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SIXTEEN LARGE-AMPLITUDE LIMIT
CYCLES IN A SEPTIC SYSTEM∗

Lina Zhang1, Feng Li2,† and Ahmed Alsaedi3

Abstract In this paper, bifurcation of limit cycles from the infinity of a two-
dimensional septic polynomial differential system is investigated. Sufficient
and necessary conditions for the infinity to be a center are derived and the
fact that there exist 16 large amplitude limit cycles bifurcated from the infinity
is proved as well. The study relays on making use of a recursive formula for
computing the singular point quantities of the infinity. As far as we know, this
is the first example of a septic system with 16 limit cycles bifurcated from the
infinity.
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1. Introduction and Statement of the Results

The problem of bifurcation of limit cycles for planar polynomial systems which
belongs to the second part of the Hilbert 16th problem, is known as a hot but
challenging issue in the qualitative theory of dynamical systems. The determination
of limit cycles bifurcated from a singular point (which is of center-focus type) is
strongly related with the center-focus problem. Consider a real analytic differential
system in the form of a linear center perturbed by higher order terms, that is

ẋ = −y +

∞∑
k=2

Xk(x, y), ẏ = x+

∞∑
k=2

Yk(x, y), (1.1)

where Xk and Yk are homogeneous polynomials of degree k. In polar coordinates
x = r cos θ, y = r sin θ, system (1.1) becomes into

ṙ =

∞∑
k=1

ϕk+2(θ)rk+1, θ̇ = 1 +

∞∑
k=1

ψk+2(θ)rk, (1.2)
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where ϕk+2 = cos θXk(θ) + sin θYk(θ) and ψk+2 = cos θYk(θ) − sin θXk(θ). For
sufficiently small h, the Poincaré succession function is

∆(h) = r̃(2π, h)− h =

∞∑
k=2

νk(2π)hk. (1.3)

If ν2(2π) = ν3(2π) = · · · = ν2k(2π) = 0 6= ν2k+1(2π), then the origin is called a
k-order fine focus and ν2k+1(2π) is called the k-th focus value; if for all positive
integers k, we have ν2k+1(2π) = 0, then the origin of system (1.1) is called a center.
To distinguish between a center and a focus at the origin of (1.1) is the so-called
center-focus problem. For (1.1) we can always find a Lyapunov function of the form

F (x, y) = x2 + y2 +

∞∑
k=3

Fk(x, y), (1.4)

where Fk is a homogeneous polynomial of degree k, so that Ḟ (x, y) =
∑∞
k=1 V2k+1(x2+

y2)k+1, where V2m+1 are real numbers called Lyapunov constants. The Lyapunov
constants are polynomials whose variables are the coefficients of system (1.1). In
the case that Ḟ ≡ 0 we say that the origin of system (1.1) is a center. Then there
comes one question, that is the coefficients of formal series F in (1.4) are not u-
nique. In fact, for any integer m > 1, the coefficient of one term of F2m can be
arbitrarily chosen even though F2, F3, · · · , Fm−1 have been determined. Hence,
this exact coefficient will effect the latter Lyapunov constants. For real system,
it is geometrically obvious that the arbitrary choice of F2, F3, · · · , Fm−1 cannot
affect the type of the singularity at the origin and, therefore, the local integrabil-
ity of the system. But for complex system, the fact is not obvious, it was proved
in [17, 18]. Furthermore, Liu [13] proved that ν2m(2π) =

∑2m−1
k=2 ξkνk(2π) and

ν2m+1(2π) =
∑m−1
k=1 ηkν2k+1(2π) + ν̃2m+1, where ξk and ηk are polynomials of the

