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THE ISOENERGETIC KAM-TYPE THEOREM
AT RESONANT CASE FOR NEARLY

INTEGRABLE HAMILTONIAN SYSTEMS∗

Weichao Qian1, Yong Li2,1,† and Xue Yang2,1

Abstract In this paper, we study the persistence of resonant invariant tori
on energy surfaces for nearly integrable Hamiltonian systems under the usu-
al Rüssmann nondegenerate condition. By a quasilinear iterative scheme, we
prove the following things: (1) The majority of resonant tori on a given energy
surface will be persisted under Rüssmann nondegenerate condition. (2) The
maximal number about the preserved frequency components on a perturbed
torus is characterized by the smaller of the maximal rank of the Hessian ma-
trices of the unperturbed system and the nondegeneracy of resonance. (3) If
unperturbed systems admit subisoenergetic nondegeneracy on an energy sur-
face, then the majority of the unperturbed resonant tori on the energy surface
will be persisted and give rise to a family of perturbed tori with the same en-
ergy, whose frequency ratios among respective “nondegenerate” components
are preserved.

Keywords Isoenergetic KAM-type theorem, resonant case, nearly integrable
Hamiltonian systems.
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1. Introduction

Consider a family of real analytic nearly integrable Hamiltonian systems with the
following form:

H(x, y) = H0(y) + εP (x, y), (1.1)

where y ∈ G ⊂ Rd, x ∈ T d; H0(y) is a real analytic function; P (x, y), a perturbation,
is a real analytic function and ε > 0 is a small parameter.

As well known, the celebrated KAM theory due to Kolmogorov [16], Arnold
[1] and Moser [20] asserts that, if integrable part is nondegenerate, then nearly
integrable systems still exhibit a large extent quasiperiodic motions on invariant
tori. Furthermore, these tori {Ty : y ∈ G}, which contain resonant tori of all
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type of resonances, tend to be destroyed under arbitrary generic perturbation and
born out a resonance zone consisting of both stochastic trajectories and regular
orbits [5, 27]. To characterize regular orbits in the resonance region, an essential
problem is to study mechanism of destruction for resonant tori and the persistence
of certain lower dimensional tori which are split from the resonant ones.

Such a persistence problem was first considered by Poincaré [21] within a class
of maximal resonances, which is foliated into periodic orbits. With respect to (1.1),
the Poincaré theorem states that any periodic orbit associated to a nondegenerate
relative equilibrium will be persisted. After a long time, Treshchëv [29] proved the
persistence of hyperbolic tori in a case of general resonance. Eliasson [11], Chierchia
etc [6], Rudnev etc [24] and Medvedev etc [19] also obtained similar results for the
case of multiplicity one resonant.

To characterize general nondegenerate perturbation, Cong etc [9] proved that
in general resonance case, under g−nondegeneracy condition (see Definition 1.4),
(1.1) can be reduced to the following form:

H(x, y, z) = e+ 〈ω, y〉+
δ

2
〈z,Mz〉+ εP (x, y, z),

where M is a nonsingular matrix, and gives rise to a family of lower dimensional
invariant tori. Without the g−nondegeneracy condition, Li etc [18] also obtained
the same conclusion. And for some recent researches about resonance tori with
respect to multiplicity r, r > 1, we refer readers to [10,15,32,33].

Of course, there is a fair amount of attentions given to the fixed Diophantine
torus about preservation of toral frequency. See Benettin etc [3] for KAM approach,
Gallavotti [13], Chierchia etc [6] and Eliasson [12] for a direct method using Lind-
stedt series, Gallavotti etc [14] and Bricmont etc [4] for renormalization groups
techniques, Chow etc [8] for the partial preservation of frequencies on a submain-
fold, Sevryuk for the degenerate systems [25] and the partial preservation not only
frequencies but also Floquet exponents [26], and Xu etc [31] for topological degree
techniques. Then, on a given energy surfaceM, is there a family of resonant invari-
ant tori which preserve the toral frequencies? Furthermore, on the energy surface
M, is there a family of resonant invariant tori in which the frequency ratios are
preserved?

To deal with above problem, it is indispensable to set up a subgroup g of Zd

on energy surface M. Before setting up the subgroup g, we are going to introduce
some definitions.

Definition 1.1. For H0(y), ω = ∂H0

∂y (y) is called nonresonant, if 〈k, ω〉 6= 0 for any

k ∈ Zd \ {0}. Otherwise, it is resonant.

Definition 1.2. If there is a subgroup g of Zd, generated by independent integer
vectors τ1, . . . , τm0

, such that 〈k, ω〉 = 0 for all k ∈ g and 〈k, ω〉 6= 0 for all k ∈ Zd/g,
then ω is called a frequency with multiplicity m0 resonance.

Definition 1.3. For any given subgroup g, the m (= d−m0) dimensional surface

Λ̃(g,G) = {y ∈ G : 〈k, ω〉 = 0, k ∈ g} is called g−resonant surface.

Remark 1.1. Under the nondegenerate condition, locally, a g−resonant surface
is diffeomorphic to Rm. In a typical way [1], by passing to finite coverings which

will also lead to the global result on G, we may assume that Λ̃(g,G) is globally
differomorphic to a subdomain in Rm without loss of generality.
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Similar to [29], by group theory, on a given energy surface M there are integer
vectors τ ′1, · · · , τ ′m ∈ Zd such that Zd is generated by τ1, · · · , τm0

, τ ′1, · · · , τ ′m and
detK0 = 1, where K0 = (K∗,K

′
), K∗ = (τ ′1, · · · , τ ′m), K

′
= (τ1, · · · , τm0) are

d×d, d×m, d×m0, respectively, and K∗ generates the quotient group Zd/g, while
K
′

generates the group g.

Definition 1.4. If H0 is nondegenerate and detK
′T ∂2H0

∂y2 (y)K
′ 6= 0 for y ∈ Λ̃(g,G),

then H0 is g−nondegenerate.

Without loss of generality, we suppose that M admits a global coordinate, i.e.,
there is a bounded closed region Λ ∈ Rd0 and a Cl0 diffeomorphism y : Λ → M
such that M = y(Λ). For λ ∈ Λ under the transformation

y 7→ y + y(λ),

Hamiltonian (1.1) reads

H(x, y, λ; ε) = N(y, λ) + P (x, y, λ; ε),

where

N(y, λ) = H0(y(λ)) + 〈∂H0

∂y
(y(λ)), y − y(λ)〉+ h(y, λ),

h(y, λ) =
1

2
〈y − y(λ),

∂2H0

∂y2
(y(λ))(y − y(λ))〉+O(|y − y(λ)|3),

P (x, y, λ; ε) = εP (x, y, λ).

