear KdV equation posed on a
finite domain (0, L) with nonhomogeneous boundary conditionsDα

t u+ 6auux + auxxx = 0, u(x, 0) = u0, (x, t) ∈ (0, L)× (0, T ),

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ),
(1.1)

where a > 0, L > 0, T > 0, α ∈ (0, 1), Dα
t u = 1

Γ(1−α)
d
dt

∫ t

0
(t− ξ)−α(u(ξ)− u(0))dξ

and Γ represents the Euler Gamma function. We call it “time-fractional” as the
derivative order α ∈ (0, 1) on the time space.

The Korteweg-de Vries equation was first introduced by Korteweg and de Vries
[24] in 1895 as a model for propagation of some surface water waves along a channel.
In recent years, it attracted much attention and appeared in several areas such as
the models for some water waves, the unidirectional propagation of small-amplitude
long waves, the blood pressure waves in large arteries and acoustic-gravity waves in
a compressible heavy fluid, see e.g. [3, 5–7,11,11,13–16,20,21,26,33].

In [9], Cerpa and Crépeau considered the locally controllable for nonlinear KdV
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equation with only one control input ux(L, t) = g3(t)ut + ux + uxxx + uux = 0, u(x, 0) = u0, x ∈ (0, L),

u(0, t) = 0, u(L, t) = 0, ux(L, t) = g3(t), t ∈ R+,
(1.2)

via performing a power series expansion of the solution around the origin in these
critical cases. Li and Liu [28] studied the problemut + ux + uxxx + uux = 0, u(x, 0) = u0, x ∈ (0, L),

u(0, t) = h1(t), u(1, t) = h2(t), ux(1, t) = h3(t), t ∈ R+,
(1.3)

and proved the well-posedness for the above problem (1.3).
Very recently, Caicedo and Zhang [8] studied the initial-boundary-value problem

of the Korteweg-de Vries in the space Hs(0, L), for any s ≥ 0ut + ux + uxxx + uux = 0, u(x, 0) = u0, x ∈ (0, L),

uxx(0, t)+u(0, t)− 1
6u

2(0, t) = h(t), u(L, t) = 0, ux(L, t) = 0, for t ≥ 0, t ∈ R+,

(1.4)
where they addressed a question left by Rosier in [32] by using Lagrangian co-
ordinates. Moreover, they given its controllability. In the last decades, results
involving the initial-boundary-value problems of the KdV equation posed on the
finite domain had studied by many researchers. The interested readers are referred
to [18,22,25] and other importance references, see, e.g. [2,4,12,17,18,20]. While the
time-fractional nonlinear KdV equation is rarely studied, the recent study about
the time-fractional nonlinear KdV equation only can be found in [1].

In the present paper, we present other results (the well-posedness and boundary
controllability) for problem (1.1). In the process of our study, we face three main
difficulties. Firstly, as we all know that, applying the theory of semigroups is a
crucial method to investigate the linear estimates and properties of solution for the
partial differential equations. But the method only applies to the integer order
equations. To solve the time-fractional nonlinear problem (1.1), we resort to the
so-called the Laplace transform such that time-fractional nonlinear problem (1.1)
has good linear estimates and properties. Secondly, due to the presence of the
nonlinear boundary condition, the Kato smoothing property is not strong enough
to enable us to establish the controllability for the time-fractional nonlinear problem
(1.1) via the contraction mapping principle. Instead, we consider the sharp Kato
smoothing property of the backward adjoint system of the linear system associated
to the time-fractional nonlinear problem (1.1)

Dα
t ϕ+ aϕxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ϕ(x, T ) = ϕT ,

ϕ(0, t) = 0, ϕx(0, t) = 0, ϕxx(L, t) = 0, t ∈ (0, T ).

(1.5)

But it is very difficulty to show that the solution of system (1.5) possesses the hidden
regularities for any ϕT ∈ L2(0, L). To get around, we will invoke some harmonic
analysis tools (see [8]) to solve our difficulty. Finally, we encounter some difficulties
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that how to treat the extra term which derived from the process of investing the
control of the linear system of problem (1.1) by the usual multiplier method and
compactness arguments. To achieve our purpose, we resort to the hidden regularity,
again. Finding the observability inequality for the adjoint system (1.5) to overcome
the problem.

This paper is organized as follows. In Section 2, we give some linear estimates.
In Section 3, we present the linear result. In Section 4, we prove the nonlinear
results. In the final section, we give some conclusions.

