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SERIES SOLUTIONS OF CONFLUENT HEUN
EQUATIONS IN TERMS OF INCOMPLETE

GAMMA-FUNCTIONS∗

A. M. Ishkhanyan1,2

Abstract We present a simple systematic algorithm for construction of ex-
pansions of the solutions of ordinary differential equations with rational co-
efficients in terms of mathematical functions having indefinite integral rep-
resentation. The approach employs an auxiliary equation involving only the
derivatives of a solution of the equation under consideration. Using power-
series expansions of the solutions of this auxiliary equation, we construct sev-
eral expansions of the four confluent Heun equations’ solutions in terms of
the incomplete Gamma-functions. In the cases of single- and double-confluent
Heun equations the coefficients of the expansions obey four-term recurrence
relations, while for the bi- and tri-confluent Heun equations the recurrence
relations in general involve five terms. Other expansions for which the ex-
pansion coefficients obey recurrence relations involving more terms are also
possible. The particular cases when these relations reduce to ones involving
less number of terms are identified. The conditions for deriving closed-form
finite-sum solutions via right-hand side termination of the constructed series
are discussed.

Keywords Confluent Heun equations, special functions, series expansions,
multi-term recurrence relations.

MSC(2010) 33E30, 34B30, 30Bxx.

1. Introduction
The expansions of the solutions of complicated differential equations in terms of
simpler mathematical functions have played a notable role in developing the the-
ory of these equations, as well as in their numerous applications in mathematics,
physics, engineering, chemistry, biology, etc. Among many well-appreciated ex-
amples are the general Heun equation [11] and its four confluent cases [30, 33, 40],
which are currently widely applied in numerous branches of contemporary physics
ranging from atomic, molecular and optical physics to condensed state physics, nu-
clear physics, astrophysics, cosmology and general relativity. The solutions of the
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Heun equations generalize many known mathematical functions including the hy-
pergeometric, Bessel, Mathieu, Lamé functions, etc., and for this reason the special
functions emerging from these equations are supposed to constitute a part of the
next generation of mathematical functions [30,33,40].

A useful step in developing the theory of the Heun equations was the develop-
ment of expansions of the solutions of these equations in terms of functions more
advanced than mere powers. Such expansions have been initiated by Svartholm [43],
Erdélyi [7, 8] and continued by Schmidt [34], who used the Gauss hypergeometric
functions to construct solutions of the general Heun equation having a wider conver-
gence region as compared with those suggested by the power-series solutions. This
useful technique has later been developed to cover many other equations, including
the confluent equations of the Heun class [2–6,9,10,14,15,17–19,21,24–26,42]. Be-
sides, not only the Gauss hypergeometric functions [21, 42], but a number of other
expansion functions have been applied, e.g., the Kummer and Tricomi confluent
hypergeometric functions [3,4,17,24], Coulomb wave functions [5,6,25], Bessel and
Hankel functions [9], incomplete Beta and Gamma functions [2, 14, 18], Hermite
functions [10,19], Goursat and Appell generalized hypergeometric functions [15,26],
and other known special functions.

In the present paper, we consider a simple systematic algorithm for construction
of expansions of the solutions u(z) of an ordinary differential equation L[u(z)] = 0
in terms of certain functions φn(z), which have indefinite integral representation.
The basic idea is the following. We consider an auxiliary equation involving only
the derivatives dku/dzk of a solution u(z) of the equation L[u] = 0, but not the
function u(z) itself. Next, we introduce a new dependent variable v(z) – weighted
first derivative of u(z) according to

v(z) =
1

Φ(z)

du

dz
(1.1)

with an auxiliary function Φ(z). Considering now an expansion of v(z) in terms of
certain expansion functions wn:

v(z) =

∞∑
n=0

cnwn(z), (1.2)

and term-by-term integrating Eq. (1.1) multiplied by Φ(z), we arrive at an expan-
sion

u(z) = C0 +

∞∑
n=0

cnφn(z), C0 = const, (1.3)

where
φn(z) =

∫
Φ(z)wn(z)dz. (1.4)

There are many choices for the weight function Φ(z) along with the expansion
functions wn(z), for which these integrals are expressed in terms of known special
functions. For instance, this takes place if Φ(z) = zλ and all wn(z) belong to the
class of (generalized) hypergeometric functions. In this way, if wn(z) is a Kummer
confluent hypergeometric function, one arrives at expansions in terms of Goursat
generalized hypergeometric functions 2F2 [38], and if wn(z) is a Gauss hyperge-
ometric function, the result is an expansion in terms of the Clausen generalized
hypergeometric functions 3F2 [38].
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Probably, the simplest possibility is suggested by the Frobenius-type power-
series expansion of v(z) in the neighborhood of point z1 of the complex z-plane:

v(z) =

∞∑
n=0

cn(z − z1)
µ+n. (1.5)

Then, if Φ(z) is chosen as eλz or zλ, the functions φn(z) turn into the incomplete
Gamma- or incomplete Beta-functions, respectively. These functions are defined as

Γ(a; z) =

∫ ∞

z

e−tta−1dt,B(a, b; z) =

∫ z

0

ta−1(1− t)b−1dt, (1.6)

with appropriate restrictions imposed on the involved parameters a, b, as well as
on the allowed variation region of the variable z (see, e.g., [30]). Examples of
application of this approach for construction of expansions of the solutions of the
general, confluent and bi-confluent Heun equations in terms of the incomplete Beta-
functions are presented in [18,26].

In the present paper, we apply this approach to construct solutions of the four
confluent Heun equations in terms of the incomplete Gamma-functions. Before
proceeding to particular developments, it is appropriate to make some notes of
general character.

First, we note that the integration constant C0 appearing in the expansion (1.3)
is not arbitrary; rather, it should be appropriately chosen in order to achieve a
consistent solution (see the details below). Furthermore, below we assume that the
notation u(z) does not refer to a solution normalized to unity at the origin; rather,
it refers to a solution which is defined with accuracy up to an arbitrary constant
factor.

Finally, a useful observation which turns out to be rather helpful in practice,
when constructing the expansions, is that when passing to an equation for the
new dependent variable v(z) (i.e., weighted first derivative of u(z) according to Eq.
(1.1)) one usually encounters an equation which possesses additional singularities
as compared with the starting equation for the function u(z). Since these extra
singularities turn out to be regular, one can employ the Frobenius solutions of
v-equations in the neighborhood of these singularities. In turn, such expansions,
after integration as described above, lead to new expansion functions for the series
Eq. (1.3), not used before. For instance, in this way one arrives at expansions in
terms of certain generalized hypergeometric functions, e.g., in terms of the Appell
hypergeometric function F1 of two variables of the first kind [1, 38].