coefficients of system (1.1). For the sake of convenience, these two formulas are de-
noted as ν2m(2π) ∼ 0 and ν2m+1(2π) ∼ ν̃2m+1, respectively, where the symbol “∼”
represents the mathematically equivalence relation. What is more, Liu [13] demon-
trated the Lyapunov constant V2m+1 and the focal value ν2m+1(2π) are algebraic
equivalent as well, that is V2m+1 ∼ ν2m+1(2π)/π. The equivalence relationship be-
tween the Lyapunov constants and the focal values indicates that, to some extent,
these two concepts are just the same. For convenience, the Lyapunov constants and
the focal values are collectively referred to as Lyapunov quantities in the rest of this
paper. Bifurcation theory for finitely smooth planar autonomous differential sys-
tems was considered in [5]. Theory of rotated equations is discussed in [6] and was
applied to a population model. For a given family of real planar polynomial systems
of ordinary differential equations depending on parameters, the authors considered
the problem of how to find the systems in the family which become time-reversible
after some affine transformation in [7]. Recently, an improvement on the number
of limit cycles bifurcating from a nondegenerate center of homogeneous polynomi-
al systems was obtained in [22] by normal form method. Centers for the Kukles
homogeneous systems with even degree was studied in [4]. Recently, bifurcation of
limit circles in a class of Z2-equivalent cubic planar differential systems with two
nilpotent singular points was studied in [10]. Some new perturbation method was
proposed in [11].

The next important step in the investigation of the system is studying limit
cycles corresponding to the perturbation in a small neighborhood of the linear cen-
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ter. As it is known, we practically make the order of the Lyapunov quantities as
large as possible so as to generate limit cycles as many as possible. Hence, only
considering the first nonzero Lyapunov quantity is not nearly enough. It is neces-
sary to investigate the zero roots and their distribution of the Poincaré succession
function. Nevertheless, the study involves very laborious computations since the
Lyapunov quantities are polynomials in coefficients of the system. These polyno-
mials usually are huge and it is impossible to perform decomposition over the field
of characteristic zero.

Compared with the classic methods, i.e., the Poincaré return map and the Lya-
punov functions , of computing the Lyapunov quantities, at present, there exist
some different methods for determining Lyapunov quantities and the computer re-
alizations of these methods, which permit us to find Lyapunov quantities in the
form of symbolic expressions, depending on expansion coefficients of the right-hand
of equations of system (1.1). These methods differ in complexity of algorithms and
compactness of obtained symbolic expressions. Note that for reduction of symbolic
expression and simplification of analysis of system, special transformations of sys-
tem to complex variables [3,12,16] are often used. Introducing a complex structure
on phase plane (x, y) by setting z = x+ iy, dT = idt and rewriting t instead of T ,
system (1.1) becomes an analytic complex conjugate system as follows

ż = Z(z, z̄), ˙̄z = −Z̄(z, z̄), (1.5)

where Z(z, z̄) = z +
∑∞
α+β=2 aαβz

αz̄β . Amel’kin et al [1] presented in their book
that by using a formal change of variables u = u(z, z̄) and v = v(z, z̄), where u(z, z̄)
and v(z, z̄) are polynomials without zero order terms, system (1.5) can be uniquely
reduced to the formal form

u̇ = u+

∞∑
k=1

pku
k+1vk, v̇ = −v −

∞∑
k=1

qkv
k+1uk. (1.6)

Written as µk = pk − qk, then µk is called the k-th singular point quantity. If
µ1 = µ2 = · · · = µk−1 = 0 6= µk, then the origin of (1.5) is called the k-th weak
singular point. In the case that for all k, µk = 0, we say that the origin of system
(1.5) is a complex center. As mentioned above, Lyapunov quantity is an important
detection quantity in the theory of planar dynamical systems. However, it is a
difficult task to completely find the Lyapunov quantities for a concrete nonlinear
system since we need to perform a great number of integral operations by using
the method of succession function or we need to solve large quantities of linear
equations by employing the method of formal series. In the past four decades, a
lot of algorithms to compute the Lyapunov quantities have been developed [2,9,21]
whereas all of them run into troubles from getting the exact expressions of the
Lyapunov quantities, these troubles are mainly due to the numerous computations
that are involved which break down the capacity of the computers. Liu et al [12,
13] had revealed the algebraic equivalent relationship between the singular point
quantities of the origin of system (1.5) and the Lyapunov quantities of the origin
of system (1.1), that is µk ∼ ν2k+1(2π)/iπ or µk ∼ V2k+1/i. Moreover, in the
works [16,20] new methods of computation of singular point quantities, which based
on constructing linear recursive formulas, are suggested. The advantages of these
methods are due to their ideological simplicity and visualization power with the help
of computer algebra systems such as Mathematica or Maple. The method appears
also in [20].
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A very natural extension from the study of limit cycles of system (1.1) is to
study systems with the infinity as a Hopf singular point. A similar problem is to
investigate the maximal number of limit cycles which may exist in the vicinity of
infinity under proper perturbation. But not many results have been obtained on
limit cycles for such systems since the analysis for systems with a Hopf infinity
is much more complex than system (1.1) with a Hopf origin. For the case of the
bifurcation of limit cycles at the infinity, the research is mainly concentrated on the
following real planar system