2. Linear estimates
In this section, we first consider the linear problem of the system (1.1) with nonho-
mogeneous boundary datas of the formDα

t u+ auxxx = 0, u(x, 0) = u0, (x, t) ∈ (0, L)× (0, T ),

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ).
(2.1)

Applying the Laplace transform with respect to t in both sides of in (2.1), we
have  sαû+ aûxxx = 0,

û(0, t) = ĥ1(t), ûx(L, t) = ĥ2(t), ûxx(L, t) = ĥ3(t),
(2.2)

where
û(x, s) =

∫ ∞

0

e−stu(x, t)dt,

ĥj(s) =

∫ ∞

0

e−sthj(t)dt, j = 1, 2, 3.

As we all known that, when ĥ1(t) = ĥ2(t) = ĥ3(t) = 0, the solution u of (2.2) can
be denoted by

û(t) = W0(t)û0,

where W0(t) is the C0-semigroup in the space L2(0, L) (see [29]) generated by the
dissipative linear operator

Aû = − a

sα
û

′′′
.

And its definition domain is

D(A) = û ∈ H3(0, L); û(0) = û
′
(L) = û

′′
(L) = 0.

If u0 = 0, the solution u of (2.2) can be written as

û(t) = Wbdr(t)
−→
ĥ ,

−→
ĥ = (ĥ1, ĥ2, ĥ3).

The operator Wbdr(t) is the boundary integral operator of Eq.(2.2). In the following,
we first look for the explicit representation formula of Wbdr(t).

The characteristic equation of (2.2) is

sα + aλ3 = 0,
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and its solutions are

λ1 = −(
sα

a
)

1
3 , λ2 =

1 +
√
3i

2
(
sα

a
)

1
3 , λ3 =

1−
√
3i

2
(
sα

a
)

1
3 .

Then, the solutions û(x, s) of (2.2) can be written as

û(x, s) = c1(s)e
λ1(s)x + c2(s)e

λ2(s)x + c3(s)e
λ3(s)x,

and cj = cj(s), j = 1, 2, 3 solve the linear system
1 1 1

λ1e
λ1L λ2e

λ2L λ3e
λ3L

λ2
1e

λ1L λ2
2e

λ2L λ2
3e

λ3L




c1

c2

c3

 =


ĥ1

ĥ2

ĥ3

 .

Using the inverse Laplace transform of û for any c > 0, we obtain that

u(x, t) =
1

2πi

∫ c+i∞

c−i∞
estû(x, s)ds =

3∑
j=1

1

2πi

∫ c+i∞

c−i∞
est

△j(s)

△(s)
eλj(s)xds,

where
cj =

△j

△
, j = 1, 2, 3,

△ = △(s) =

∣∣∣∣∣∣∣∣∣
1 1 1

λ1e
λ1L λ2e

λ2L λ3e
λ3L

λ2
1e

λ1L λ2
2e

λ2L λ2
3e

λ3L

∣∣∣∣∣∣∣∣∣ ,
△(s) is the determinant of the coefficient matrix and △j(s), j = 1, 2, 3 are the
determinants of the matrix by replacing the jth-column of △(s) by the column
vector (ĥ1, ĥ2, ĥ3)

T . Taking the same arguments as those in [30], we infer that the
solution u can be written as the following representation

u(x, t) =

3∑
m=1

um(x, t), (2.3)

where

um(x, t) =

3∑
j=1

uj,m(x, t) and uj,m(x, t) = u+
j,m(x, t) + u−

j,m(x, t), (2.4)

with
u+
j,m(x, t) =

1

2πi

∫ i∞

0

est
△j,m(s)

△(s)
ĥm(s)eλj(s)xds, (m, j = 1, 2, 3),

u−
j,m(x, t) =

1

2πi

∫ 0

−i∞
est

△j,m(s)

△(s)
ĥm(s)eλj(s)xds(m, j = 1, 2, 3).
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Here, when k ̸= m (k,m = 1, 2, 3), △j,m(s) is obtained from △j(s) by letting
ĥm(s) = 1 and ĥk(s) = 0.

Next, let s = iρ3, we have

u+
j,m(x, t) =

1

2π

∫ ∞

0

eiρ
3t
△+

j,m(ρ)

△+(ρ)
ĥ+
m(ρ)eλ

+
j (ρ)x3ρ2dρ,

and

ĥ+
m(ρ) = ĥm(iρ3), △+(ρ) = △(iρ3), △+

j,m(ρ) = △j,m(iρ3), λ+
j (ρ) = λj(iρ

3).