The extra singularities all are apparent that is the difference between two char-
acteristic exponents is an integer greater than one. The appearance of such an
apparent singularity in equations obeyed by the functions involving the deriva-
tives of the solutions of the Heun equations have been noticed on several occa-
sions [13, 20, 22, 35, 39, 41, 44], in particular, in the context of isomonodromic fam-
ilies of Fuchsian equations parameterized by Painlevé VI solutions. Consider the
appearance of these extra apparent singular points in more detail.
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2. Extra singularity of the equation for the deriva-
tive of a solution of a Heun equation

Let we have a second-order linear ordinary differential equation with polynomial or
rational coefficients f(z) and g(z):

d2u

dz2
+ f(z)

du

dz
+ g(z)u = 0. (2.1)

Singularities of this equation, if any, are involved in functions f and g. As it was
already mentioned above, here we discuss several relevant equations involving only
the derivatives of u(z) (not the function u(z) itself). The first of such equations, a
direct one for the first derivative v = du/dz, is readily derived by dividing Eq. (2.1)
by g(z), then differentiating the equation and further multiplying it by g(z). The
resultant equation reads

vzz +

(
f − gz

g

)
vz +

(
fz − f

gz
g

+ g

)
v = 0, (2.2)

where (and hereafter) the subscripts denote differentiation of corresponding order
with respect to the indicated variable. It is seen that because of the term gz/g new
singularities may emerge in this equation as compared with Eq. (2.1). It is further
understood that the additional singularities originate from the zeros of the function
g(z), and that the behavior of this function at infinity now interferes with that of the
function f(z). Furthermore, since it is the logarithmic derivative gz/g = d(ln g)/dz
that immediately stands for the appearance of new singularities at finite points of
the complex z-plane, it is understood that for a polynomial or rational g(z) the
new singularities all are regular, regardless of the multiplicity of the roots of the
equation g(z) = 0. It is also worth to note that further application of the same
procedure, this time to Eq. (2.2), may or may not reveal further new singularities
depending on the properties of the coefficients of Eq. (2.2).

It is interesting that, as long as the Fuchsian differential equations having at the
utmost three regular singular points are discussed, the described procedure may not
lead to new singularities. The situation, however, is changed if Fuchsian equations
having more regular singularities are considered. The first such equation is the
general Heun equation having four regular singular points. In its canonical form,
this equation is written as [11]

uzz +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
uz +

αβ z − q

z(z − 1)(z − a)
u = 0. (2.3)

The singular points of this equation, all regular, are z = 0, 1 , a and z = ∞. For
the derivative v(z) = uz of a solution of this equation, Eq. (2.2) reads

vzz +

(
γ + 1

z
+

δ + 1

z − 1
+

ε+ 1

z − a
− αβ

αβ z − q

)
vz +

Π(z)

z(z − 1)(z − a)(αβ z − q)
v = 0,

(2.4)
where Π(z) is a quadratic polynomial:

Π(z) = (1 + α)(1 + β)z(αβ z − 2q) + (q2 + q(γ + aγ + aδ + ε)− aαβγ). (2.5)

As we see, Eq. (2.4) is a Fuchsian differential equation having in general five singular
points. Compared with Eq. (2.3), it has an extra regular singularity located at the
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(finite or infinite) point z = q/(αβ). It is indeed understood that this singularity
originates from the numerator of the coefficient of the last term in Eq. (2.3), that
is from the root of the above function g(z) which in the case of the general Heun
equation is a rational function with a linear in z numerator, namely, αβ z− q. Only
in four particular cases, namely, when q = 0, q = αβ, q = aαβ and αβ = 0, this
root, z = q/(αβ), coincides with one of the already existing singular points of Eq.
(2.3), and it is for this reason that only in these four particular cases Eq. (2.4)
presents another general Heun equation with altered parameters [15]. Note finally
that the characteristic exponents of the extra singularity are 0 and 2 so that the
difference between the exponents is 2 and thus the singularity is apparent.

Four confluent modifications of the Heun equation are derived via coalescence
of the singular points of the general Heun equation [30,33,40]. These equations can
be written as

P (z)uzz + (γ + δz + εz2)uz + (αz − q)u = 0, (2.6)
where P (z) is at most a second-degree polynomial: P (z) = p0 + p1z + p2z

2 [note
that the general Heun equation itself is also written in this form, however, with a
cubic polynomial P (z) = z(z− 1)(z− a)]. If this polynomial has two distinct roots,
by shifting the origin and scaling, z → s0 + s1z, it can be written, without loss of
generality, as P (z) = z(z − 1), and, as a result, we will have the single-confluent
Heun equation (CHE). If the polynomial has a twice multiple root, the latter can
be put at the origin: P (z) = z2; we then have the double-confluent Heun equation
(DHE). If P (z) is a linear function, again, by putting its root at the origin, i.e.,
putting P (z) = z, we arrive at the bi-confluent Heun equation (BHE). Finally, if
P (z) is a constant, we have the tri-confluent Heun equation (THE).

As it is already mentioned above, the four confluent Heun equations also lead to
an extra regular singular point if an equation for the derivative is considered. It is
immediately seen from Eq. (2.2) that in all cases this extra singularity is located at
the point z0 = q/α, so that this singularity originates from the accessory parameter
q of the predecessor general Heun equation (2.3). Thus, we conclude that the extra
singularity always originates from the last term of the Heun equations. It is checked
that this is again an apparent singularity with characteristic exponents 0 and 2.

3. Heuristic observations leading to incomplete
Gamma-function expansions

A common feature of the four confluent Heun equations is that for all of them the
infinity is an irregular singular point. The infinity becomes irregular already in the
(single) confluent Heun equation, where the regular singularity of the general Heun
equation (2.3) at z = a has been merged with the regular singularity at infinity. A
result of the irregular nature of the singularity of z = ∞ is seen in Eq. (2.6) if it
is divided by P (z): all the four equations have a constant term in the coefficient
of the first-derivative term. In notations of Eq. (2.6), this constant is given as
λ = ε, ε, δ, γ for CHE, DHE, BHE, and THE, respectively.