ẋ =

2n∑
k=0

Xk(x, y)− y(x2 + y2)n,

ẏ =

2n∑
k=0

Yk(x, y) + x(x2 + y2)n.

(1.7)

where Xk and Yk are homogeneous polynomials of degree k. This system has no real
singular point on the equator Γ∞ of the Poincaré compactification on the sphere.
Γ∞ is called infinity on the Gauss sphere or the equator of system (1.7). Concerning
the problem of finding the upper bound, called the Hilbert number I(m), on the
number of large-amplitude limit cycles which can bifurcate from the infinity of the
planar polynomial system (1.7) of degree m, some results have been obtained; see
for example [18-25] and references therein. However, the finiteness problem remains
unsolved even for m = 3. So far, the best result for cubic systems is I(3) ≥ 7
in [15, 23], while for quintic systems is I(5) ≥ 11 in [24]. Weak centers and local
bifurcations of critical periods at infinity for a class of rational systems was studied
in [8]. Furthermore, bifurcation of critical periods of a quintic system was studied
in [19]. In this paper, we want to ask: What is an upper bound for the cyclicity of
infinity of general septic systems? Although we cannot answer this open problem,
we will try to provide a better lower bound in this paper and hope that this will
help promote research in this direction.

For general septic systems with a Hopf infinity, the best result obtained so far is
13 large-amplitude limit cycles bifurcating from the infinity of a septic system [25].
In this paper, we shall consider a septic system similar to the one in [25]. In the
next section, we formulate the septic system, and then in Section 3 we obtain the
first 112 singular point quantities and the sufficient and necessary conditions of
center and prove the existence of 16 large-amplitude limit cycles bifurcating from
the infinity.

2. The recursive formula and the computation of
singular point quantities

In this section, we present a septic system which may yield 16 limit cycles. To
achieve this, we start from the following generic septic polynomial system:
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ẋ = A10x+A01y +A20x
2 +A11xy + (−B11 +A20)y2 +A30x

3

+A21x
2y +A12xy

2 +A03y
3 +A32x

5 −B32x
4y + 2A32x

3y2

−2B32x
2y3 +A32xy

4 −B32y
5 + y(x2 + y2)3,

ẏ = B10x+B01y +B20x
2 +B11xy + (A11 +B20)y2 +B30x

3

+B21x
2y +B12xy

2 +B03y
3 +B32x

5 +A32x
4y + 2B32x

3y2

+2A32x
2y3 +B32xy

4 +A32y
5 − x(x2 + y2)3,

(2.1)

where Akj and Bkj are real parameters. System (2.1) has a Hopf singularity at the
infinity. By means of transformation u = x+ iy, v = x− iy, τ = it and rewriting
t instead of τ , we have its complex conjugate system u̇ = a10u+ a01v + a20u

2 + a11uv + a30u
3 + a21u

2v + a03v
3 + a32u

3v2 + u4v3,

v̇ = b10v + b01u+ b20v
2 + b11vu+ b30v

3 + b21v
2u+ b03u

3 + b32v
3u2 − v4u3

(2.2)
with

a10 =i(A10 +B01 − iA01 + iB10)/2, a01 = i(A10 −B01 + iA01 + iB10)/2,

a20 =i(B11 − iA11)/2, a11 = i(2A20 −B11 + iA11 + 2iB20)/2,

a30 =i(A30 −A12 +B21 −B03 − iA21 + iA03 + iB30 − iB12)/8,

a21 =i(3A30 +A12 +B21 + 3B03 − iA21 − 3iA03 + 3iB30 + iB12)/8,

a12 =i(3A30 +A12 −B21 − 3B03 + iA21 + 3iA03 + 3iB30 + iB12)/8,

a03 =i(A30 −A12 −B21 +B03 + iA21 − iA03 + iB30 − iB12)/8,

a32 =i(A32 + iB32).