Then, we turn to estimate the solution u(x, t) of Eq.(2.2). The following technical
Lemmas due to Bona, Sun and Zhang [2,3] are needed which play a similar role as
the Plancherel theorem in estimating u(x, t).

Lemma 2.1 (see [8]). For any f ∈ L2(R+), let Kf be the function defined by

Kf(x) =

∫ ∞

0

eγ(µ)xf(µ)dµ

where γ(µ) is a continuous complex-valued function defined on (0,∞) satisfying the
following two conditions:
(1) There exists δ > 0 and b > 0 such that

sup
0<µ<δ

|Reγ(µ)|
µ

≥ b;

(2) There exist a complex number α+ iβ such that

lim
µ→∞

γ(µ)

µ
= α+ iβ.

Then there exists a constant C such that for all f ∈ L2(0,∞),

∥Kf∥L2(0,1) ≤ C(∥eReγ(µ)f(·)∥L2(R) + ∥f(·)∥L2(R)).

Lemma 2.2. Let T > 0 be given and 0 ≤ s ≤ 3. For any given −→
h = (h1, h2, h3) ∈

κT , κT = H
s+1
3

0 (R+)×H
s
3
0 (R+)×H

s−1
3

0 (R+), problem (1.1) has a unique solution
u ∈ XT , XT = C([0, T ];Hs(0, L))

⋂
L2([0, T ];Hs+1(0, L)). Moreover, there exists

a constant C > 0 such that ∥u∥XT
+
∑2

j=0 ∥∂j
xu∥L∞

x
(0, L;H

(1−j)
3 (0, T )) ≤ C∥

−→
h ∥κT

.

Proof. Note that as stated above, the solution u can be written as

u(x, t) = u1(x, t) + u2(x, t) + u3(x, t).
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Now, we only prove the result for u1, the proofs for u2, u3 are similar. Note that

λ+
1 (ρ) =i(

sα

a
)

1
3 ρ, λ+

2 (ρ) =
1

2
(
sα

a
)

1
3 ρ(

√
3− i), λ+

3 (ρ) =
1

2
(
sα

a
)

1
3 ρ(−

√
3− i),

△+(ρ) =
√
3
sα

a
ρ3e−( sα

a )
1
3 ρiL

+
√
3
sα

a
ρ3e

1
2 (

sα

a )
1
3 ρ(

√
3+i)L

+
√
3
sα

a
ρ3e

1
2 (

sα

a )
1
3 ρ(−

√
3+i)L,

△+
1,1(ρ) =

√
3
sα

a
ρ3e−( sα

a )
1
3 ρiL,

△+
2,1(ρ) =

1 +
√
3i

2
(
sα

a
)

2
3 ρ2e

1
2 (

sα

a )
1
3 ρ(−

√
3−i)L + (

sα

a
)

2
3 ρ2ei(

sα

a )
1
3 ρL,

△+
3,1(ρ) =

1

2
(
sα

a
)

1
2 ρe

1
2 (

Sα

a )
1
3 ρ(

√
3−i)L − i(

sα

a
)

1
3 ρei(

sα

a )
1
3 ρL.

When ρ → ∞,
△+

1,1(ρ)

△+(ρ)
∼ e−

√
3

2 ( sα

a )
1
3 ρL,

△+
2,1(ρ)

△+(ρ)
∼ ρ−1e−

√
3

2 ( sα

a )
1
3 ρL,

△+
3,1(ρ)

△+(ρ)
∼ ρ−2.

From (2.3) and (2.4), we have

u+
1 (x, t) =

3∑
j=1

1

2π

∫ ∞

0

eiρ
3t
△+

j,1(ρ)

△+(ρ)
ĥ+
1 (ρ)e

λ+
j (ρ)x3ρ2dρ,

∂k
xu

+
1 (x, t) =

3∑
j=1

1

2π

∫ ∞

0

eiρ
3t(λ+

j (ρ))
k
△+

j,1(ρ)

△+(ρ)
ĥ+
1 (ρ)e

λ+
j (ρ)x3ρ2dρ,

where k = 0, 1, 2, 3.
According to Lemma (2.1), we infer that there exists a constant K > 0 such

that

∥u+
1 (x, t)∥2L2(0,L) ≤ K

3∑
j=1

∫ ∞

0

(eReλ+
j (ρ) + 1)2 | 3ρ2ĥ+

1 (ρ) |2 dρ

≤ K

∫ ∞

0

ĥ+
1 (ρ) |2 dρ ≤ K

∫ ∞

0

|
∫ ∞

0

e−iρ3τh1(τ) |2 dτ.