Thus, the irregularity of the infinity is pronounced in the second term of the con-
fluent Heun equations, while the extra singularity of the equation for the derivative is
exceptionally due to the last term of the equations. Then, to get an insight into how
the irregularity of the infinity acts, it is useful to examine the solutions of the trun-
cated confluent Heun equations without the last term: P (z)uzz+(γ+δz+εz2)uz = 0.
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The result is written as

u(z) = C1 + C2

∫
e−λzF (z)dz, C1,2 = const, (3.1)

where λ = ε, ε, δ, γ and

F (z) = (1− z)−δz−γ , eγ/zz−δ, e−εz2/2z−γ , e−δz2/2−εz3/3 (3.2)

for CHE, DHE, BHE, THE, respectively. It is then understood that if we consider
a power-series expansion for the function F (z) of the form of Eq. (1.5), we are
immediately being led to an incomplete Gamma-function expansion for u(z):

u = C1 + C2

( ∞∑
n=0

cn

∫
e−λz(z − z1)

µ+ndz

)

= C1 − C2

( ∞∑
n=0

cne
−λz1

λ1+n+µ
Γ(1 + n+ µ; λ(z − z1)

)
. (3.3)

One more step is to look what happens if one treats the last term of Eq. (2.6)
as a perturbation. Applying, for example, the method of variation of constants, it
is readily seen that we again come to similar expansions in terms of the incomplete
Gamma-functions.

A further argument supplementing our speculations concerning the appearance
of incomplete Gamma-function expansions of the solutions for all the four confluent
Heun equations comes from the observation that for some particular specifications
of the involved parameters all these equations have particular solutions written in
terms of the Kummer confluent hypergeometric function, which allows a ”natural”
expansion in terms of the incomplete Gamma-functions as follows [30]:

1F1 (a; b; z) = 1 +
a

b

∞∑
n=0

(b− a)n
(b+ 1)nn!

(Γ (1 + n; −z)− Γ (1 + n; 0)) . (3.4)

Thus, there are several cases indicating the incomplete Gamma-function expan-
sions of the solutions of the four confluent Heun equations. Below we show that
such expansions are constructed for any set of the involved parameters. The pre-
sented approach consists of two steps. First, we pass to an equation obeyed by
the weighted derivative function v = eλzuz and construct a power-series solution
of this equation in the neighborhood of its extra (regular) singular point z0 = q/α
(or, if available, another regular singular point; see examples below). Then, the
integration produces an incomplete Gamma-function expansion.

A few remarks are now appropriate. The above approach necessarily employs
the fact that for the confluent Heun equations the infinity is an irregular singular
point. Because of this, the equation for a weighted derivative function has at least
one regular and one irregular singular points. This is sufficient for construction
of the incomplete Gamma-function expansions, i.e., the structure of the equations
does not matter much. Hence, the approach is more general and can be applied to
more general equations having an irregular singularity at infinity and is potent to
produce an additional regular singularity in the equations obeyed by the derivatives
of their solutions. In this sense, the situation is somewhat similar to the approach by
Svartholm [43]] and Schmidt [34], who proposed a regular method for construction of
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series solutions in terms of the Gauss hypergeometric functions for equations having
only two regular singular points in a certain region of the complex z-plane. Their
method concentrates on these singularities, irrespective of the equations’ structure
outside the mentioned region containing the two regular singularities.

A similar approach has later been applied by Kurth and Schmidt, who developed
a global representation of the solutions of second-order linear differential equations
having an irregular singularity of rank one at infinity by series in terms of con-
fluent hypergeometric functions [24]. To this end, it seems appropriate to make a
comparison of the incomplete Gamma-functions used in the present paper with the
confluent hypergeometric functions applied in [24]. The difference is well seen if one
recalls the following representation of the incomplete Gamma-function through the
Kummer confluent hypergeometric function [30]

Γ(a; z) = Γ(a)− za

a
1F1(a; a+ 1; −z), (3.5)

or the representation through the Tricomi confluent hypergeometric function [30]

Γ(a; z) = e−zU(1− a; 1− a; z). (3.6)

A concluding remark is that in several cases it is possible to construct incomplete
Gamma-function expansions, for which the involved expansion functions differently
depend on the summation index (see the examples below); then the difference be-
comes more pronounced.

4. Incomplete Gamma-function expansions of types
I and II. Discussion

In Appendices 1-4 we present several incomplete Gamma-function expansions of the
solutions of the four confluent Heun equations. Note that the forms of the Heun
equations adopted here slightly differ from those used in various papers as well as
in [30, 33, 40]. However, all these forms are readily obtained from those used here
by straightforward simple specifications of the involved parameters.

To construct the incomplete Gamma-function expansions, according to the above-
described approach, we first write a second-order differential equation for a weighted
first derivative of the form

v(z) = eΛ(z) du

dz
, (4.1)

where Λ(z) is a linear, quadratic or cubic polynomial depending on the particular
equation at hand. In a certain neighborhood of a point z = z1 of the complex
z-plane the solution of this equation is expanded into a power series:

v(z) =

∞∑
n=0

c(z1)n (z − z1)
µ+n, (4.2)

where the coefficients c
(z1)
n are supposed to be zeros for negative n, and the point

z1 is a center in the vicinity of which the expansion is developed.
Now, substitution of v(z) of Eq. (4.2) into Eq. (4.1) and subsequent integration

results in an incomplete Gamma-function expansion. The particular form of the
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dependence of the involved incomplete Gamma-functions on the summation index
n depends on Λ(z). If this is a linear function of z, the parameter a of the resultant
incomplete Gamma-functions Γ(an; s(z − z1)) depends on n as an = a0 + n (a0 =
const). We refer to such expansions as of type I. If Λ(z) is a quadratic or cubic
polynomial, the dependence becomes an = a0 + n/2 or an = a0 + n/3, respectively.
Such expansions are referred to as of type II.

The recurrence relations for the coefficients of the expansions turn out to be of
four- or five-term form. In some particular cases the recurrence relations are reduced
to ones involving less number of terms. If, by a specification of the involved pa-
rameters, it is possible to reduce the relations to two-term ones, then the expansion
coefficients are explicitly calculated in terms of the ordinary Gamma-functions and
then the solution of the v-equation is constructed in terms of the hypergeometric
functions. In these cases the solution of the starting confluent Heun equation is fi-
nally written either as a quadrature, or, equivalently, as a linear combination, with
rational coefficients, of at least two hypergeometric functions. The latter point
is readily understood if the solution of a confluent equation of the Heun class is
rewritten, using Eq. (2.6), as

u = − 1

αz − q

(
P (z)vz + (γ + δz + εz2)v

)
(4.3)

with P (z) = z(z − 1), z2, z, 1 for single-, double-, bi-, and tri-confluent cases,
respectively.