Let

Γ = KT
0
∂2H0

∂y2 (λ)K0 =

Γ11 Γ12

Γ21 Γ22

 ,

where Γ11, Γ12, Γ21, Γ22 are m×m, m×m0, m0×m, m0×m0 matrices, respectively,

and Γ12 = ΓT21, Γ22 = K
′T ∂2H0

∂y2 (λ)K
′
.

Then on energy surface M with the symplectic coordinate transformation y −
y(λ) = K0p, q = KT

0 x, Hamiltonian (1.1) is changed to

H(q, p) = e0+〈ω∗, p
′
〉+1

2
〈p
′′
,Γ22(λ)p

′′
〉+O(|p|3)+O(|p

′
|2)+O(|p

′
|·|p
′′
|)+εP̄ (p, q, ω∗),

where

ω∗ = KT
∗ ω(λ) ∈ Λ(g,G),

Λ(g,G) = {ω∗ ∈ Rm : y ∈ Λ̃(g,G)},
p
′

= (p1, · · · , pm)T ,

p
′′

= (pm+1, · · · , pd)T ,
P̄ (q, p) = P ((KT

0 )−1q, y(λ) +K0p).

Here we used the fact that Λ(g,G) is diffeomorphic to the m−dimensional surface

Λ̃(g,G).
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Let

Λ
′
(g,G) = {λ ∈ Λ(g,G) : |〈k, ω〉| > γ0

|k|τ
,∀k ∈ Zm \ {0}},

where |k| =
m∑
i=1

|ki|; γ0 and τ are fixed positive constants. For any ω ∈ Λ
′
(g,G),

we separate the first-order resonant terms from the perturbation by a canonical
transformation of coordinates,

(p, q mod 2π)→ (Y,X mod 2π) : p = ∂S(q,Y )
∂q , X = ∂S(q,Y )

∂Y ,

where

S = 〈Y, q〉+ ε
∑

k∈Zm\{0}

√
−1hk
〈k, ω〉

(q
′′
, ω)e

√
−1〈k,q

′
〉,

hk =

∫ 2π

0

P̄ (q, 0)e
√
−1〈k,q

′
〉dq

′
.

Then

p
′

= Y
′
+
√
−1ε

∑
k∈Zm\{0}

kSke
√
−1〈k,q

′
〉,

p
′′

= Y
′′

+O(ε),

X = q,

Sk =

√
−1hk
〈k, ω〉

.

The new Hamiltonian reads as

H(X,Y ) = 〈ω, Y
′
〉+

1

2
〈Y
′′
,Γ22(λ)Y

′′
〉+ εh0(X

′′
, ω) +O(εY ) +O(ε2) +O(|Y |3)

+O(|Y
′
|2) +O(|Y

′
||Y
′′
|),

up to an irrelevant constant. We assume that h0(X
′′
, ω) has a nondegenerate critical

point, say X
′′

0 . Taking X = X, Y = ε
1
2 Ȳ , H̄ = ε−

1
2H and using Taylor expansion

at the equilibrium point, the Hamiltonian arrives at

H̄(X,Y ) = H(X, ε
1
2 Ȳ )/ε

1
2

= 〈ω, y〉+εO(|y|2)+
ε

2
(〈u, V0u〉+〈v, U0v〉)+εO(|u|3)+O(ε2) + εO(|y||v|),

where we replace H̄, X
′
, Ȳ

′
, X

′′
, Ȳ

′′
, ε

1
2 , Γ22 and ∂2h0

∂X′′2
(0, ω) by H, x, y, u, v, ε,

U0 and V0, respectively.

Denote z = (u, v), M =

V0 0

0 U0

 , εO(|y|2) = ε
2 〈y,Ay〉 + εŷ(y) = ε

2 〈y,Ay〉 +

εO(|y|3) and εO(|u|3) = εẑ(z).
Finally, we get

H(x, y, u, v) = N + P, (1.2)
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where

N = 〈ω(λ), y〉+ h,

h =
ε

2
〈y,A(λ)y〉+ εŷ(y) +

ε

2
〈z,M(λ)z〉+ εẑ(z),

ŷ(y) = O(|y|3),

ẑ(z) = O(|u|3),

P = O(ε2) + εO(|y||v|),

with z = (u, v)T , and x ∈ Tm, y ∈ Rm, u, v ∈ Rm0 , λ ∈ Λ, which is a bounded
closed region on Rn. In the above, all λ−dependences are of class Cl0 for some
l0 ≥ d. Hereinafter, rewrite m = d.

For any small ε, let s = ε
1
3 . Consider Hamiltonian (1.1) in

D(r, s) = {(x, y, z) : |Im x| < r, |y| < s2, |z| < s}.

It is easy to see that on D(r, s)× Λ

|∂lλP | ≤ Cε2.

Set δ = ε, γ = ε
1
3
−ι

d+9 , µ = ει, ι ∈ (0, 1
3 ). Hence

|∂lλP | ≤ δγd+9µs2, |l| ≤ d.

Since P (x, y, z) is a real analytic function defined on some complex neighborhood
of T d × {0} × {0}, with the Taylor-Fourier series, we have

P =
∑

|k|∈Zd, |j|,|q|∈Zd+

Pkjqy
jzqe

√
−1〈k,x〉.

We assume the following conditions hold:

(A1) rank {∂
αω
∂λα : |α| ≤ d− 1} = d for all λ ∈ Λ.

(A2) For given n, 0 < n ≤ m, rank A(λ) = n and rank M(λ) = 2m0 on Λ.

(A1
′
) For given n, 0 < n ≤ m, there is a smoothly varying n× n minor A of A(λ)
on M, a given energy surface, such that

det

 A(λ) ω∗(λ)

ω∗(λ)
T

0

 6= 0,

where ω∗(λ) = ∂N
∂y∗

, y∗ = (yi1 , · · · , yin)T and i1, i2, · · · , in denote the row

indices of A(λ) in A(λ); rankM(λ) = 2m0.

Remark 1.2. If ω is real analytic, Λ is connected, and max
λ∈Λ

rank {∂
αω
∂λα : |α| ≤

d− 1} = d, condition (A1) is Rüssmann condition.

Remark 1.3. Actually, condition (A1
′
) is a condition called subisoenergetic non-

degenerate condition, where A is a minor of ∂2H0

∂y2 , hence weaker than the following

Arnold’s isoenergetic nondegenerate condition [2]:
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(AI) On a given level set: H0 = c,

det

 ∂2H0

∂y2
∂H0

∂y

∂H0

∂y

T
0

 6= 0.

By using quasilinear iterative scheme introduced in [18], we have the following
theorem.