Now, setting µ = ρ3, θ(µ) = ρ
1
3 , one has

∥u+
1 (x, t)∥2L2(0,L) ≤ K

∫ ∞

0

µ− 2
3 |

∫ ∞

0

e−iµτh1(τ)dτ |2 dµ ≤ K∥h1∥2
H− 1

3 (R+)
.

Similarly, when k = 3, we have

∥∂3
xu

+
1 (x, t)∥2L2(0,L) ≤ K

3∑
j=1

∫ ∞

0

(eReλ+
j (ρ) + 1)2 | λ+

j (ρ) |
6| 3ρ2ĥ+

1 (ρ) |2 dρ

≤K

∫ ∞

0

| λ+
j (ρ) |

6 ĥ+
1 (ρ) |2 dρ ≤ K

∫ ∞

0

| λ+
j (ρ) |

6|
∫ ∞

0

e−iµτh1(τ) |2 dτ

≤K

∫ ∞

0

µ
4
3 |

∫ ∞

0

e−iµτh1(τ)dτ |2 dµ ≤ K∥h1∥2
H

2
3 (R+)

.
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Furthermore, when k = 0, 1, 2, using Plancherel’s Theorem in time t, for any x ∈
(0, L), we infer that

∥∂k
xu

+
1 (x, t)∥2

H
s+1−k

3 (0,T )

≤
3∑

j=1

1

2π

∫ ∞

0

| µ |
2(s+1−k)

3 | (λ+
j (θ(µ)))

keλ
+
j (θ(µ))x

△+
j,1(θ(µ))

△+(θ(µ))
|2| ĥ+

1 (iµ) |2 dµ

≤K

∫ ∞

0

| (λ+
j (ρ)

keλ
+
j (ρ)x

△+
j,1(ρ)

△+(ρ)
|2| ĥ+

1 (ρ) |2 ρ2s+4−2kdρ

≤K

∫ ∞

0

ρ2s | ĥ+
1 (ρ) |2 dρ

≤K

∫ ∞

0

µ
2s−2

3 |
∫ ∞

0

e−iµτh1(τ)dτ |2 dµ

≤K∥h1∥2
H

s−1
3 (R+)

.

Therefore, we have

sup
0≤t≤T

∥u+
1 (x, t)∥L2(0,L)≤K∥h1∥

H
−1
3 (R+)

, sup
0≤t≤T

∥u+
1 (x, t)∥H3(0,L)≤K∥h1∥

H
2
3 (R+)

.

By interpolation, for 0 ≤ s ≤ 3,

sup
0≤t≤T

∥u+
1 (x, t)∥Hs(0,L) ≤ K∥h1∥

H
s−1
3 (R+)

,

sup
0<x<L

∥∂k
xu

+
1 (x, t)∥H s+1−k

3 (0,T )
≤ K∥h1∥

H
s−1
3 (R+)

.

Which ends the proof of Lemma (2.2) for u1.
In the following, we prove the continuity of ∂k

xu
+
1 (k = 0, 1, 2) from the space

(0, L) to the space H
s+1−k

3 (0, T ), for any x, x0 ∈ (0, L), we have

∂k
xu

+
1 (x, t)− ∂k

xu
+
1 (x0, t) =

3∑
j=1

1

2π

∫ ∞

0

eiµt(λ+
j (θ(µ)))

k(eλ
+
j (θ(µ))x

− eλ
+
j (θ(µ))x0)

△+
j,1(θ(µ))

△+(θ(µ))
ĥ+
1 (iµ)dµ.