Obviously, akj and bkj satisfy the conjugate condition, that is ākj = bkj , k, j =
0, 1, 2, 3. We say that (2.2) is the associated system of (2.1) and vice versa. Further,
introducing a generalized Bendixson’s reciprocal radius transformation given by u =
z/(zw)4, v = w/(zw)4 and making a rescaling of the time variable dT = (zw)21dt
and rewriting t instead of T , system (2.2) becomes

ż = z
[
7+(3a32+4b32)w7z7+3a03w

16z12+(3a12+4b30)w15z13+(3a21+4b21)

w14z14 + (3a30 + 4b12)w13z15 + 4b03w
12z16 + (3a11 + 4b20)w18z17

+(3a20+4b11)w17z18+3a01w
22z20+(3a10+4b10)w21z21 + 4b01w

20z22
]
/7,

ẇ = −w
[
7+(4a32+3b32)w7z7+4a03w

16z12+(4a12+3b30)w15z13+(4a21+3b21)

w14z14 + (4a30 + 3b12)w13z15 + 3b03w
12z16 + (4a11 + 3b20)w18z17

+(4a20+3b11)w17z18+4a01w
22z20 + (4a10 + 3b10)w21z21 + 3b01w

20z22
]
/7.

(2.3)
Accordingly, the infinity of system (2.1) reduces to the origin of system (2.3). In
other words, the study of bifurcation of limit cycles at the infinity of system (2.1) is
equivalent to that of the origin of system (2.3). Before discussing the center-focus
problem of the infinity of system (2.1), we introduce some notions and results; for
more details, see [13,16].
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Definition 2.1. (i) For any positive integer k, µk = 7ω7k is called the k-th singular
point quantity at the infinity of system (2.2), where ω7k is the 7k-th singular point
quantity at the origin of system (2.3).

(ii) If µ1 = µ2 = · · · = µm−1 = 0 6= µm, then the infinity is called a m-th fine
singular point of system (2.2).

(iii) If for all k, µk = 0, then the infinity of system (2.2) is called a complex
center.

Lemma 2.1. For any positive integer k, µk ∼ ν2k+1(2π)/iπ, where µk is the k-th
singular point quantity at the infinity of system (2.2), while ν2k+1(2π) is the k-th
Lyapunov quantity of its associated system (2.1).

From Theorem 3.2 in [13] or Theorems 5.3.2 and 5.3.3 in [16], we have

Lemma 2.2. For system (2.3), we can derive uniquely an extended formal power
series

F (z, w) = zw

∞∑
k=0

f7k(z, w), (2.4)

such that

Ḟ =

∞∑
m=1

ωm(zw)7m+1, (2.5)

where f7k(z, w) =
∑
α+β=7k cαβz

αwβ, and for any positive integer m, the m-th
singular point quantity ωm at the origin of (2.3) can be determined by the following
recursive formulae:

c0,0 = 1,

when α = β > 0 or α < 0 or β < 0, cαβ = 0

else

cαβ=(b01c−22+α,−20+β+4b01αc−22+α,−20+β−3b01βc−22+α,−20+β − a10c−21+α,−21+β
+b10c−21+α,−21+β+3a10αc−21+α,−21+β+4b10αc−21+α,−21+β−4a10βc−21+α,−21+β

−3b10βc−21+α,−21+β−a01c−20+α,−22+β+3a01αc−20+α,−22+β − 4a01βc−20+α,−22+β

−a20c−18+α,−17+β+b11c−18+α,−17+β+3a20αc−18+α,−17+β+4b11αc−18+α,−17+β

−4a20βc−18+α,−17+β−3b11βc−18+α,−17+β−a11c−17+α,−18+β+b20c−17+α,−18+β

+3a11αc−17+α,−18+β+4b20αc−17+α,−18+β4a11βc−17+α,−18+β − 3b20βc17+α,−18+β

+b03c−16+α,−12+β+4b03αc−16+α,−12+β − 3b03βc−16+α,−12+β − a30c−15+α,−13+β
+b12c−15+α,−13+β+3a30αc−15+α,−13+β+4b12αc−15+α,−13+β−4a30βc−15+α,−13+β