Theorem 1.1. Consider (1.1). Suppose H0 is g-nondegenerate for a given g, and
h0(X ′′, Y ) has an analytic family of nondegenerate critical points for all y ∈ Λ̃(g,G).
Let M be an energy surface given by {H0(y) = E} and τ > l1(d − 1) − 1 be fixed,
where l1 is a constant.

(i) Assume (A1) and (A2) onM. Then there exists a ε0 > 0 and a family of Can-

tor sets Λε(g,G) ⊂ Λ̃(g,G), 0 < ε < ε0, with |Λ̃(g,G) \ Λε(g,G)| = O(γ
1
l1 ),

such that each y ∈ Λε(g,G), the unperturbed tours Ty persists and gives rise
to a family of real analytic, quasiperiodic invariant tori Tε,y which preserves
the frequency components ωi1(y), ωi2(y), · · · , ωin(y) of the unperturbed toral
frequency ω(y). Moreover, these perturbed tori form a Cl0−1 Whitney smooth
family;

(ii) If (A1) and (A1
′
) hold on M, then each perturbed torus Tε,y preserves the

ratios of the i1, · · · , in components of its toral frequency ωε(y), i.e.,

[ωε,i1(y) : · · · : ωε,in(y)] = [ωi1(y) : · · · : ωin(y)],

where ωε,ij (y) and ωij (y) are the ij−th components of ωε(y) and ω(y), respec-
tively, for j = 1, 2, · · · , n.

Remark 1.4. Notice that d0 is the dimension of parameter and d is the dimension
of the space of x, thus there are two cases: (1) d0 > d, then nondegenerate condition
(A1) fails with respect to the original parameters of Hamiltonian systems and extra
deformation parameters need to be added so that a joint nondegenerate condition
of type (A1) can be hold with respect to the extended parameters; (2) d0 ≤ d,
Theorem 1.1 has a direct application to nearly integrable Hamiltonian systems
(1.1) with respect to the persistence of invariant tori on a submanifold of G.

The article is organized as follows. In Section 2 we show the quasilinear iterative
scheme for one KAM cycle. And in Section 3 we complete the proof of our results
by deriving an iteration lemma and giving measure estimates.

2. The KAM Step

Throughout, for any two complex column vectors ξ, ζ with the same dimension,
〈ξ, ζ〉 always stands for ξT ζ, i.e., the transpose of ξ times ζ. Below, unless specified
explanation, we shall use the same symbol | · | to denote an equivalent (finite di-
mensional) vector norm and its induced matrix norm, absolute value of functions,
and measure of sets, etc., and use | · |D to denote the supremum norm of functions
on a domain D. For sake of brevity, we shall not specify smoothness orders for
functions having obvious orders of smoothness indicated by their derivatives taken.
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Moreover, all Hamiltonians in the sequel are associated to the standard symplectic
structure.

The KAM iteration process consists of infinitely many KAM steps. From each
cycle of KAM steps, one can find constructions and estimations of desired symplectic
transformations and their domains, perturbed frequencies and new perturbations.
For the sake of convenience, we shall omit the index for all quantities of the ν−th
KAM step and use ′+′ to index all quantities in the (ν + 1)−th KAM step. All
constants below are positive and independent of the iteration process. To simplify
the nations, we shall suspend the λ−dependence in most terms in this section.

We start with the Hamiltonian systems

H = N + εP, (2.1)

defined on

D(r, s) = {(x, y, z) : |Im x| < r, |y| < s2, |z| < s},

where

N = e+ 〈ω, y〉+
δ

2
〈y,A(λ)y〉+ δŷ(y) +

δ

2
〈z,M(λ)z〉+ δẑ(z),

P = O(ε2) + εO(|y||v|),
|∂lλP |D(r,s) ≤ δγd+9s2µ, |l| ≤ d. (2.2)

Consider (2.1) and define

r0 = r, γ0 = 4γ, β0 = s, Λ0 = Λ, H0 = H,

e0 = e, A0 = A, A = A, M0 = M, P0 = P,

N0 = e0(λ) + 〈ω0(λ), y〉+ h0, ŷ0(y) = ŷ(y), ẑ0(z) = ẑ(z),

h0 =
δ

2
〈y,A0(λ)y〉+ δŷ0(y) +

δ

2
〈z,M0(λ)z〉+ δẑ0(z).

For sake of simplicity, we assume that 0 < r0, β0, γ0 ≤ 1 and A0 is the n× n minor
of A0 with detA0 6= 0. By monotonicity, we define µ0, s0 implicitly through the
following equations:

µ =
4d+5µ0

(M∗ + 1)2K2τ
1

,

s0 =
β0µ0

16(M∗ + 1)
Kτ

1 , (2.3)

where

M∗ = max
|l|≤d, |j|+|i|≤7,λ∈Λ0

|∂lλ∂jy∂izh0(y, z;λ)|,

K1 = ([log
1

µ0
] + 1)3η,

η =
log 2

log 7− log 6
.

It is clear that µ0 is small if and only if µ is, and

µ0 = o(µ1−ε), ∀ 0 < ε� 1. (2.4)

If µ is small enough, it is simple to get
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16(M∗ + 1)Kτ
1 > 1.

Hence, s0 < min{β0, γ0}. Due to (2.3),

µ

µ0
= 4d+7(

s0

β0γ
)2. (2.5)

Besides (2.2), we have

|∂lλP0|D(r0,s0) ≤ δγd+7
0 s2

0µ0, |l| ≤ d. (2.6)

In the following, we characterize the quasilinear iteration scheme for Hamiltonian
(2.1) in one KAM cycle, say, from ν−th KAM step to the (ν + 1)−th. Now,
suppose that after ν steps, we have arrived at the following real analytic Hamiltonian
systems:

H = N + P ,

where

N = e+ 〈ω, y〉+ h(y, z),

h(y, z) =
δ

2
〈y,Ay〉+ δŷ(y) +

δ

2
〈z,Mz〉+ δẑ(z),

P = O(ε2) + εO(|y||v|),

defined on a phase domain

D(r, s) = {(x, y, z) : |Im x| < r, |y| < s2, |z| < s},

and λ ∈ Λ ⊂ Λ0. In addition, suppose that A is an n × n nonsingular minor of A
on Λ, and P = P (x, y, z;λ) satisfies, for some 0 < µ < µ0, 0 < γ ≤ γ0,

|∂lλP (x, y, z;λ)|D(r,s) ≤ δγd+7s2µ, |l| ≤ d.

By considering both averaging and translation, we shall find a symplectic trans-
formation Φ+, which, on a small phase domain D(r+, s+) and a smaller parameter
domain Λ+, transforms the Hamiltonian into the Hamiltonian of the next KAM
step, i.e.