Taking the Plancherel’s Theorem in time t yields

∥∂k
xu

+
1 (x, t)− ∂k

xu
+
1 (x0, t)∥2

H
s+1−k

3 (0,T )

≤
3∑

j=1

1

2π

∫ ∞

0

| µ |
2(s+1−k)

3 | (λ+
j (θ(µ)))

k(eλ
+
j (θ(µ))x

− eλ
+
j (θ(µ))x0)

△+
j,1(θ(µ))

△+(θ(µ))
|2| ĥ+

1 (iµ) |2 dµ.
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In views of Fatou’s Lemma,

lim
x→x0

∥∂k
xu

+
1 (x, t)− ∂k

xu
+
1 (x0, t)∥2

H
s+1−k

3 (0,T )

≤ lim
x→x0

3∑
j=1

1

2π

∫ ∞

0

| µ |
2(s+1−k)

3 | (λ+
j (θ(µ)))

k(eλ
+
j (θ(µ))x

− eλ
+
j (θ(µ))x0)

△+
j,1(θ(µ))

△+(θ(µ))
|2| ĥ+

1 (iµ) |2 dµ

=0.

This leads to the continuty of ∂k
xu

+
1 (x, t).

3. Linear control results
In this section, we study the boundary controllability of the following linear problem

Dα
t u+ auxxx = f, (x, t) ∈ (0, L)× (0, T ),

u(x, 0) = u0,

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ),

(3.1)

where f ∈ L1(0, T ;L2(0, L)).
Arguing as before, the solution of Eq.(3.1) can be written as

u(x, t) = W0(t)u0 +Wbdr
−→
h +

∫ t

0

W0(t− τ)f(τ)dτ.

According to Lemma (2.2), we have

∥u∥XT
+

2∑
j=0

∥∂j
xu∥L∞

x
(0, L;H

(1−j)
3 (0, T )) ≤ C∥

−→
h ∥κT

+ ∥f∥L1(0,T ;L2(0,L)).

The backward adjoint system of Eq.(3.1) is
Dα

t ϕ+ aϕxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ϕ(x, T ) = ϕT ,

ϕ(0, t) = 0, ϕx(0, t) = 0, ϕxx(L, t) = 0 t ∈ (0, T ).

(3.2)

Let x′ = L− x, t′ = T − t, Eq.(3.2) becomes
Dα

t ϕ+ aϕxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ϕ(x, 0) = ϕ0,

ϕ(L, t) = 0, ϕx(L, t) = 0, ϕxx(0, t) = 0, t ∈ (0, T ).

(3.3)

In order to the convenience of the readers, we first introduce the following Lem-
mas.



Boundary controllability for the time-fractional. . . 419

Lemma 3.1. Assume that T > 0, if we define NT = {ϕT ∈ L2(0, L) : ϕT ∈
XT is the mild solution of Eq.(3.2) with ϕx(L, t) = 0 in L2(0, T )}, we can obtain
NT = {0} if and only if L does not belong to F = {L ∈ R+ : L2 = −(d2 + db +

b2) with d, b ∈ C2 satisfying d2

eb−ec
= c2

eb−ed
= b2

ec−ed
}.

Proof. Suppose that NT ̸= {0}, there exist λ ∈ C and ϕ0 ∈ H3(0, L) \ {0} such
that λϕ0 = − a

sαϕ
′′′

0 ,

ϕ0(0) = 0, ϕ
′

0(0) = 0, ϕ
′′′

0 (L) = 0.
(3.4)

Note that the characteristic equation of Eq.(3.4) can be written as

λ+
a

sα
µ3 = 0. (3.5)

Now, let µ1, µ2, µ3 be three roots of Eq.(3.5), we yield that
µ1 + µ2 + µ3 = 0,

µ1µ2 + µ2µ3 + µ1µ3 = 0,

µ1µ2µ3 = −Sα

a λ.

(3.6)

Suppose that there exist double roots. Without loss of generality, we assume
that

µ1 = µ2 = ±σ, µ3 = ∓σ.

From Eq.(3.6), we have σ = 0. This contradicts with our assumption.
If µ1 ̸= µ2 ̸= µ3, the solution of Eq.(3.4) is

ϕ0(x) = c1e
µ1x + c2e

µ2x + c3e
µ3x,

where ci(i = 1, 2, 3) are the solutions of the system
1 1 1

µ1 µ2 µ3

µ2
1 µ2

2 µ2
3

µ2
1e

µ1L µ2
2e

µ2L µ2
3e

µ3L




c1

c2

c3

 =


0

0

0

0

 . (3.7)

Set µ1 = d
L , µ2 = b

L , µ3 = c
L . In views of Eq.(3.6), one has

c = −(d+ b), L2 = −(db+ bc+ dc).