3b12βc−15+α,−13+β−a21c−14+α,−14+β+b21c−14+α,−14+β+3a21αc−14+α,−14+β

+4b21αc−14+α,−14+β−4a21βc−14+α,−14+β−3b21βc−14+α,−14+β−a12c13+α,−15+β
+b30c−13+α,−15+β+3a12αc−13+α,−15+β+4b30αc−13+α,−15+β−4a12βc−13+α,−15+β

−3b30βc−13+α,−15+β−a03c−12+α,−16+β+3a03αc−12+α,−16+β−4a03βc−12+α,−16+β

−a32c−7+α,−7+β+b32c−7+α,−7+β+3a32αc−7+α,−7+β+4b32αc−7+α,−7+β

−4a32βc−7+α,−7+β − 3b32βc−7+α,−7+β)/7(α− β),

ωm = (b01c−22+m,−20+m−a10c−21+m,−21+m+b10c−21+m,−21+m−a01c−20+m,−22+m
−a20c−18m,−17+m+b11c−18+m,−17+m−a11c−17+m,−18+m+b20c−17+m,−18+m

+b03c−16+m,−12+m−a30c−15+m,−13+m+b12c−15+m,−13+m−a21c−14+m,−14+m
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+b21c−14+m,−14+m−a12c−13+m,−15+m+b30c−13+m,−15+m−a03c−12+m,−16+m
−a32c−7+m,−7+m + b32c−7+m,−7+m)/7.

It can be seen clearly from Definition 2.1 and Lemma 2.1 that the Lyapunov
quantities {ν2k+1(2π)} of system (2.1) at the infinity can be deduced from the
singular point quantities {ω7k} of system (2.3) at the origin. More importantly, the
recursive formulae given by Lemma 2.2 are linear with respect to all cαβ , which
means that we only need to perform finite many arithmetic operations, i.e., plus,
minus, multiply and division, to the coefficients of system (2.3). The calculation is
symbolic and can be easily carried out with the help of computer algebra systems
such as MATHEMATICA or MAPLE. Unfortunately, another question emerges,
the symbolic computation usually results in very large expressions and one can not
directly apply these enormous expressions to do further research. In other words,
the simplification of singular point quantities is much more difficult to handle with.
For example, by using the recursive formulae of Lemma 2.2 and computer algebra
system MATHEMATICA to calculate the singular point quantities of the origin of
system (2.3), we find that the first thirteen singular point quantities have the terms
shown in the following table.

ω7k ω28 ω35 ω42 ω49 ω56 ω63 ω70 ω77

term 2 16 42 116 244 524 1018 1936

ω7k ω84 ω91 ω98 ω105 ω112

term 3480 6180 10572 17822 29268

This table tells us that for the computation of the singular point quantities,
to find a method for the simplification of ω7k under the conditions ω7 = ω14 =
· · · = ω7(k−1) = 0, is a key step. For the sake of simplicity we suppose system
(2.3) with a01 = rb30, b01 = ra30, a11 6= 3b20, b11 6= 3a20, a12 6= 3b30, b12 6= 3a30 and
a30b30 6= 0. Meanwhile, we apply the recursive formulae presented in Lemma 2.1
and utilize computer algebra system MATHEMATICA to do symbolic computation,
the singular point quantities of system (2.3) are obtained as follows:

Theorem 2.1. The first 112 singular point quantities of the origin of system (2.3)
are given by