H+ = H◦Φ+ = N+ + P+,

where N+, P+ enjoy similar properties as N , P respectively on D(r+, s+) × Λ+.
Define

r+ =
r

2
+
r0

4
;

s+ =
1

8
αs;

α = µ2σ = µ
1
3 ;

β+ =
β

2
+
β0

4
;

γ+ =
γ

2
+
γ0

4
;

K+ = ([log
1

µ
] + 1)3η;
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D i
8α

= D(r+ +
i− 1

8
(r − r+),

i

8
αs), i = 1, 2, · · · , 8;

D(ξ) = {y ∈ Cd : |y| < ξ2, |z| < ξ}, ξ > 0;

D̂(ξ) = D(r++
7

8
(r − r+), ξ), ξ > 0;

D+ = D 1
8α

= D(r+, s+);

D̃+ = D(r+ +
3

4
(r − r+), β+);

Γ(r − r+) =
∑

0<|k|≤K+

|k|4m
2
0(l+d+8)τ+d+l+8e−|k|

r−r+
8 .

2.1. Truncation

Consider the Taylor-Fourier series of P ,

P =
∑

|k|∈Zd, |j|,|q|∈Zd+

Pkjqy
jzqe

√
−1〈k,x〉, (2.7)

and let R be the truncation of P with the following form:

R =
∑
|k|≤K+

(Pk00 + 〈Pk10, y〉+ 〈Pk01, z〉+ 〈Pk02z, z〉)e
√
−1〈k,x〉.

Then

P −R = (
∑
|k|>K+

+
∑

|k|≤K+,2|j|+|q|≥3

) Pkjq y
j zq e

√
−1〈k,x〉.

Thus, on a smaller domain D 7
8α

, under assumption∫ ∞
K+

td+me−t
r−r+

8 ≤ µ, (2.8)

where K+ is defined as above, we have, for |l| ≤ d,

|∂lλ(P −R)|D 7
8
α
≤ Cδγd+7s2µ2,

|∂lλR|D 7
8
α
≤ Cδγd+7s2µ.

The details can be obtained with the same techniques as ones in [8].

2.2. Averaging and Quasilinear Equations

As usual, we shall construct the averaging transformation as the time 1−map Φ1
F

of the flow generated by a Hamiltonian F . Let F has the following form:

F =
∑

06=|k|≤K+

(Fk00 + 〈Fk10, y〉+ 〈Fk01, z〉+ 〈Fk02z, z〉)e
√
−1〈k,x〉,

where Fijk=Fijk(y, z), differing from the usual linear iteration. Let [R]=
∫
Td
R(x, ·)dx

be the average of truncation R. Substituting F into the equation

{N,F}+R− [R] = 0, (2.9)
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where {·, ·} represents Poisson brackets, then

H̄ = H ◦ Φ1
F

= (N +R) ◦ Φ1
F + (P −R) ◦ Φ1

F

= N + [R] + P̄+(x, y, z;λ)

= ē+ + 〈ω̄+, y〉+
δ

2
〈y,Ay〉+ δŷ(y) +

δ

2
〈z,M+z〉+ δẑ(z) + 〈P001, z〉+ P̄+,

where

ē+ = e+ P000,

ω̄+ = ω + P010,

M+ = M + P002,

P̄+(x, y, z) =

∫ 1

0

{Rt, F} ◦ ΦtF dt+ (P −R) ◦ Φ1
F ,

Rt = (1− t)[R] + tR.

Let Y , Z, p010, p001 be the vectors formed by the n components (maybe not the
first n components) of y, z, P010, P001, respectively, and denote

ŷ(y) = ŷ(

Y

0

),

ẑ(z) = ẑ(

Z

0

).

Then by implicit function theorem, the equation

δAY + δ∂Y ŷ(Y ) = −p010, (2.10)

δM+Z + δ∂Z ẑ(Z) = −p001 (2.11)

admits a unique solution Y ∗, Z∗, respectively, onD(s), which also smoothly depends
on λ, where A is an n× n minors of A. Define

y∗ =

Y ∗

0

 ,

z∗ =

Z∗

0

 .

By (2.10) and (2.11), we clearly have

δAy∗ + δ∂y ŷ(y∗) = −

p010

0

 ,

δM+z
∗ + δ∂z ẑ(z

∗) = −

p001

0

 .

Consider the following translation:
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Φ : x→ x, y → y + y∗, z → z + z∗,

then

H+ = H̄+ ◦ φ
= e+ + 〈ω+, y〉+ h+(y, z) + P+(x, y, z),

where

e+ = ē++〈ω̄+, y
∗〉+

δ

2
〈y∗, Ay∗〉+δŷ(y∗)+

δ

2
〈z∗,M+z

∗〉+δẑ(z∗)+〈P001, z
∗〉,

ω+ = ω + P010 −

p010

0

 ,

h+(y, z) = δŷ(y + y∗)− δŷ(y∗)− δ〈∂y ŷ(y∗), y〉 − δ

2
〈∂2
y ŷ(y∗)y, y〉+ δẑ(z + z∗)

−δẑ(z∗)− δ〈∂z ẑ(z∗), z〉 −
δ

2
〈∂2
z ẑ(z

∗)z, z〉+
δ

2
〈y,Ay〉+

δ

2
〈∂2
y ŷ(y∗)y, y〉

+
δ

2
〈z,M+z〉+

δ

2
〈∂2
z ẑ(z

∗)z, z〉,

P+ = P̄+(x, y, z;λ) ◦ φ. (2.12)

Now, we will solve the homological equations.

Lemma 2.1 (p.256, [17]). Let A, B, C be r× r, s× s, r× s matrices, respectively,
and let X be an r × s unknown matrix. Then the matrix equation

AX +XB = C,

is solvable if and only if the vector equation

(Es ⊗A+BT ⊗ Er)X
′

= C
′

is solvable, where X
′

= (XT
1 , · · · , XT

s )T and C
′

= (CT1 , · · · , CTs )T with X =
(X1, · · · , Xs) and C = (C1, · · · , Cs). Moreover,

||X ′ || ≤ ||(Es ⊗A+BT ⊗ Er)−1|| · |C ′ |.