We conclude by noting that the examples of expansions we present show that
incomplete Gamma-function expansions of the solutions of the confluent Heun equa-
tions are constructed for any set of the involved parameters with proviso that
the parameter ε standing for the irregular singularity of equations (2.6) is not
zero. The constructed expansions are of general interest both for mathematics
and physics, and may have useful applications in many branches of contemporary
research varying from applied mathematics, classical physics, quantum mechanics,
atomic, molecular and optical physics to particle physics, astrophysics and cosmol-
ogy [12,16,23,27–29,31,32,36,37].

5. Appendix 1: Confluent Heun equation
This equation has two regular singularities at z = 0 and z = 1 and an irregular
singularity of rank 1 at z = ∞:

uzz +

(
γ

z
+

δ

z − 1
+ ε

)
uz +

αz − q

z(z − 1)
u = 0. (5.1)

The weighted first derivative v(z) = eεzuz obeys the equation

vzz +

(
γ + 1

z
+

δ + 1

z − 1
− ε− 1

z − z0

)
vz +

Π(z)

z(z − 1)(αz − q)
v = 0, (5.2)

where z0 = q/α and Π( z) is a quadratic polynomial:

Π(z) = q2 + α(γ + zγε+ z2(α− (γ + δ)ε)− q (γ + δ + γε+ z(2α− (γ + δ)ε) .
(5.3)
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Note that this equation applies also to the limiting case α = 0, even though Π( z)
then becomes a linear function of z. Note also that in the latter case Eq. (5.2)
presents another single-confluent Heun equation with altered parameters.

Then, for a non-zero ε we obtain an expansion of type I:

u(z) = C0 − e−εz1

∞∑
n=0

c
(z1)
n

ε1+n+µ
Γ(1 + n+ µ; ε(z − z1). (5.4)

For z1 = 0 the coefficients of the expansion obey the four-term recurrence rela-
tion

Snc
(0)
n +Rn−1c

(0)
n−1 +Qn−2c

(0)
n−2 + Pn−3c

(0)
n−3 = 0, (5.5)

where
Sn = q (n+ µ)(n+ γ + µ), (5.6)

Rn =q2 + αγ − q (γ + δ + γε) + (α(1− γ)− q(1 + γ + δ + ε)) (n+ µ)

− (q + α)(n+ µ)2, (5.7)

Qn = −2qα+ (q + α)γε+ qδε+ (α(γ + δ) + (q + α)ε) (n+ µ) + α(n+ µ)2, (5.8)
Pn = α(α− ε(n+ γ + δ + µ)). (5.9)

For left-hand side termination of the series at n = 0 should be S0 = 0, i.e., µ = 0
or µ = −γ. The series will terminate from the right-hand side if three successive
coefficients vanish for some N = 1, 2, . . ., i.e., if c

(0)
N ̸= 0 and c

(0)
N+1 = c

(0)
N+2 =

c
(0)
N+3 = 0. From the equation c

(0)
N+3 = 0 we find that the termination is possible if

PN = 0. For non-zero α this is the case if

α = ε(N + γ + δ + µ), µ = 0, −γ (5.10)

for some N = 1, 2, . . .. The remaining two equations, c(0)N+1 = 0 and c
(0)
N+2 = 0, are

then expected to impose two more restrictions on the parameters of the confluent
Heun equation. It turns out, however, that in this particular case the two equations
lead to a single condition, so that just one additional restriction is imposed on the
involved parameters. Indeed, it is checked that some of the roots of the equation
c
(0)
N+1(q) = 0 fulfill the second equation too, hence, ensure the termination of the

series.
In two particular cases, namely if α = 0 or if q = 0, the recurrence relation

(5.6) is reduced to a three-term one. It is checked that apart from the trivial case
α = q = 0, when the last term in Eq. (5.1) vanishes, the recurrence relation (5.6)
is not reduced to a two-term one.

For z1 = z0 the coefficients c
(z0)
n again obey a four-term recurrence relation:

Snc
(z0)
n +Rn−1c

(z0)
n−1 +Qn−2c

(z0)
n−2 + Pn−3c

(z0)
n−3 = 0, (5.11)

where
Sn = z0 (z0 − 1)(n+ µ)(n+ µ− 2), (5.12)

Rn =γ − z0(γ + δ) + (1− 2z0 − γ + z0(γ + δ)− (z0 − 1)z0ε) (n+ µ)

+ (2z0 − 1)(n+ µ)2, (5.13)
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Qn = (γ − z0(γ + δ)) ε+ (γ + δ + (1− 2z0)ε) (n+ µ) + (n+ µ)2, (5.14)
Pn = α− ε(n+ µ+ γ + δ). (5.15)

If z0 ̸= 0, 1, for left-hand side termination of the series at n = 0 should be
S0 = 0. For a consistent power series, this is achieved only if µ = 2 (the exponent
µ = 0 leads to a logarithmic solution). The series is terminated from the right-hand
side for some N = 1, 2, . . . if c(z0)N+1 = c

(z0)
N+2 = 0 and PN = 0. For non-zero α the

last condition is fulfilled if

α = ε(N + γ + δ + µ), µ = 2. (5.16)

Besides, for termination, the remaining two equations (c(z0)N+1 = c
(z0)
N+2 = 0) should

also be satisfied by an appropriate choice of the parameters of the confluent Heun
equation.

If z0 = 0 or z0 = 1, i.e. if the extra singularity of the v-equation coincides
with one of the singularities of the starting confluent Heun equation (5.1), the four-
term recurrence relation (5.11) is simplified to a three-term one. Since then the
higher-order coefficient Sn identically vanishes for all n, the characteristic exponent
µ should fulfill the condition R0 = 0. This leads to µ = 1, −γ if q = 0 and µ = 1, −δ
if q = α.

We conclude this appendix by noting that another three-term reduction of the
recurrence relation is achieved in the limit α → 0, i.e. if z0 → ∞ (technically, in this
limit the coefficient Pn identically vanishes if one considers Eq. (5.11) multiplied
by α2). This is readily understood if we recall that in this case Eq. (5.2) presents
another single-confluent Heun equation with altered parameters. Finally, we note
that in all three-term cases further reductions to two-term relations are not possible
for non-zero ε.

6. Appendix 2: Double-confluent Heun equation
For the double-confluent Heun equation, the regular singularities of the general
Heun equation (2.3) at z = 1 and z = a are merged separately into the other two
to form irregular singularities at, respectively, z = 0 and z = ∞, each of rank 1:

uzz +

(
γ

z2
+

δ

z
+ ε

)
uz +

αz − q

z2
u = 0. (6.1)

Note that in the case γ = 0 this equation is readily reduced to the confluent hy-
pergeometric equation by the simple change of the dependent variable u = zsw(z).
Hence, we suppose γ ̸= 0. According to the general theory [30,33,40], this equation
has four irreducible parameters. Using a scaling transformation, z → s0z, one may
fix one of the parameters γ, ε, α to an arbitrary given value. Another known case
when the solution of Eq. (6.1) is written in terms of the confluent hypergeometric
functions (this time, of the argument γ/z) is the case ε = α = 0. Also, a simple case
is α = q = 0 when the last term in Eq. (6.1) vanishes so that the general solution
is readily written in quadratures.