ω7 = (−a32 + b32)/7,

ω14 = (−a21 + b21)/7,

ω21 = (−a10 + b10)/7,

ω28 = (a12a30 − b12b30)/7,

ω35 = (a11a20 − b11b20)/7,

ω42 = (−3a03a
2
303b03b

2
30 + a03a30b12 − a12b03b30)/14,

ω49 = (−3a12a
2
20 + 3b12b

2
20 + 2a30a

2
11 − 2b30b

2
11 + 3a30b

2
20 − 3b30a

2
20

+ 7a20b11b30 − 7a11b20a30 + b11a12a20 − a11b12b20)/14,

ω56 = (a211a30 − b211b30 + 4a30b
2
20 − 4b30a

2
20 − 4a11b20a30 + 4b11a20b30)r/7,

ω63 = 3
√
h03(3a30a

2
11−3b30b

2
11+10a30b

2
20−10b30a

2
20−11a11a30b20+11b11b30a20)/14,

ω70 = 8(a32 + b32)H/63,
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ω77 = 2(21a21 + 21b21 −
√
h03)H/189,

ω84 = (a30b
2
20 + a220b30 + 6a10h30 + 6b10h30)H/(21h30),

ω91 = (83247h03 − 744800h30)H/1666980,

ω98 = −10(3a10
√
h03 + 3b10

√
h03 − 68h20)H/1701,

ω105 = (−78668415a210−157336830h10−78668415b210+367721042h30
√
h03)

×H/220271562,

ω112 = 904063960h30
√
h03(a10 + b10)H/114631119,

where H =
√
h03(−a11a30b20 + 2a30b

2
20− 2a220b30 + b11b30a20), h30 = a30b30, h03 =

a03b03, h20 = a20b20, h10 = a10b10. ωk = 0, k 6= 7j, j ∈ N, j < 16. In the
above expression of ω7k, it is assumed that: ω7 = ω14 = · · · = ω7(k−1) = 0 (k =
2, 3, · · · , 16).

3. Center conditions and bifurcation of limit cycles

Theorem 3.1. For system (2.3), the first 112 singular point quantities are zero if
and only if one of the following three conditions holds:

(i) a10 = b10, a21 = b21, a32 = b32, a12a30 = b12b30, a03a
2
30 = b03b

2
30,

a30a
2
11 = b30b

2
11, a20b20 = 0,

(ii) a10 = b10, a21 = b21, a32 = b32, a11a20 = b11b20, a12a30 = b12b30,

a03a
2
30 = b03b

2
30, a30b

2
20 = b30a

2
20,

a20b20 6= 0,

(iii) a10 = b10, a21 = b21, a32 = b32, a11 = qb20, b11 = qa20,

a12 = (2q − 1)b30, b12 = (2q − 1)a30,

a01 = b01 = 0, a03b03 = 0, a20b20 6= 0 (q ∈ R and q 6= 2, 3).

Proof. The sufficiency is evident. Let us prove the necessity. By ω28 = 0, we
have a12a30 = b12b30. Since a30b30 6= 0, there exists a real constant p, such that
a12 = pb30 and b12 = pa30. then

ω42 = (a03a
2
30 − b03b230)(−3 + p)/14, (3.1)

from the above ω42 = 0 and p 6= 3, there exists a real constant c, such that a03 = cb230
and b03 = ca230. If a20b20 = 0, then

ω49 = (a211a30 − b211b30)/7, (3.2)

ω7k = 0, k > 7, (3.3)

that is the condition (i) holds.
If a20b20 6= 0, then by ω35 = 0, there must exist a real constant q, such that

a11 = qb20 and b11 = qa20, and let a32 = b32 = e, a21 = b21 = s and a10 = b10 = l,
then

ω49 =− I0(1 + p− 2q)(−3 + q)/14,

ω56 = I0(−2 + q)2r/7,
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ω63 =− 3H(−5 + 3q)/14,

ω70 = 16He/63,

ω77 = 2H(h30c+ 42s)/189, (3.4)

ω84 = H(J0 + 12h30l)/(21h30),

ω91 = h30(−744800 + 83247c2h30)H/1666980,

ω98 = 20H(34h20 + 3ch30l)/1701,

ω105 =− h30H(183860521ch230 + 157336830l2)/110135781,

ω112 = 180812792lh30H/114631119,

where I0 = a30b
2
20 − b30a

2
20, J0 = a30b

2
20 + b30a

2
20, H = I0h30(−2 + q)c, h20 =

a20b20, h30 = a30b30.
From Eq. (3.4), we conclude the condition (ii) or (iii) holds.