In view of Lemma2.1 and (2.9), by comparing coefficients, we have

√
−1〈k, ω + ∂yh(y)〉Fk00 = Pk00, (2.13)
√
−1〈k, ω + ∂yh(y)〉Fk10 = Pk10, (2.14)

[−
√
−1〈k, ω + ∂yh(y)〉I2m0

+ ∂zh1(z)J ]Fk01 = −Pk01, (2.15)

[−
√
−1〈k, ω + ∂yh(y)〉I4m2

0
+ (∂zh1(z)J)⊗ I2m0

+I2m0
⊗ (∂zh1(z)J)]Fk02 = −Pk02, (2.16)

where

h(y) =
δ

2
〈y,Ay〉+ δŷ(y),

h(z) =
δ

2
〈z,Mz〉+ δẑ(z)
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= zh1(z).

To control the norm of F , we solve homological equations on the set

Λ+(g,G) = {λ ∈ Λ(g,G) : |〈k, ω〉| > γ

|k|τ
, |detA1| >

γ2m0

|k|2τm0
,

|detA2| >
γ4m2

0

|k|4m2
0τ

for all 0 < |k| ≤ K+},

where

A1 = −
√
−1〈k, ω〉I2m0

+ ∂zh1(z)J, (2.17)

A2 = −
√
−1〈k, ω〉I4m2

0
+ (∂zh1(z)J)⊗ I2m0

+ I2m0
⊗ (∂zh1(z)J). (2.18)

In the following, we also will use the similar notations.

2.3. Estimate on N+

Theorem 2.1. The following facts hold.

(i) Fk00, Fk10, Fk01, Fk02 satisfy the following properties:

|∂lλFk00| ≤ CδΓ(r − r+)s2µ, (2.19)

|∂lλFk10| ≤ CδΓ(r − r+)µ, (2.20)

|∂lλFk01| ≤ CδΓ(r − r+)sµ, (2.21)

|∂lλFk02| ≤ CδΓ(r − r+)µ, (2.22)

where C is a constant;

(ii) F can be extended to functions of Hölder class C5,d−1+σ0(D̂(β0)×Λ0), where
0 < σ0 < 1 is fixed. Moreover, there is a constant C such that

‖F‖C5,d−1+σ0 (D̂(β0)× Λ0) ≤ Cδµs2Γ(r − r+).

Proof. The proofs of (2.19)-(2.22) are analogic. We are going to primarily testify
(2.19). Let (y, z, λ) ∈ D(s)× Λ+. By the definition of M∗,

|∂yh(y)| ≤ (M∗ + 1)|y| < (M∗ + 1)s < γ
2|k|τ ,

provided

2s <
r − r+

(M∗ + 1)Kτ
+

. (2.23)

It follows that

Lk = |〈k, ω(λ) + ∂yh(y)〉| > γ
2|k|τ .

Hence, Lk is nonvanishing on Λ+. Therefore,

Fk00 = L−1
k Pk00, ∀ (y, z, λ) ∈ D(s)× Λ+, 0 < |k| ≤ K+. (2.24)

By Cauchy estimate, we know that
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|∂lλPk00| ≤ |∂lλP |e−|k|r ≤ Cδγd+7s2µe−|k|r, |l| ≤ d.
Retrospecting back to differential and integral calculus as well as using (2.23), in-
ductively, we deduce that

|∂qL−1
k | ≤ C|k|

|q||L−1
k |
|q|+1. (2.25)

Using (2.24) and (2.25), we get

|∂lλFk00| = |∂lλ(L−1
k Pk00)|

= |
|l|∑
|l′ |=1

 l

l
′

 (∂l−l
′

λ L−1
k ) (∂l

′

λ Pk00)|

≤
∑

|i|+|j|=|l|

|k|τ(|i|+|j|+|l|)+|i|+|j|+|l|

γ|i|+|j|+|l|+1
Cδγd+7s2µe−|k|r

≤ Cδs2µΓ(r − r+).

With the same method,

|∂lλFk10| = |∂lλ(L−1
k Pk10)| ≤ CδΓ(r − r+)µ.

Let

|L(2)
k | = |det(A1 + 〈k, ∂yh(y)〉I2m0

)|.
Thus,

|L(2)
k | ≥

γ2m0

|k|2m0τ
− C0sK

2m0
+ ≥ γ2m0

2|k|2m0τ
,

provided

2sC0K
4m2

0µ+4m2
0+1

+ < γ4m2
0 . (2.26)

Therefore,

|∂lλFk01| = |
|l|∑
|l′ |=1

 l

l
′

 (∂l−l
′

λ (L
(2)
k )−1) (∂l

′

λ Pk01)| ≤ CδsµΓ(r − r+).

Similarly,

|∂lλFk02| ≤ CδΓ(r − r+)µ.

(ii) follows from the standard Whitney extension theorem [22,28].

Theorem 2.2. The following hold:

(i) There is a constant C such that the following hold for all |l| ≤ d

|∂lλy∗|Λ+
≤ Cγd+7µ, (2.27)

|∂lλz∗|Λ+
≤ Cγd+7µ, (2.28)

|∂lλe+ − ∂lλe|Λ+
≤ Cδγd+7µ, (2.29)

|∂lλω+ − ∂lλω|Λ+
≤ Cδγd+7µ, (2.30)

|∂iy∂jz∂lλh+(y, z)− ∂iy∂jz∂lλh(y, z)|Λ+
≤ Cδγd+7µ, (2.31)

where |i|+ |j| ≤ 7;
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(ii) y∗, z∗ can be extended to functions of Hölder class C5,d−1+σ0(D̂(β0) × Λ0),
respectively, where 0 < σ0 < 1 is fixed. Moreover, there is a constant C such
that

‖y∗‖Cd−1+σ0 (Λ0) ≤ CµΓ(r − r+),

‖z∗‖Cd−1+σ0 (Λ0) ≤ CµΓ(r − r+).

Proof. Since the proofs of (2.27)-(2.31) are similar, we will mainly prove (2.27).
Let λ ∈ Λ+. Denote

M∗ = max
λ∈Λ0

|A−1
0 (λ)|+ 1,

B(y, λ) = A+ (

∫ 1

0

∂2
y ŷ(θy)dθ)y.

Then by (2.10),

B(Y ∗)Y ∗ = −p010. (2.32)

Supposing

max
|l|≤d,2|i|+|j|≤7

|∂lλ∂iy∂jzh− ∂lλ∂iy∂jzh0|D(s)×Λ+
≤ µ

1
2
0 δ, (2.33)

using the same method as one in [18], we can get that B(Y ∗) is nonsingular and

|B−1(Y ∗)| ≤ |A−1
0 |

1−|A0−B(Y ∗)||A−1
0 |
≤ 2M∗

δ .

Hence,

|y∗| = |Y ∗| ≤ 2M∗δ |∂yP |D(s) ≤ 2M∗γ
d+7µ.

Differentiating (2.32) with respect to λ, under assumption

4δM∗(M
∗ + 1)γd+7µ <

1

2
(2.34)

and induction, we have

|∂lλy∗| < CM∗γ
d+7µ.