By reducing the rows of the matrix Eq.(3.7), we obtain
1 1 1

0 1 c−d
b−d

0 0 M

0 0 N

 ,
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with M = c2 − d2 − c−d
b−d (b

2 − d2), N = c2ec − d2ed − c−d
b−d (b

2eb − d2ed).
Obviously, the system (3.7) has nonzero solutions if and only if

M = 0, N = 0. (3.8)

Therefore, when c ̸= 0, the system (3.8) has a unique solution

d2 =
c2(eb − ec)

eb − ed
, b2 =

c2(ec − ed)

eb − ed
,

which is contradicts with the inequality NT ̸= {0} if and only if L does not belong
to F , this implies NT = {0}.

Lemma 3.2. For T > 0, L ̸∈ F , there exists a constant C > 0 such that for any
ϕT ∈ L2(0, L), the corresponding solution ϕ of Eq.(3.2) satisfies

∥ϕT ∥L2(0,L) ≤ C

∫ T

0

(| ∆− 1
3

t ϕxx(0, t) |2 + | ϕx(L, t) |2 + | ∆
1
3
t ϕ(L, t) |2)dt, (3.9)

where ∆t := (I − ∂2
t )

1
2 .

Proof. If inequality (3.9) is false, there is a sequence {ϕn
T }n∈N ∈ L2(0, L) with

∥ϕn
T ∥L2(0,L) = 1 such that the corresponding solutions {ϕn}n∈N of Eq.(3.2) satisfy

n

∫ T

0

| ∆− 1
3

t ϕn
xx(0, t) |2 dt ≤ ∥ϕn

T ∥L2(0,L) = 1,

for any n. Thus, we have ∥ϕn
xx(0, t)∥L2(0,L) → 0 as n → ∞. From Lemma (2.2), the

sequence solutions {ϕn}n∈N and {ϕn
x(L, t)}n∈N are bounded. Next, by multiplying

both sides of Eq.(3.3) by (T − t)ϕ and integrating by parts over (0, L)× (0, T ), we
have ∫ L

0

(T − t)Sαϕ2 |T0 dx+

∫ T

0

∫ L

0

Sαϕ2dtdx−
∫ T

0

a(T − t)ϕ2
x |L0= 0.

That is, ∫ L

0

ϕ2
0dx ≤ 1

T

∫ T

0

∫ L

0

ϕ2dtdx+ a

∫ T

0

ϕ2
x(0, t)dt,

which implies

∥ϕT ∥2L2(0,L) ≤
1

T
∥ϕ∥2L2((0,L)×(0,T )) + a∥ϕx(L, .)∥2L2(0,L). (3.10)

Therefore,

∥ϕn
T ∥2L2(0,L) ≤

1

T
∥ϕn∥2L2((0,L)×(0,T )) + a∥ϕn

x(L, .)∥2L2(0,L).

Because of Dα
t ϕ

n = −aϕn
xxx is bounded in L2(0, T ;H1(0, L)), by the embedding

theorem, the sequence {ϕn}n∈N is relatively compact in L2(0, T ;L2(0, L)) (see [34]).
Moreover, the sequence {ϕn

T }n∈N is an L2(0, L)− Cauchy sequence. Denote ϕT =
limn→∞ ϕn

T and let ϕ be the corresponding solution of Eq.(3.2). When n → ∞,
ϕn
x(L, t) → ϕx(L, t), for any n, we have ∥ϕT ∥L2(0,L) = 1, ϕxx(0, t) = 0 in L2(0, T )
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and ∥ϕn
T ∥L2(0,L) = 1. From Lemma 3.1, one can conclude that ϕT (x) = 0, which

contradicts with ∥ϕT ∥L2(0,L) = 1. This proves Lemma 3.2.
In the following, we consider the linear system of Eq.(1.1)Dα

t u+ auxxx = 0, u(x, 0) = u0, (x, t) ∈ (0, L)× (0, T ),

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ),

(3.11)
we can get the following linear control result.

Theorem 3.1. Suppose that T > 0, L ̸∈ F hold, there exists a linear and bounded
operator Ψ : L2(0, L)×L2(0, L)×L2(0, L) → H

1
3 (0, T )×L2(0, T )×H− 1

3 (0, T ) such
that problem (3.11) possesses a solution u ∈ C(0, T ;L2(0, L)) × L2(0, T ;H1(0, L))
satisfying

u|t=0 = u0, u|t=T = uT ,

for any u0, uT ∈ L2(0, L) in the case of h1(t) =
1
a∆

− 2
3

t ϕxx(0, t), h2(t) =
1
aϕx(L, t),

h3(t) =
1
a∆

2
3
t ϕ(L, t).