The differential equation for the weighted first derivative v(z) = eεzuz is written
as

vzz +

(
γ

z2
+

δ + 2

z
− ε− 1

z − z0

)
vzz +

Π(z)

z2(αz − q)
v = 0, (6.2)
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where z0 = q/α and Π( z) is the quadratic polynomial

Π(z) = q2 + q(γε− δ + z(δε− 2α)) + α
(
z2(α− δε)− zγε− γ

)
. (6.3)

Accordingly, for a non-zero ε we obtain an expansion of type I:

u(z) = C0 − e−εz1

∞∑
n=0

c
(z1)
n

ε1+n+µ
Γ(1 + n+ µ; ε(z − z1). (6.4)

For z1 = 0 the coefficients c
(0)
n of this expansion obey the four-term recurrence

relation
Snc

(0)
n +Rn−1c

(0)
n−1 +Qn−2c

(0)
n−2 + Pn−3c

(0)
n−3 = 0, (6.5)

where
Sn = −qγ(n+ µ), (6.6)

Rn = q(q − δ + γε)− aγ + (αγ − q − qδ)(n+ µ)− q(n+ µ)2, (6.7)

Qn = ε(qδ − αγ)− 2qα+ (αδ + qε)(n+ µ) + α(n+ µ)2, (6.8)

Pn = α (α− ε(n+ µ+ δ)) . (6.9)

If qγ ̸= 0, for left-hand side termination of the series at n = 0 should be S0 = 0,
hence, the only choice is µ = 0. The series is terminated from the right-hand side
for some N = 1, 2, . . . if c(0)N+1 = c

(0)
N+2 = 0 and PN = 0. For non-zero α, the last

condition is fulfilled if
α = ε(n+ µ+ δ), µ = 0. (6.10)

Interestingly, it turns out that in this case also the remaining two equations lead to
a single condition, namely, some of the roots of the equation c

(0)
N+1(q) = 0 fulfill the

equation c
(0)
N+2(q) = 0 too, hence, ensure the termination of the series.

Apart from the degenerate case γ = 0, the recurrence relation (6.5) is turned
into a three-term one if α = 0 or q = 0. Again, as in the case of CHE, there are no
nontrivial cases, for which the recurrence relation is further reduced to a two-term
one.

For z1 = z0 the coefficients c
(z0)
n also obey a four-term recurrence relation:

Snc
(z0)
n +Rn−1c

(z0)
n−1 +Qn−2c

(z0)
n−2 + Pn−3c

(z0)
n−3 = 0, (6.11)

where
Sn = z20(n+ µ)(n+ µ− 2), (6.12)

Rn = −(γ + z0δ) +
(
γ + z0(δ − 2)− z20ε

)
(n+ µ) + 2z0(n+ µ)2, (6.13)

Qn = −(γ + z0δ)ε+ (δ − 2z0ε)(n+ µ) + (n+ µ)2, (6.14)

Pn = α− ε(n+ µ+ δ). (6.15)

If z0 ̸= 0, i.e. if q ̸= 0, the characteristic exponent µ should satisfy the equation
S0 = 0; hence, µ = 0 or µ = 2. A consistent power series is achieved only for the
greater exponent µ = 2. For non-zero α, the series terminates from the right-hand
side if

α = ε(n+ µ+ δ), µ = 2 (6.16)
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and c
(z0)
N+1 = c

(z0)
N+2 = 0, which impose two more restrictions on the parameters of

the double-confluent Heun equation (6.1).
If z0 = 0, i.e. if the extra singularity of the v-equation coincides with the

(irregular) singularity of the starting double-confluent Heun equation (6.1), the
four-term recurrence relation (6.11) is simplified to a three-term one. Since then
the higher-order coefficient Sn identically vanishes, the characteristic exponent µ
should fulfill the condition R0 = 0. This leads to the only possible exponentµ = 1
for this case.

As in the case of the single-confluent Heun equation, another reduction of the
recurrence relation (6.11) to a three-term one is achieved in the limit α → 0 (z0 →
∞). Finally, we note that in all above three-term cases further reductions to two-
term relations are not possible for non-zero ε.

7. Appendix 3: Bi-confluent Heun equation
This equation has a regular singularity at z = 0 and an irregular singularity of rank
2 at z = ∞:

uzz +
(γ
z
+ δ + εz

)
uz +

αz − q

z
u = 0. (7.1)

As it is immediately seen, this equation turns into the Kummer confluent hypergeo-
metric equation if ε = 0 and α = 0. In fact, if ε = 0, this equation is always reduced
to the confluent hypergeometric equation by the simple change of the dependent
variable u = eλzw(sz). Another known case when the solution is written in terms
of the confluent hypergeometric functions (this time, of the argument −εz2/2) is
the case δ = q = 0 (see below Eq. (3.31)). Finally, in a sense trivial is the case
α = q = 0 when the last term in Eq. (7.1) vanishes so that the general solution is
readily written in quadratures.

The solutions of the biconfluent Heun equation allow incomplete Gamma-function
expansions of both type I and type II. The expansions of the first type are con-
structed if one considers the differential equation for the weighted first derivative
v(z) = eλ(z−z1)uz:

vzz +

(
γ + 1

z
+ δ − 2λ+ εz − 1

z − z0

)
vz +

Π(z)

z(α z − q)
v = 0, (7.2)

where z0 = q/α and Π(z) is the cubic polynomial

Π(z) = q2 + q(γλ+ λ− δ)− αγ

−(αγλ+ q(2α+ 2ε− δλ+ λ2))z + (qελ+ α(α+ ε− δλ+ λ2))z2 − αελz3 .
(7.3)

Note that, unlike the above single-confluent and double-confluent cases, here λ is
an arbitrary non-zero constant, which can be specified, afterwards, as desired.