In the same way, we can easily get

|∂lλz∗| < 2M∗γ
d+7µ.

We place the maximal value of M+ as M∗, too. Similarly,

|∂lλe+ − ∂lλe|Λ+ ≤ Cδγd+7µ,

|∂lλω+ − ∂lλω|Λ+
≤ Cδγd+7µ,

|∂iy∂jz∂lλh+(y, z)− ∂iy∂jz∂lλh(y, z)|Λ+
≤ Cδγd+7µ,

where |i|+ |j| ≤ 7.
For details of (ii), refer to [22,28].
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2.4. Estimate on Φ+

By estimates of ∂lλFk00, ∂lλFk10, ∂lλFk01, ∂lλFk02 and the form of F ,

|∂lλF | ≤ Cδs2µΓ(r − r+).

With Cauchy estimate, we have

(r − r+)|∂λ∂yF |, s2|∂λ∂xF |, s|∂λ∂zF | ≤ Cδs2µΓ(r − r+). (2.35)

Inductively,

|Dn∂lλF | ≤ CδµΓ(r − r+), |n| ≤ 4.

Denote ΦtF = (φt1, φ
t
2, φ

t
3)T , where φt1, φt2 and φt3 are components of ΦtF in

directions of x, y, z, respectively. Let (x, y, z) be any point in D 1
4α

and let t∗ =

sup{t ∈ [0, 1] : ΦtF (x, y, z) ∈ Dα}. We note that Dα ⊂ D̂(s). Using the identity

ΦtF = id+
∫ t

0
XF ◦ ΦuF du,

where XF = (Fy,−Fx, JFz)T denotes the vector field generated by F , we have

|Φt1(x, y, z)− x| ≤
∫ t

0
|Fy ◦ ΦuF |Dαdu ≤ |Fy|D̂(s) < CδΓ(r − r+)µ < 1

8 (r − r+),

with assumption

CδΓ(r − r+)µ <
1

8
(r − r+); (2.36)

|Φt2(x, y, z)− y| ≤
∫ t

0
|Fx ◦ ΦuF |Dαdu ≤ |Fx|D̂(s) < CδsµΓ(r − r+) ≤ 1

8α,

with hypothesis

CδsµΓ(r − r+) ≤ 1

8
α; (2.37)

|Φt3(x, y, z)− z| ≤
∫ t

0
|JFz ◦ ΦuF |Dαdu ≤ |Fz|D̂(s) < CδsµΓ(r − r+) < 1

8αs,

supposing

CδsµΓ(r − r+) <
1

8
αs. (2.38)

Therefore, ΦtF : D 1
4α
→ D 1

2α
. By estimations of |∂lλy∗|Λ+

and |∂lλz∗|Λ+
, it is easy

to see φ : D 1
8α
→ D 1

4α
.

The above imply that Φ+ = ΦtF ◦φ : D+ → D 1
2α

is well defined, symplectic and

real analytic for all λ ∈ Λ+. We, now, consider Φ+ on the domain D̃+.

Theorem 2.3. Let F , y∗ and z∗ be the extended functions defined as above. Then

Φ+ = Φ1
F ◦ φ : D̂+ → D(r, β)

is of classes C4 and also depends Cd−1+σ0 smoothly on λ ∈ Λ0, where σ0 define as
above. Moreover, there is a constant C such that:

‖Φ+ − id‖C4,d−1+σ0 (D̃+×Λ0) ≤ CµΓ(r − r+).
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Proof. It is easy to see that Φ+ maps D̂+ into D(r, β) for all λ ∈ Λ0. We note
that

ΦtF = id+

∫ t

0

XF ◦ ΦuF du, 0 < t < 1,

‖XF ‖C4,d−1+σ0 (D̂(β0)×Λ0) ≤ C‖F‖C5,d−1+σ0 (D̂(β0)×Λ0),

where XF = (Fy,−Fx, JFz)T is the vector field generated by F . Supposing

CµδΓ(r − r+) <
1

8
(r − r+), (2.39)

CµδΓ(r − r+) + Cδµ < β − β+, (2.40)

by applying Gronwall inequality and the definition of ΦtF , inductively, we have that
on D̃+ × Λ0,

|ΦtF − id|, |∂yΦtF − I2n|, |∂jyΦtF | ≤ CδµΓ(r − r+). (2.41)

This theorem holds with the help of the identity

Φ+ − id = (Φ1
F − id) ◦ φ+


0

y∗

0

 +


0

0

z∗

 .

2.5. Frequency and Ratios

As for the preservation of the energy on resonant tori, y∗ and z∗ are defined so that
e+ = e = E. Therefore, we consider equations

〈ω̄+, y
∗〉+

δ

2
〈y∗, Ay∗〉+ δŷ(y∗) +

δ

2
〈z∗,M+z

∗〉+ δẑ(z∗) + 〈P001, z
∗〉 = 0,

δM+z
∗ + δ∂z ẑ(z

∗) = −p001,

which, by implicit function theorem, clearly admits a local smooth solution y∗, z∗

on M, respectively.
As for the preservation of ratios for the toral frequency on the resonant tori, y∗

and z∗ need to be choose such that e+ = e = E, and [ω+,i1 : · · · : ω+,in ] = [ωi1 :
· · · : ωin ]. Therefore, we consider equations

(A+
∂ĥ

∂(yi1 , · · · , yin)
(y∗))(y∗i1 , · · · , y

∗
in)T − t∗(ωi1 : · · · : ωin)T=−(p010,i1 , · · · , p010,in)T ,

〈(ω̄i1 , · · · , ω̄in)T , (y∗i1 , · · · , y
∗
in)〉 +

δ

2
〈y∗, Ay∗〉 + δŷ(y∗)

+
δ

2
〈z∗,M+z

∗〉+ δẑ(z∗) + 〈P001, z
∗〉 = 0,

δM+z
∗ + δ∂z ẑ(z

∗) = −p001,

which, by subisoenergetic nondegenerate condition (A1
′
) and implicit function the-

orem, admit a local smooth solution (y∗, z∗, t∗) such that y∗j = 0 and z∗j = 0 if
j∈{i1, · · · , in}.

Under the symplectic transformation
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Φ+ = Φ1
F ◦ φ,

the new Hamiltonian reads

H ◦ Φ+ = N+ + P+,

where

N+ = E + 〈ω+, y〉+ h+(y, z),

P+ = P̄+ ◦ φ,
ω+ = ω + P010 +Ay∗ + ∂yĥ(y∗),

and h+(y, z), A+ and ĥ(y) have the same forms as above. Thus, the new normal
form is reduced to the desired case.