Proof. Without loss of generality, let u0 = 0, ϕ be the solution of Eq.(3.2), then
multiplying both sides of Eq.(3.11) by ϕ and integrating by parts over (0, L)×(0, T ),
we obtain∫ L

0

sαϕ(T, x)u(T, x)dx+

∫ T

0

a(ϕxx(0, t)h1(t) + ϕx(L, t)h2(t)− ϕ(L, t)h3(t))dt = 0.

In the following, set Ψ be the linear bounded map from L2(0, L) → L2(0, L),

Ψ : ϕT (.) →
1

sα
u(., T ),

and let u be the corresponding solution of Eq.(3.11). From Lemma 3.2, we infer
that

(Ψ(ϕT ), s
αϕT )L

2(0, L) = ( 1a∆
− 2

3
t ϕxx(0, t), aϕxx(0, t))L2(0,T )

+( 1aϕx(L, t), aϕx(L, t))L2(0,T ) + ( 1a∆
− 2

3
t ϕ(L, t), a∆

− 2
3

t ϕ(L, t))L2(0,T )

≥ C−2∥ϕT ∥L2(0,T ).

Using the Lax-Milgram theorem, we obtain that Ψ is invertible. For given uT ∈
L2(0, L), one can define ϕT = Ψ−1 1

sαu(., T ) such that the solution uT ∈ XT of
Eq.(3.11) satisfies

u|t=0 = 0, u|t=T = uT .

4. Nonlinear results
In this section, we first introduce ST = Hs(0, L)×Hs+1(0, T )×H

s
3 (0, T )×H

s−1
3 (0, T )

and set Ys,T be the space consisting of all functions u in the space C(0, T ;Hs(0, L))∩
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L2(0, T ;Hs+1(0, L)) with ∂j
xu ∈ L∞

x (0, L;H
s+1−j

3 (0, T ))(j = 0, 1, 2), where its norm
defined as

∥u∥Ys,T
:= ∥u∥C(0,T ;Hs(0,L))∩L2(0,T ;Hs+1(0,L)) +

2∑
j=0

∥∂j
xu∥L∞

x (0,L;H
s+1−j

3 (0,T ))
.

And the following Lemma.

Lemma 4.1 (see [8]). Let 0 ≤ s ≤ 3, T > 0 be satisfied. Then there exists a
constant C such that for any u, v ∈ Ys,T ,∫ T

0

∥u(., t)v(., t)x∥Hs(0,L)dt ≤ C(T
1
2 + T

1
3 )∥u∥Ys,T

∥v∥Ys,T
.

Then, we consider the following time-fraction nonlinear systemDα
t u+ 6auux + auxxx = 0, u(x, 0) = u0, (x, t) ∈ (0, L)× (0, T ),

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ),
(4.1)

and get the results.

Theorem 4.1. Assume that T > 0 is satisfied, then there exists T ∗ ∈ (0, T ) such
that system (4.1) has unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2([0, T ∗];Hs+1(0, L)),

with u0 ∈ Hs(0, L), h1 ∈ H
s+1
3 (0, T ), h2 ∈ H

s
3 (0, T ) and h3 ∈ H

s−1
3 (0, T ), for

0 ≤ s ≤ 3. Moreover, the corresponding solution map is Lipschitz continuous and
satisfies the sharp Kato smoothing properties

∂k
xu ∈ L∞

x (0, L;H
s+1−k

3 (0, T ∗)) for k = 0, 1, 2.

Proof. For given (u0, h1, h2, h3) ∈ ST , we define a set

Ss
θ,k := {u ∈ Ys,θ, ∥u∥Ys,θ

≤ k},

where k > 0, θ > 0. It is clear that the set Ss
θ,k is closed, conves and bounded. In

the following, set a map Ψ1 on Ss
θ,k by u(x, t) = Ψ1(v(x, t)). For v(x, t) ∈ Ss

θ,k and
u(x, t) is the unique solution ofDα

t u+ 6avvx + auxxx = 0, u(x, 0) = u0 (x, t) ∈ (0, L)× (0, T ),

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ).