Theorem 3.2. All the singular point quantities of system (2.3) at the origin are
zero if and only if one of the conditions of Theorem 3.1 holds.

Proof. Necessity is evident, we prove the sufficiency. When the condition (i)
or (ii) in Theorem 3.1 holds, we can prove that system (2.3) satisfies the extended
symmetric principle in [12,16]. If the condition (iii) holds, then, system (2.3) has an

integrating factor F (z, w) = (zw)
2−q
q−1 if q 6= 1; system (2.3) admits a first integral

G(z, w) = zw = C if q = 1 (C is a constant). This completes the proof of the
sufficiency.

Corollary 3.1. The infinity of system (2.1) or the origin of system (2.3) is a center
if and only if one of the three conditions in Theorem 3.1 holds.

Theorem 3.3. The infinity of system (2.1) is a 33 order fine focus if and only if
the origin of system (2.3) is a 112 order fine singular point, that is the coefficients
of system (2.3) satisfy

a01 = b01 = 0, a32 = b32 = 0, a10 = b10 = l > 0, a21 = b21 = −
√
h03/42,

a03 = cb230, b03 = ca230, a11 = 5/3b20, b11 = 5/3a20, a12 = 7/3b30, b12 = 7/3a30,

a220b30 + b220a30 = −12h30l, h20 = 3l
√
h03/34, h03 = 744800h30/83247,

1457034322674112000 + 15576487793376021c3l2 = 0, c < 0, I0 6= 0.

(3.5)

In order to prove the existence of 16 large-amplitude limit cycles bifurcated
from the infinity of perturbed system of (2.1), we need to check the Jacobian de-
terminant of Lyapunov quantities. We remind that due to the algebraic equivalent
relationship between {ν2k+1} and {ω7k} given in Lemma 2.1 and Definition 2.1,
the Jacobian determinant evaluated in the infinity of system (2.1), based on the
{ν2k+1}, is equivalent to that of {ω7k} presented in Theorem 2.1. That is, the Ja-
cobian determinant of {ν2k+1} is non-zero if and only if that of {ω7k} is non-zero.
We choose a30 = b30 = 1. Then from Theorem 3.3, we have

h20 = − 3

34
cl, a220 + b220 = −12l. (3.6)

And from ω91 and ω105 of Eq. (3.4), we have

c ≈ −2.991131718303069, l ≈ 1.869591885272554. (3.7)
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The Jacobian determinant of the function group

(ω7, ω14, ω21, ω28, ω35, ω42, ω49, ω56, ω63, ω70, ω77, ω84, ω91, ω98, ω105),

with respect to the variables

(r, a32, b32, a21, b21, a10, b10, a12, b12, a20, b20, a11, b11, a03, b03)

is

J=− 959787471455911936000000000000000(a20 − b20)8(a20 + b20)8

(−3890841549914253988096732416000a220

− 3890841549914253988096732416000b220

+ 2162862293825086111762577193120a220c

+ 2162862293825086111762577193120b220c

− 47818539264156486443412704000l

+ 10097339662407233533123008000cl

+ 275643889934037606334009073331a420cl

+ 275643889934037606334009073331b420cl)

/939141165583243214977468514744301725015172325735473605241332989482957.

(3.8)

By Eqs. (3.6), (3.7) and (3.8), we finally get

J = 123429635664594091997293381479045391180574396884647268371742

1756687533902861963999548939673876551434240000000000000000

× (23510776476564465806 + 1657757579729341347c)l

/121170010027225078527809129001534914944096001952695923

5659364749240837926383873636220225744375261730453670562

513569467464182485979

≈ 3.53319× 107.

(3.9)

Hence, from (3.9) and Theorem 4.7 in [16], we have the following conclusion.

Theorem 3.4. If the origin of system (2.3) is a 112-order singular point, then, by
a small perturbation of system (2.3), there exist 16 small-amplitude limit cycles in
a small neighborhood of the origin of system (2.3). Correspondingly, there exist 16
large-amplitude limit cycles in a small enough neighborhood of the infinity of system
(2.1).
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