Theorem 2.4. Assume (2.26). Then for all 0 < |k| ≤ K+, λ ∈ Λ+,

|〈k, ω+〉| > γ+
|k|τ , |detA1,+| >

γ
2m0
+

|k|2τm0
, |detA2,+| >

γ
4m2

0
+

|k|4m
2
0τ
,

where

A1,+ = −
√
−1〈k, ω+〉I2m0

+ ∂zh1,+(z)J,

A2,+ = −
√
−1〈k, ω+〉I4m2

0
+ (∂zh1,+(z)J)⊗ I2m0

+ I2m0
⊗ (∂zh1,+(z)J).

Proof. By the definition of Λ+ and (2.26), this theorem can be proved easily.

2.6. Estimate on P+

Theorem 2.5. There is a constant C, such that, on D+ × Λ+,

|∂lλP+| ≤ Cδγd+7s2µ2(Γ(r − r+) + 1), |l| ≤ d.

Proof. We know

P+ = P̄+ ◦ φ

= (

∫ 1

0

{Rt, F} ◦ ΦtF dt+ (P −R) ◦ Φ1
F ) ◦ φ.

By above estimates, we see that, for all |l| ≤ d, 0 ≤ t ≤ 1,

|∂lλ{Rt, F} ◦ ΦtF |D 1
4
α
×Λ+ ≤ Cδγd+7s2µΓ(r − r+),

|∂lλ(P −R) ◦ ΦtF |D 1
4
α
×Λ+

≤ Cδγd+7s2µ.

Hence, by the definition of P+,

|∂lλP+| ≤ Cδγd+7s2µ2(Γ(r − r+) + 1).

Let C0 be the maximal one among C ′s we mentioned above and define

µ+ = 64C0µ
1+σ.



Isoenergetic KAM-type theorem at resonant case 1633

Assume

µσ(Γ(r − r+) + 1) ≤
γd+7

+

γd+7
, on D+ × Λ+, (2.42)

then

|∂lλP+| ≤ 64C0δs
2
+µ

1+σµ
1
3−2σ(µσγd+7(Γ(r − r+) + 1))

≤ δγd+7
+ s2

+µ+, |l| ≤ d.

This completes one KAM step.

3. Proof of Main Results

3.1. Iteration Lemma

Consider (2.1) and let r0, s0, γ0, β0, µ0, Λ0, H0, N0, e0, ω0, h0, A0, P0 be given as
above. And let D̂0 = D(r0, β0). We define the following sequences, inductively, for
all ν = 1, 2, · · · :

rν = r0(1−
ν∑
i=1

1

2i+1
), sν =

1

8
αν−1sν−1, αν = µ2σ

ν = µ
1
3
ν ,

βν = β0(1−
ν∑
i=1

1

2i+1
), µν = 64C0µ

1+σ
ν−1, γν = γ0(1−

ν∑
i=1

1

2i+1
),

Kν = ([log
1

µν−1
] + 1)3η, D̃ν = D(rν +

3

4
(rν−1 − rν), βν), Dν = D(rν , sν),

Λν(g,G) = {λ ∈ Λν−1(g,G) : |〈k, ων−1〉| >
γν−1

|k|τ
, |detA1,ν−1| >

γ2m0
ν−1

|k|2m0τ
,

|detA2,ν−1| >
γ

4m2
0

ν−1

|k|4τm2
0

for all 0 < k ≤ Kν}.

Theorem 3.1. If (2.6) holds for a sufficiently small µ0 = µ0(r0, β0,m, d, τ), then
the KAM step described as one in Section 2 is valid for all ν = 0, 1, · · · , result-
ing in sequences Λν , Hν , Nν , eν , ων , hν , Aν , Pν ,Φν , ν = 1, 2, · · · , with the following
properities:

(i) Φν : D̂×Λν → D̂ν−1 is symplectic for each λ ∈ Λν , and is of class C4,d−1+σ0 ,
where 0 < σ0 < 1 is fixed, and

‖Φν − id‖C4,d−1+σ0 (D̂ν×Λν) ≤
µ

1
2

2ν
. (3.1)

Moreover, on D̂ν × Λν ,

Hν = Hν−1 ◦ Φν = Nν + Pν ,

where

Hν = Nν + Pν ,
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Nν = eν + 〈ων , y〉+ hν ,

hν =
δ

2
〈y,Aνy〉+ δŷ(y) +

δ

2
〈z,Mνz〉+ δẑ(z),

Aν has n× n real nonsingular minor Aν , εŷ(y) = O(|y|3), εẑ(z) = O(|z|3);

(ii) (ων(λ))q = (ων−1(λ))q for all q = 1, 2, · · ·n and λ ∈ Λν ;

(iii) For all |l| ≤ d,

|∂lλeν − ∂lλeν−1|Λν ≤ δγd+6
0

µ

2ν
; (3.2)

|∂lλeν − ∂lλe0|Λν ≤ δγd+6
0 µ; (3.3)

|∂lλων − ∂lλων−1|Λν ≤ δγd+6
0

µ

2ν
; (3.4)

|∂lλων − ∂lλω0|Λν ≤ δγd+6
0 µ; (3.5)

|∂lλ∂iy∂jzhν − ∂lλ∂iy∂jzhν−1|Dν×Λν ≤ δγd+6
0

µ
1
2

2ν
, |i|+ |j| ≤ 7; (3.6)

|∂lλ∂iy∂jzhν − ∂lλ∂iy∂jzh0|Dν×Λν ≤ δγd+6
0 µ

1
2 , |i|+ |j| ≤ 7; (3.7)

|∂lλPν |Dν×Λν ≤ δγd+7
ν s2

νµν ; (3.8)

(iv)

Λν(g,G) = {λ ∈ Λν−1(g,G) : |〈k, ων−1〉| >
γν−1

|k|τ
, |detA1,ν−1| >

γ2m0
ν−1

|k|2m0τ
,

|detA2,ν−1| >
γ

4m2
0

ν−1

|k|4τm2
0

for all 0 < |k| ≤ Kν}.