By Lemma 2.1 and Lemma 4.1, there exist constants c1, c2 such that

∥Ψ1(v)∥Ys,θ
≤ c1∥(u0, h1, h2, h3)∥ST

+ c2

∫ θ

0

∥6avvx∥Hs(0,L)dt

≤ c1∥(u0, h1, h2, h3)∥ST
+ c2(θ

1
2 + θ

1
3 )∥v∥2Ys,θ

.
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Setting k > 0 and θ > 0 such thatk = 2c1∥(u0, h1, h2, h3)∥ST
,

c2(θ
1
2 + θ

1
3 )k ≤ 1

2 ,

then, we infer that
∥Ψ1(v)∥Ys,θ

≤ k.

Moreover, for any v1, v2 ∈ Ss
θ,k, we obtain that ω(x, t) = Ψ1(v1)−Ψ1(v2) solvesDα

t ω + 3a(v21 − v22)x + aωxxx = 0, ω(x, 0) = 0, (x, t) ∈ (0, L)× (0, T ),

ω(0, t) = 0, ωx(L, t) = 0, ωxx(L, t) = 0, t ∈ (0, T ).

Applying Lemma 2.1 again yields,

∥Ψ1(v1)−Ψ1(v2)∥Ys,θ
≤ C∥v1 − v2∥Ys,θ

.

When v1 → v2, one has

∥Ψ1(v1)−Ψ1(v2)∥Ys,θ
→ 0.

Therefore, Ψ1 is a contraction mapping of Ss
θ,k and its fixed point Ψ1(u) = u is the

unique solution of Eq.(4.1).

Theorem 4.2. Let T > 0 and L > 0 is satisfied, then there exists δ > 0, for any
u0, uT ∈ L2(0, L), if

∥u0∥L2(0,L) + ∥uT ∥L2(0,L) ≤ δ,

we can find h1 ∈ H
1
3 (0, T ), h2 ∈ L2(0, T ), h3 ∈ H− 1

3 (0, T ) such that the system
(4.1) has a unique solution

u ∈ C(0, T ;L2(0, L))× L2(0, T ;H1(0, L))

satisfying
u|t=0 = u0, u|t=T = uT .

Proof. As before, the solution of Eq.(4.1) can be written as

u(x, t) = W0(t)u0 +Wbdr
−→
h −

∫ t

0

W0(t− τ)(6auux)(τ)dτ,

where Wbdr
−→
h = Wbdr(h1, h2, h3).

Arguing as in the proof of Theorem 4.1, for v ∈ Ys,θ, we have

Ψ2(T, v) :=

∫ T

0

W0(t− τ)(6avvx)(τ)dτ.

According to Theorem 3.1, for any u0, uT ∈ L2(0, L), we obtain that (h1, h2, h3) =
𝟋(u0, uT ) satisfies

v(t) = W0(t)u0 +Wbdr𝟋(u0, uT )−
∫ t

0

W0(t− τ)(6avvx)(τ)dτ,
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with
v|t=0 = u0, v|t=T = uT .

In the following, we consider the map Φ as form

Φ(v) = W0(t)u0 +Wbdr𝟋(u0, uT )−
∫ t

0

W0(t− τ)(6avvx)(τ)dτ.

Similar to the discussion of Theorem 4.1, we infer that the map Φ is the contraction
mapping. Moreover, it is continuous. Hence, its fixed point Φ(u) = u is a solution
of Eq.(4.1) with (h1, h2, h3) = 𝟋(u0, uT ), and satisfying

u|t=0 = 0, u|t=T = uT .

5. Conclusion
As we know, the results of boundary controllability seem to be considered by few
authors. In particular, Caicedo and Zhang (2017) dealt with the boundary control-
lability of the Korteweg-de Vries (KdV) equation on a bounded domain. Motivated
by the works described above, in this paper, we study the following time-fractional
nonlinear Korteweg-de Vries (KdV) equationDα

t u+ 6auux + auxxx = 0, u(x, 0) = u0, (x, t) ∈ (0, L)× (0, T ),

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), t ∈ (0, T ),
(SP)

where a > 0, L > 0, T > 0, α ∈ (0, 1), Dα
t u = 1

Γ(1−α)
d
dt

∫ t

0
(t− ξ)−α(u(ξ)− u(0))dξ

and Γ represents the Euler Gamma function. Firstly, for the fractional order, we give
a proper treatment. Then, we obtain that the control result for the linear system
of problem (SP). Finally, we prove the well-posedness and boundary controllability
of problem (SP) posed on a finite domain (0, L) with nonhomogeneous boundary
conditions.
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