Accordingly, for a non-zero λ we obtain an expansion of type I:

u(z) = C0 − e−λz1

∞∑
n=0

c
(z1)
n

λ1+n+µ
Γ(1 + n+ µ; λ(z − z1). (7.4)
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For both z1 = 0 and z1 = z0 the coefficients c
(z1)
n of this expansion obey a five-term

recurrence relation:

Tnc
(z1)
n + Sn−1c

(z1)
n−1 +Rn−2c

(z1)
n−2 +Qn−3c

(z1)
n−3 + Pn−4c

(z1)
n−4 = 0. (7.5)

If z1 = 0, the coefficients of this relation are written as

Tn = −q (n+ µ)(n+ γ + µ), (7.6)

Sn = q2 − αγ − q (δ − λ− γλ) + (αγ − α+ 2qλ− qδ)(n+ µ) + α(n+ µ)2, (7.7)

Rn = −2q(α+ ε) + λ(qδ − αγ − qλ) + (αδ − qε− 2αλ)(n+ µ), (7.8)

Qn = α2 + qελ+ αλ(λ− δ) + αε(1 + n+ µ), (7.9)

Pn = −αλε, (7.10)

where generally µ = 0, −γ. Since Pn does not depend on n, for nonzero αλε the
series cannot terminate from the right-hand side.

The recurrence relation (7.5) is reduced to one involving four successive terms
if q = 0 or αε = 0 (λ ̸= 0). It is seen from Eq. (7.8) that another four-term
reduction, however, involving non-successive terms, is achieved if one chooses q and
λ so that Rn ≡ 0 for all n. Besides, if q = γ = 0, by choosing λ = δ /2 the
relation is reduced to one involving three (non-successive terms). Similarly, in the
case ε = 0 it is possible to specify the constant λ so that the relation is reduced to
a three-term one: λ2 − δ λ + α = 0. This is of course an expected result since, as
it was mentioned above, at ε = 0 the biconfluent Heun equation is reduced to the
confluent hypergeometric equation. Performing the calculations, one then recovers
the above-mentioned expansion of the Kummer hypergeometric function in terms
of the incomplete Gamma-functions, Eq. (3.4).

If z1 = z0, for the coefficients of the recurrence relation (7.5), we have

Tn = z0 (n+ µ)(n+ µ− 2), (7.11)

Sn = λz0 − (γ + δz0 + εz20) + (γ − 1 + z0(δ + z0ε− 2λ)) (n+ µ) + (n+ µ)2, (7.12)

Rn = λ2z0 − λ(γ + δz0 + εz20) + (δ + 2z0ε− 2λ)(n+ µ), (7.13)

Qn = α+ ε− λ(δ + 2z0ε− λ) + ε(n+ µ), (7.14)

Pn = −λε, (7.15)

where generally µ = 0, 2. Here the situation is much similar to the previous case. In
this case also the recurrence relation (7.5) is reduced to one involving four successive
terms if q = 0 or ε = 0 (λ ̸= 0). Another four-term reduction of the recurrence
relation (7.5), however, involving non-successive terms, is achieved if z0 = −2γ/δ
and one puts λ = z0ε + δ/2 (Rn = 0 ). Again, in the case ε = 0 the recurrence
relation is reduced to a three-term one by choosing λ so that λ2 − δ λ + α = 0.
Finally, we note that since Pn does not depend on n, for nonzero ε the series cannot
terminate from the right-hand side.

Now we present the second type of incomplete Gamma-function expansions of
the solutions of the bi-confluent Heun equation (7.1). Several such expansions
can be suggested applying the differential equation obeyed by the weighted first
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derivative of the form v(z) = zσeλz+τz2/2uz. Below we present two examples. The
first example is constructed if v = e−εz2/2uz. The equation for v(z) reads

vzz +

(
γ + 1

z
+ δ − εz − α

αz − q

)
vz +

Π(z)

z(αz − q)
v = 0, (7.16)

where Π(z) is the cubic polynomial

Π(z) = q2 − qδ − αγ + (qγε− 2qα)z + (qδε+ α(α− γε))z2 − αδεz3 . (7.17)

Using a Frobenius power-series solution of this equation in the neighborhood of
its regular singularity z = 0:

v(z) =

∞∑
n=0

c(0)n zµ+n, (7.18)

we get the expansion

u(z) = C0 −
∞∑

n=0

c
(0)
n

2(ε/2)(1+n+µ)/2
Γ

(
1 + n+ µ

2
;
εz2

2

)
, (7.19)

which applies if ε ̸= 0. The coefficients c
(0)
n obey the five-term recurrence relation

Tnc
(0)
n + Sn−1c

(0)
n−1 +Rn−2c

(0)
n−2 +Qn−3c

(0)
n−3 + Pn−4c

(0)
n−4 = 0, (7.20)

where
Tn = −q (n+ µ)(n+ µ+ γ), (7.21)

Sn = q2 − αγ − qδ + (αγ − α− qδ)(n+ µ) + α(n+ µ)2, (7.22)

Rn = −2qα+ qγε+ (αδ + qε)(n+ µ), (7.23)

Qn = α2 + qδε − αε(n+ µ+ γ), (7.24)

Pn = −αδε, (7.25)

where generally µ = 0, −γ. The recurrence relation (7.20) is reduced to one involv-
ing four successive terms if qδα = 0 (ε ̸= 0). If q = 0 and δ = 0 simultaneously, the
recurrence relation becomes two-term:

Sn−1c
(0)
n−1 +Qn−3c

(0)
n−3 = 0, (7.26)

with µ = 0, −1− γ and (α ̸= 0)

Sn = (n+ µ− 1)(n+ µ+ γ), Qn = α− ε(n+ µ+ γ). (7.27)

Then, the coefficients c
(0)
n of the expansion (7.18) are explicitly calculated in terms

of the Gamma functions. Using the Pochhammer symbol, the result reads

cn =
1 + (−1)n−1

2
a(n−1)/2, ak =

(ε/2)k ((1 + γ + µ− α/ε)/2)k
(1 + µ/2)k (1 + (1 + γ + µ)/2)k

. (7.28)
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Correspondingly, v(z) is expressed in terms of the confluent hypergeometric func-
tions:

v(z) = C1 z · 1F1

(
− α

2ε
+

1 + γ

2
;
3 + γ

2
;
εz2

2

)
+ C2z

−γ
1F1

(
− α

2ε
;
1− γ

2
;
εz2

2

)
.

(7.29)

This leads to the following general solution of the bi-confluent Heun equation for
δ = q = 0:

u(z) = C1 · 1F1

(
α

2ε
;
1 + γ

2
; −εz2

2

)
+ C2z

1−γ
1F1

(
α

2ε
+

1− γ

2
;
3− γ

2
; −εz2

2

)
.

(7.30)

Comparing this solution with the expansion (7.19), after some algebra, we re-
cover the above mentioned expansion of the Kummer confluent hypergeometric
function in terms of the incomplete Gamma-functions, Eq. (3.4).