Proof. Actually, it suffices to verify above assumptions that we put forward for all
ν. The method of verifying hypothesises mentioned above is standard. For sake of
brevity we here only show the proof of (2.42). As for details of other hypothesises’,
we refer readers to [8]. For simplicity, we let r0 = β0 = 1. By choosing µ0 small,
we also see that other assumptions are hold for ν = 0. By the definition of µν , we
have that

µν = (64C0)(1+σ)ν−1µ0
(1+σ)ν . (3.9)

Therefore,

µν = 64C0µ
1+σ
ν−1 < · · · <

1

ζν
µ0, (3.10)

where ζ > 1 and

µ0 < (
1

64C0ζ
)σ < 1. (3.11)

Denote

Γν = Γ(rν − rν−1),
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where

rν − rν−1 =
1

2ν+2
=
βν − βν+1

β0
. (3.12)

Since

Γν ≤
∫ ∞

1

λ4m2
0(|l|+d+8)τ+d+|l|+8e−

λ

2ν+6 dλ

≤ 4m2
0(|l|+ d+ 8)τ + d+ |l|+ 8)!2(ν+6)(4m2

0(|l|+d+8)τ+d+|l|+8),

it is clear that ζ is sufficiently large, then

µσνΓν < µσν (Γν + 1) <
γd+7
ν+1

γd+7
ν

.

Therefore, (2.42) holds for all ν ≥ 1.
Above all, KAM step described in Section 2 are valid for all ν, which gives the

desired sequences stated as this theorem. Now, we accomplish proofs of (i), (ii) and
(iii). The proof of (iv) is standard. Details could be found in [8].

3.2. Convergence and Measure Estimates

Let

Ψν = Φ1 ◦ Φ2 ◦ · · · ◦ Φν , ν = 1, 2, · · · .

Then Ψν : D̃ν × Λ0 → D̃0, and

H0 ◦Ψν = Hν = Nν + Pν ,

Nν = eν + 〈ων(λ), y〉+ hν(y, λ), ν = 0, 1, · · · ,

where Ψ0 = id.
Simply, Nν converges uniformly to N∞, Pν converges uniformly to P∞ and

∂jyP∞ = 0, |j| ≤ 2. Details refer to [8].

Hence for each λ ∈ Λ∗, T
d × {0} is an analytic invariant torus of H∞ with the

toral frequency ω∞(λ), which, by the definition of Λν , satisfies

|〈k, ω∞(λ)〉| > γ

2|k|τ
for all k ∈ Zd/{0},

(ω∞(λ))q ≡ (ω0(λ))q for all 1 ≤ q ≤ n.

Following the Whitney extention of Ψν , all eν , ων , hν , Pν , (ν = 0, 1, · · · ) admit
uniformly Cd−1+σ0 extensions in λ ∈ Λ0 with derivatives in λ up to order d − 1
satisfying same estimates (3.2)-(3.11). Thus, e∞, ω∞, h∞, P∞ are Cd−1 Whitney
smooth in λ ∈ Λ∗, and derivatives for e∞ − e0, ω∞ − ω0, h∞ − h0 satisfy similar
estimates as ones in (3.3), (3.5), (3.7). Consequently, the perturbed tori form a
Cd−1 Whitney smooth family on Λ∗.

The measure estimate is the same as one in [8]. For sake of simplicity, we only
show the idea. Denote

Λν+1 = {λ ∈ Λν : |〈k, ων〉| ≤
γν
|k|τ

, |detA1,ν | ≤
γ2m0
ν

|k|2m0τ
, |detA2,ν | ≤

γ
4m2

0
ν

|k|4m2
0τ
,
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Kν−1 < |k| ≤ Kν}
= S1

⋃
S2

⋃
S3,

where

S1 = {λ ∈ Λν : |〈k, ων〉| ≤
γν
|k|τ

,Kν−1 < |k| ≤ Kν},

S2 = {λ ∈ Λν : |detA1,ν | ≤
γ2m0
ν

|k|2m0τ
,Kν−1 < |k| ≤ Kν},

S3 = {λ ∈ Λν : |detA2,ν | ≤
γ

4m2
0

ν

|k|4m2
0τ
,Kν−1 < |k| ≤ Kν}.

There are three cases, d0 = d, d0 > d and d0 < d, to be considered. When
d0 = d, using the same method as one in [23], |S1| ≤ c( γ

|k|τ+1 )
1
l , where l is a

constant. Recall

|detA2,ν | = |det(−
√
−1〈k, ω〉I4m2

0
+ (∂zh1(z)J)⊗ I2m0

+ I2m0
⊗ (∂zh1(z)J))|

= ||k|4m
2
0 det(−

√
−1〈ς, ω〉I4m2

0
+

δ

|k|
M)|,

where δ is small enough, ς = k
|k| ∈ Sd and δM = (∂zh1(z)J) ⊗ I2m0 + I2m0 ⊗

(∂zh1(z)J). When 〈ς, ω〉 6= 0, with the continuity of determinant the leading part

of det(−
√
−1〈ς, ω〉I4m2

0
+ δ
|k|M) is det(−

√
−1〈ς, ω〉I4m2

0
). Then, |S3| ≤ c( γ

|k|τ+1 )
1
l .

When 〈ς, ω〉 = 0, under condition (A1) rank {∂
α〈ς,ω〉
∂λα : |α| ≤ N1} = 1 for any ς ∈ Sd.

Since (4m2
0)!{∂

α〈ς,ω〉
∂λα : |α| ≤ N1} is a minor of {∂

α(〈ς,ω〉)4m
2
0

∂λα : |α| ≤ 4m2
0 − 1 +N1},

rank{∂
α(〈ς,ω〉)4m

2
0

∂λα : |α| ≤ 4m2
0 − 1 + N1} = 1. Then, with sufficient small δ,

rank{∂
α detA2,ν

∂λα : |α| ≤ N2} = 1. Therefore, using the same step as one in [23],

|S3| ≤ c( γ
|k|τ+1 )

1
l . Similarly, |S2| ≤ c( γ

|k|τ+1 )
1
l . Then Λν+1 ≤ c( γ

|k|τ+1 )
1
l . Hence

|Λ0 \ Λ∗| ≤
∞∑
ν=0

∑
Kν≤|k|≤Kν+1

|Λν+1| ≤ O(γ
1
l ).

For the other two cases, d0 < d and d0 > d, with the same techniques as in [8,23]

|S1| < c( γ
|k|τ+1 )

1
l . Then, using the step mentioned above, we have |Λ0\Λ∗| = O(γ

1
l ).

Now, we complete the proof of the Theorem 1.1.
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[15] A. González-Enŕıquez, A. Haro and R. de la Llave, Singularity theory for non-
twist KAM tori, Mem. Amer. Math. Soc., 2014, 1607(227), 1–115.

[16] A. N. Kolmogorov, On conservation of conditionally periodic motions for a
small change in Hamilton’s function, Dokl. Akad. Nauk. SSSR, 1954, 98, 527–
530.

[17] P. Lancaster, Theory of matrices, Academic Press, New York, 1969.

[18] Y. Li and Y. Yi, A quasiperiodic Poincaré’s theorem, Math. Ann., 2003, 326(4),
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