Apart from the above obvious cases qαδ = 0, another four-term reduction of
the recurrence relation (7.20), however, involving non-successive terms, is achieved
if one chooses γε − 2α = 0 and αδ + qε = 0 so that Rn ≡ 0 for all n. Finally, we
would like to mention the three-term reduction achieved at δ = α = 0.

A second example of type II expansions can be constructed by employing the
differential equation obeyed by the function v = e−ε(z−z0)

2/2uz:

vzz +

(
γ + 1

z
+ λ+ εz0 − εz − 1

z − z0

)
vz +

Π(z)

z(z − z0)
v = 0, (7.31)

where λ = δ + εz0 and Π(z) is the cubic polynomial

Π(z) = −γ − z0λ+ z20(α− γε)− z0(2α− 2γε+ z0ελ)z + (α− γε+ 2z0ελ)z
2 − ελz3 .

(7.32)

Now, using a Frobenius solution of this equation in the neighborhood of its
regular singular point z = z0:

v(z) =

∞∑
n=0

c(z0)n (z − z0)
µ+n, (7.33)

we get the expansion

u(z) = C0 −
∞∑

n=0

c
(z0)
n

2(ε/2)(1+n+µ)/2
Γ

(
1 + n+ µ

2
;
ε(z − z0)

2

2

)
, (7.34)

which applies if ε ̸= 0 and α ̸= 0 (since z0 should be a finite point of the complex
plane).

The coefficients c
(z0)
n obey the five-term recurrence relation

Tnc
(z0)
n + Sn−1c

(z0)
n−1 +Rn−2c

(z0)
n−2 +Qn−3c

(z0)
n−3 + Pn−4c

(z0)
n−4 = 0, (7.35)

where
Tn = z0 (n+ µ)(n+ µ− 2), (7.36)
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Sn = (n+ µ− 1)(n+ µ+ γ + δz0 + εz20) , (7.37)

Rn = δ(n+ µ), (7.38)

Qn = α− ε(n+ µ+ γ + δz0 + εz20), (7.39)

Pn = −ε(δ + εz0), (7.40)

where generally µ = 0, 2. Since Pn does not depend on n, the series cannot
terminate from the right-hand side unless δ + εz0 = 0 (ε = 0 is forbidden).

It is readily seen that the recurrence relation (7.35) reduces to a four-term one
if z0δ(δ + εz0) = 0. Since z0 = q/α, it is understood that further reduction to
a three-term one is possible only if δ and q vanish simultaneously. In this case,
however, we have the two-term particular case considered above. Finally, we note
that if z20 + δ2 ̸= 0 but δ+ εz0 = 0 (Pn = 0), we have a series (ruled by a recurrence
relation for the coefficients involving three or four terms), which may terminate
from the right-hand side. For termination, necessarily should hold QN = 0 for
some N = 1, 2, . . ., that is

α = ε(N + µ+ γ), µ = 2. (7.41)

In addition, in the three-term case one should impose one more restriction (c(z0)N+1 =

0), and in the four-term case two such restrictions (c(z0)N+1 = 0 and c
(z0)
N+2 = 0) should

be fulfilled.

8. Appendix 4: Tri-confluent Heun equation
Here, the singularities z = 0, 1, a of the general Heun equation have coalesced into
that at infinity to form an irregular singularity of rank 3 at z = ∞:

uzz + (γ + δ z + ε z2)uz + (αz − q)u = 0. (8.1)

If ε = 0, this equation is always reduced to simpler equations. If ε = 0 and
δ ̸= 0, it is reduced to the confluent hypergeometric equation, and it is reduced
to the Airy equation if ε = δ = 0, α ̸= 0. For this reason, below we suppose
ε ̸= 0. We note also another known case when Eq. (8.1) is reduced to the confluent
hypergeometric equation corresponding to the specification γ = δ = q = 0, as well
as the case α = q = 0 when the last term of the equation vanishes so that the
general solution is written in terms of quadratures.

According to the general theory, the tri-confluent Heun equation has only three
irreducible parameters. Different specifications of two of the five parameters in-
volved in Eq. (8.1) were applied by different authors depending on the specific the-
oretical context or particular problem at hand (see, e.g., [30,33,40]). We note that
in the case of non-zero ε one may fix ε to any (non-zero) value by scaling z → s1z.
Simultaneously, in doing this, one may achieve any desired (zero or non-zero) value
either for γ [30] or δ [33, 40] by shifting the origin: z → s1z + s0. Alternatively,
instead of being interested in γ or δ, in the case of nonzero α, along with fixing
the value of ε, one may make the parameter q to adopt any zero or nonzero value.
Depending on the particular context of interest, these transformations can be ap-
plied to achieve maximal simplifications. For the purposes of the present appendix,
it is advantageous to have q = 0. However, we use the general form (8.1) since
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then other forms can be readily employed by straightforward specifications of the
involved parameters.

Consider the case α ̸= 0, so that z0 = q/α is a finite point of the complex
z-plane. The differential equation for the function v(z) = eλ(z−z0)uz is written as

vzz +

(
γ − 2λ+ δ z + εz2 − 1

z − z0

)
vz +

Π(z)

z − z0
v = 0, (8.2)

where Π(z) is the cubic polynomial

Π(z) = (λ− γ − δz0 − εz20)(1 + λξ) + (α+ ε− δλ− 2εz0λ)ξ
2 − ελξ3, (8.3)

where ξ = z − z0. Accordingly, for a non-zero λ, applying a Frobenius solution of
this equation in the neighborhood of its regular singular point z = z0:

v(z) =

∞∑
n=0

c(z0)n (z − z0)
µ+n, (8.4)

we derive an expansion of type I:

u(z) = C0 −
∞∑

n=0

c
(z0)
n

λ1+n+µ
Γ(1 + n+ µ; λ(z − z0), (8.5)

the coefficients c
(z0)
n of which obey the five-term recurrence relation

Tnc
(z0)
n + Sn−1c

(z0)
n−1 +Rn−2c

(z0)
n−2 +Qn−3c

(z0)
n−3 + Pn−4c

(z0)
n−4 = 0, (8.6)

with
Tn = (n+ µ)(n+ µ− 2), (8.7)

Sn = −γ − z0(δ + εz0) + λ+ (γ + z0(δ + εz0)− 2λ) (n+ µ), (8.8)
Rn = (−γ − z0(δ + εz0) + λ)λ+ (δ + 2εz0) (n+ µ), (8.9)

Qn = α+ ε− (δ + 2εz0)λ+ ε(n+ µ), (8.10)
Pn = −ελ, (8.11)

where one should choose the greater exponent µ = 2.
The only case when the recurrence relation (8.6) involves four terms (however,

non-successive) is achieved if δ + 2z0ε = 0 and one chooses λ = γ − εz20 , since
then the coefficient Rn vanishes for all n. We note that the quantity δ + 2z0ε is
not changed by the scaling and shifting transformation z → s1z + s0, hence, the
recurrence relation necessarily involves five terms unless δ + 2z0ε = 0. Finally, we
note that since Pn does not depend on n, the series cannot terminate from the
right-hand side.

Considering the differential equation for the function v(z) = eλ(z−z0)
2/2uz:

vzz +

(
γ + 2z0λ+ (δ − 2λ) z + εz2 − 1

z − z0

)
vz +

Π(z)

z − z0
v = 0, (8.12)

where Π(z) is the quartic polynomial

Π(z) = −(γ + δ z0 + εz20)(1 + λξ2) + (α+ ε)ξ2 − λ(δ + 2εz0 − λ)ξ3 − ελξ4 (8.13)
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with ξ = z − z0, and applying the Frobenius solution of this equation in the neigh-
borhood of its regular singular point z = z0, we now obtain an expansion of type
II:

u(z) = C0 −
∞∑

n=0

c
(z0)
n

2(λ/2)(1+n+µ)/2
Γ

(
1 + n+ µ

2
;
λ(z − z0)

2

2

)
, (8.14)

the coefficients c
(z0)
n of which, however, obey a six-term recurrence relation:

Wnc
(z0)
n + Tn−1c

(z0)
n−1 + Sn−2c

(z0)
n−2 +Rn−3c

(z0)
n−3 +Qn−4c

(z0)
n−4 + Pn−5c

(z0)
n−5 = 0,

(8.15)

with
Wn = (n+ µ)(n+ µ− 2), (8.16)

Tn = (γ + z0(δ + εz0)) (n+ µ− 1), (8.17)
Sn = (δ + 2εz0 − 2λ) (n+ µ), (8.18)

Rn = α+ ε− (γ + z0(δ + εz0))λ+ ε(n+ µ), (8.19)
Qn = −(δ + 2εz0 − λ)λ, (8.20)

Pn = −ελ, (8.21)
where one should put µ = 2. As in the previous case, since Pn does not depend on
n, this series cannot terminate from the right-hand side.

Inspecting the coefficients Sn and Qn, we see that if δ+2z0ε ̸= 0, one can reduce
the recurrence relation (8.15) to one involving five terms (however, non-successive)
by putting either 2λ or λ equal to δ + 2z0ε, thus forcing, respectively, Sn → 0 or
Qn → 0. If in addition z0 is a root of the quadratic equation γ+ δ z0 + εz20 = 0, the
coefficient Tn also vanishes and the recurrence relation involves only four terms. If,
however, δ + 2z0ε = 0, since λ cannot be zero, the recurrence relation (8.15) may
be reduced at most to a five-term one (achieved when γ = 0, i.e. Tn = 0).

We conclude by discussing one more expansion constructed when the differential
equation for the function v(z) = eε(z−z0)

3/3uz:

vzz +

(
γ − 2εz20 + (δ + 4εz0) z − εz2 − 1

z − z0

)
vz +

Π(z)

z − z0
v = 0, (8.22)

where Π(z) is the quartic polynomial

Π(z) = −(γ + δ z0 + εz20)(1 + εξ3) + αξ2 − ε(δ + 2z0ε)ξ
4, ξ = z − z0. (8.23)

Applying the Frobenius solution of this equation in the neighborhood of the regular
singular point z = z0, we obtain another expansion of type II:

u(z) = C0 −
∞∑

n=0

c
(z0)
n

3(ε/3)(1+n+µ)/3
Γ

(
1 + n+ µ

3
;
ε(z − z0)

3

3

)
, (8.24)

the coefficients c
(z0)
n of which obey the six-term recurrence relation

Wnc
(z0)
n + Tn−1c

(z0)
n−1 + Sn−2c

(z0)
n−2 +Rn−3c

(z0)
n−3 +Qn−4c

(z0)
n−4 + Pn−5c

(z0)
n−5 = 0,

(8.25)
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with
Wn = (n+ µ)(n+ µ− 2), (8.26)

Tn = (γ + z0(δ + εz0)) (n+ µ− 1), (8.27)

Sn = (δ + 2εz0) (n+ µ), (8.28)

Rn = α− ε(n+ µ), (8.29)

Qn = −ε(γ + z0(δ + εz0)), (8.30)

Pn = −ε(δ + 2εz0), (8.31)

where generally µ = 0, 2. As in the previous two cases, since Pn does not depend
on n, in general this series cannot terminate from the right-hand side.

As it is immediately seen, if δ + 2z0ε = 0 or γ + δ z0 + εz20 = 0, the recurrence
relation involves four terms. If these two equations are satisfied simultaneously, i.e.
if γ = εz20 = εq2/α2 and δ = −2z0ε = −2εq/α, we have a two-term recurrence
relation:

Wnc
(z0)
n +Rn−3c

(z0)
n−3 = 0, (8.32)

with
Wn = (n+ µ)(n+ µ− 2), Rn = α− ε(n+ µ), µ = 0, 2. (8.33)

The coefficients c(z0)n of the expansion (8.24) are then explicitly calculated in terms of
the Gamma functions. The result for µ = 0 and initial conditions c

(z0)
0 = 1, c

(z0)
1 =

c
(z0)
2 = 0 reads

c(z0)n =
1 + 2 cos(2π n/3)

3

(ε/3)n/3 (−α/(3ε))n/3

(1/3)n/3 (1)n/3
. (8.34)

Correspondingly, the auxiliary function v(z) is expressed in terms of the confluent
hypergeometric functions as

v(z) = C1 z
2
1F1

(
2

3
− α

3ε
;
5

3
;
ε(z − z0)

3

3

)
+ C2 · 1F1

(
− α

3ε
;
1

3
;
ε(z − z0)

3

3

)
.

(8.35)
This leads to the following general solution of the tri-confluent Heun equation for
γ = εq2/α2 and δ = −2εq/α:

u(z) = C1 · 1F1

(
α

3ε
;
2

3
; −ε(z − z0)

3

3

)
+ C2z · 1F1

(
α

3ε
+

1

3
;
4

3
; −ε(z − z0)

3

3

)
.

(8.36)
Of course, this solution is readily deduced from the known one for γ = δ = q = 0.
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